用户名: 密码: 验证码:
不同土类土壤养分时空变异与水稻精确施肥决策支持系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以地处苏中的姜堰市为例,针对县域尺度内土壤养分演变与分布状况不清、生产上过量不合理施用肥料等问题,综合运用经典统计学、地统计学、全球定位系统(GPS)、地理信息系统(GIS)技术、掌上电脑(PDA)与Visual Basic、 Embedded Visual Basic编程语言及农业模型学原理与方法、决策支持系统(DSS)开发技术等,研究了县域范围内不同尺度潮土和水稻土两种土类土壤养分的时间维变异特征、空间变异结构及其与土壤地力的关系,试图为复杂的土壤变异性探讨有效的分析评价方法;构建了土壤养分空间数据库及相关模型,并生成多种尺度土壤养分空间分布与精确施肥专题地图,分别开发出基于Visual Basic与MapObjects的县域水稻精确施肥地理信息系统、基于掌上电脑(PDA)与Embedded Visual Basic的县域水稻精确施氮决策支持系统、基于Visual Basic与MapObjects的县域水稻精确栽培决策支持系统,可为农业生产管理部门与农户提供土壤养分数据信息查询、精确施肥决策支持与智能学习辅导等服务。这对于县域尺度土壤养分资源的精确管理、水稻精确施肥技术的深入实施、农业生产潜力的挖掘、水稻高产优质高效生产目标的实现,具有重要的现实意义和实用价值。研究具有技术的综合性与先进性、研究的必要性与较高的生产应用价值。主要研究结果如下:
     1、本文运用经典统计学与GIS技术,分别从县域尺度、不同土类尺度、不同土种尺度、不同土类加密点尺度、不同纬向区尺度,研究与探明了姜堰市土壤养分的时间维演变规律,其表现为:
     (1)2004年与1982年相比,姜堰市县域尺度土壤养分中有机质、全氮、有效磷、速效钾含量均有提高;pH值则呈下降,土壤碱性减弱,整体由碱性转为中性土壤。这表明经20多年演变,县域尺度土壤肥力得到提高。有机质、速效钾含量呈北高南低格局,与1982年相似;而有效磷南北高低参差,分布规律不明显。
     (2)就不同土类而言,2004年水稻土土壤中有机质、全氮、速效钾含量高于潮土,水稻土有效磷、pH值则低于潮土。与1982年相比,2004年潮土14个土种各取样点土壤有机质、全氮、有效磷均有提升;12个土种速效钾含量与9个土种pH值有提高。有效磷含量上升幅度最大,2004年其含量是1982年的2.28倍。12个土种速效钾含量仍低于80mg/kg,须增施钾肥。11个土种仍为碱性土壤。与1982年相比,2004年水稻土21个土种中有19个土种土壤有机质有提高;18个土种土壤有效磷与14个土种速效钾含量有提高;而对于pH,有15个土种表现为下降,6个土种表现为上升。
     (3)从加密点尺度来看,2004年潮土和水稻土两种土类加密点土壤有机质、全氮、有效磷含量及pH值均高于1982年第二次土壤普查结果;而潮土土壤速效钾两个年份相近,水稻土则表现为减少。2004年两种土类有机质、全氮、pH的变异系数均小于1982年;而两个年份有效磷、速效钾的变异系数均较大。2004年两种土类土壤养分状况整体比1982年有所改善,土壤肥力提高;不同农田间有机质、全氮、pH的相对均匀度变优,土壤肥力有均衡发展趋势。
     (4)在由南向北的四个纬向区,土壤有机质、全氮、碱解氮、速效钾呈现出逐步升高的规律;pH则相反,低纬向地区高于高纬向地区。而有效磷则先逐步升高后下降。北部两个纬向区有机质、全氮、碱解氮、速效钾等养分综合条件均优于南部两个纬向区,磷肥水平也较好,为中性土壤,具有高产区土壤特征与高肥力特性。南部两个纬向区有机质、全氮、碱解氮、速效钾含量均低,而pH值均高,都为碱性土壤,不仅需培肥土壤,而且应普遍增施钾肥与调节pH值;最南部的纬向区还需增施磷肥。
     2、本文运用经典统计学、地统计学与空间插值(Spatial Interpolation)技术,在姜堰市张甸镇与沈高镇,对该市潮土和水稻土两种土类的土壤养分空间变异特征与各自的施肥策略进行了研究。研究得出:
     (1)从空间格局来看,水稻土有机质、全氮、碱解氮、有效磷、速效钾含量均高于潮土,pH值两者接近;潮土和水稻土两种土类土壤有效磷养分变异系数最大,其次是土壤速效钾,pH最小。除潮土土壤pH外,两种土类土壤养分要素空间分布都体现为中等的空间相关性。就不同土类而言,地统计学分析结果表明,水稻土土壤养分的变程大于潮土。就同一土类而言,对于潮土,其养分要素变程大小依次为:有效磷、全氮、有机质、pH、速效钾、碱解氮,该土类土壤上每一个土壤取样点的测定数据可以在半径254.9m的空间域(20.4hm2)有效;对于水稻土,其养分要素变程大小依次为:碱解氮、全氮、速效钾、有机质、pH、有效磷,该土类土壤上每一个土壤取样点的测定数据可以在半径339.6m的空间域(36.2hm2)有效。这一结果对于县域尺度合理设计采样单元具有指导作用,使测土配方施肥所要求的平原区、大田作物每10.0-33.3hm2采一个混合样得到了具体量化与修正。
     (2)张甸地区有机质含量整体不高,研究区呈现出中间高、四周低的特点,特别是西北(NW)向和东北(NE)向含量偏低。有效磷整体为西高东低;在104个样本中7个样本的土壤严重缺磷,应重施磷肥;74个样本的土壤缺磷,应增施磷肥;23个样本的土壤为轻度缺磷或暂不缺磷,对应农户的农田可少施或暂不施用磷肥。速效钾含量普遍属低水平,且变异系数大。在104个样本中仅有10个样本的土壤可暂不施钾;其余94个样本需增施钾肥。总体来看,张甸地区普遍需培肥土壤,以增加有机质,同时应增施磷、钾肥,可以有效提高农作物产量。
     沈高地区土壤有机质含量大多数在20-22.5g/kg之间,属中等偏低水平,但中间部分地区含量大于27.5g/kg,甚至大于30g/kg,属中等偏高或高水平。有效磷东南(SE)向偏高;130个样本中1个样本为严重缺磷,58个样本为缺磷;71个样本为轻度缺磷或暂不缺磷。速效钾中间偏东南(SE)向部分偏高;51个样本的土壤可暂不施钾,其余79个样本需增施钾肥。总体而言,沈高地区土壤有机质、有效磷养分条件较好,应区分不同农田施用磷肥、重视增施钾肥。
     3、本文针对生产上重施氮肥现象普遍存在,且缺少定量施肥决策信息技术支撑问题,结合覆盖姜堰全市的GPS定位测土与8个主要土种基础地力试验,分土种建立土壤有机质含量与水稻基础产量关系模型等,确立了适于姜堰应用的水稻精确施氮决策三参数值,制作了县域尺度土壤养分空间分布图、县域尺度精确施氮处方图等,在此基础上,运用Visual Basic6.0与MapObjects2.2开发出具有自主知识产权、适于基层农技干部与农民使用的县域水稻精确施肥地理信息系统V1.0。该系统具有姜堰概况、电子地图、施肥决策、施肥模型、施肥知识等模块,可以实现信息浏览、地图导航、属性查询、决策支持、学习辅导、输入输出等功能。系统具有功能可用性、可靠性、易用性强等特点,达到系统设计目标,且得到地方土壤肥料指导站生产技术指导应用,将之作为节氮施肥技术辅助决策与技术培训的辅助平台,可为发展水稻因土精确施肥技术提供有效的决策支持与学习辅导服务,具有理论与实践双重指导意义。作为主体创新点之一,包括该系统在内的县域水稻节氮施肥技术获2005年度泰州市科技进步二等奖。
     4、本文基于Windows Mobile操作系统与Embedded Visual Basic3.0嵌入式编程语言,结合ArcGIS9.2、GPS导航模块,开发出基于掌上电脑(PDA)的县域水稻精确施氮决策支持系统。系统将GPS实时定位、专题地图浏览(包括有机质、全氮、碱解氮、有效磷、速效钾、pH专题地图,可按专题地图查询属性数据)、按土类或土种精确施氮决策支持、学习辅导、系统帮助与说明等功能有机集成,具备了县域水稻精确施氮决策支持系统所需的基本功能,可移动性与便携性能大大增强,可为用户提供即时即地的决策支持服务。系统的水稻精确施氮功能模块能与地理信息结合,增强了水稻因土类、因土种精确施氮技术生产应用的可操作性。
     5、本文以姜堰市为例,在已开发出县域水稻精确施肥地理信息系统的基础上,基于Visual Basic6.0与MapObjects2.2开发平台,拓展开发出了界面友好、功能全面、内容丰富、现势性强、图形生产力高的县域水稻精确栽培决策支持系统软件(V1.0)。该系统集成了水稻精确定量栽培技术最新成果,涵盖了合理布局、适宜播期、基本苗精确定量、精确施氮决策、精确灌溉、精确植保以及气象数据查询、智能学习等内容。系统还具有电子地图导航与GIS空间信息提取功能。经地方作物栽培与土壤肥料部门应用,系统的功能可用性、功能可靠性与易用性强,用户满意度高。本系统已获国家版权局计算机软件著作权(2008SR18123)。
In the paper we take Jiangyan county located in middle of Jiangsu province as example. Aiming at the problems such as soil nutrient evolution, unclear distribution and excessive fertilizer on production in the county scale, we comprehensively used classical statistics, geostatistics, global positioning system (GPS), geographic information system (GIS) technology, pocket PC(PDA) and Visual Basic, Embedded Visual Basic, principle and method of agricultural modeling science, decision support system (DSS) etc. to study the relationships of soil nutrient's temporal dimension variation characteristics, space variability structure and with soil fertility relationship between different scales fluvo-aquic and paddy soils in the scope of the county in order to explore the effective analysis evaluation method of complex soil variability. The soil nutrient spatial database and related model were constructed, and thematic maps of multi-scale spatial distribution of soil nutrient and fertilization were also generated. Furthermore, the geographic information system of precise fertilization in rice at county scale based on Visual Basic and MapObjects, the Decision Support System of precise N application in rice at county scale based on PDA and Embedded Visual Basic, and the Decision Support System of rice precision cultivation in county scale based on Visual Basic and MapObjects were developed accordingly, which can provide soil nutrient data information query, precise fertilization decision support and intelligent tutoring service etc. for the department of agricultural production management and farmers. These results have important realistic significances and practical value for precise management of soil nutrient resources in county scales and in-depth implementation of rice precise fertilization technology, as well as, exploration of agricultural production potentiality and the realization of the goal of high yield, quality and efficient production in rice. The research technology was advanced, integrative, necessary and higher valuable for production application. The main results showed as follows:
     1. Classic statistics and GIS technology were used to research and prove up the law of temporal dimension evolution of soil nutrient in Jiangyan respectively from the county scale and the different scale of soil types, soil local types, the encryption points of soil types, zonally areas. The results were as followings:
     (1) Compared with1982, the organic matter (OM), total nitrogen (TN), available phosphorous (AP) in the soil nutrient of the county scale in2004were increased, but the pH was declined, alkaline decreased, the soil changed from the alkaline to neutral. That showed the fertility of the soil in the county scale was increased in the past20years. The contents of OM and available potassium (AK) ranked as high in the north and low in the south, which was similar to the situation in the year1982. However, AP showed without obvious law.
     (2) The OM, TN and AK in the paddy soil in2004were more than that in fluvo-aquic soil, but AP and pH were less. Compared with1982, the OM, TN and AP in14soil local types belonging to fluvo-aquic soil were increased in2004, while AK in12soil local types and pH in9soil local types were increased. Improved AP contents in2004were2.28times in1982. The content of AK in12soil local types where potash must be added, were less than80mg/kg, and there were still11soil local types belonging to alkali soil. Compared with1982, in19of21soil local types belonging to paddy soil, the OM was improved, AP in18soil local types and AK in14soil local types were increased, but for pH, there were a decline in15soil local types and rise in6soil local types.
     (3) According to the scale of encryption points, the OM, TN, AP and pH in2004were more than that in1982in both fluvo-aquic soil and paddy soil, while AK in fluvo-aquic soil was not obvious, but it declined in paddy soil. The variation coefficient (CV) of OM, TN and pH in2004were lower than that in1982, but the CV of AP and AK were larger in two years. In2004, the soil nutrient conditions and soil fertility in two kinds of soil types were improved than1982. The relative evenness of OM, TN and pH got better and soil fertility had a balanced development trend in different farmlands.
     (4) According to the four zonally areas from southern to northern, the OM, TN, alkali-hydrolyzable nitrogen (AHN) and AK took on a rise trend, but the pH was on the contrary and AP took on a trend of first gradually rise then decline. The comprehensive soil nutrient conditions such as OM, TN, AHN, AK in northern two zonally areas were better than that in southern, and AP level in soil were also good, which had a characteristics of soil with high yields. The contents of OM, TN, AHN and AK in southern two zonally areas were low, but the pH value was both high which belonged to alkaline soil, which not only need soil fertility buildup, and should generally increase potash and adjust pH value, and also increase phosphate in most southern zonally areas.
     2. The classic statistics, geostatistics and spatial interpolation technology were used to investigate the spatial variability of soil nutrient and fertilization strategy in fluvo-aquic soil and paddy soil in Zhangdian town and Shengao town of Jiangyan county. The results were as followings:
     (1) Judging from the spatial pattern, the contents of OM, TN, AHN, AP and AK were higher in paddy soils than those in fluvo-aquic soils whereas pH was indifferent. AP showed the largest variation coefficiency, whereas coefficiency of AK was the next and that of pH was the least between two types of soils. Except the fluvo-aquic soil pH, two types of soil nutrient elements all had the moderate spatial correlation. The results of geostatistics showed that the range of soil nutrient in paddy soil were higher than fluvo-aquic soil. The range of the observed items from maximum to minimum was respectively AP, TN, OM, pH, AK and AHN in fluvo-aquic soil, and AHN, TN, AK, OM, pH and AP in paddy soil. The measured soil fertility variables from each sampling spot represented20.4ha and36.2ha for fluvo-aquic and paddy soils respectively. This information was of critical importance and practically useful for designing county-scaled sampling units, and supplied a revise and material quantity for a mixed sample with10-33.3ha in plain where soil testing and formulated fertilization were demanded.
     (2) The contents of OM in Zhangdian area were not higher, and those were higher in middle zone but lower around zones, especially in North-West and North-East zone. The content of AP was higher in West than that in East. AP in7of104soil samples were seriously short, thus, more phosphate should be applied. AP in74of104soil samples were short, thus, proper phosphate should be added. However AP in23of104soil samples were not short, thus, phosphate may not be applied. The AK was lower and the variation coefficient was greatly changed. The potash fertilizer need not be applied only in10of104soil samples. In a word, OM, phosphate and potash fertilizer should be added in the soils in Zhangdian town to improve the crops yield.
     The contents of OM in Shengao area were a range of20-22.5g/kg mostly, which belonged to middle levels, but those in middle zones were more than27.5g/kg, even30g/kg, which belonged to high levels. The contents of AP in South-East zone were higher,1of130soil samples lacked AP seriously,58lacked,71lacked a little. The contents of AK in medium deflection to South-East were higher,51soil samples needed not be applied potash but79be added. In brief, the conditions of OM and AP in Shengao area were better, thus, they should be applied phosphate and potash making a distinction between different farmlands.
     3. Aiming at the more nitrogen applied in production and short of information technology of quantitative fertilizers, the experiments of orientation measured soil with a GPS machine covered in Jiangyan county and of8major soil local types were conducted. The relation models between OM and rice basal yields were established according to different soil local types, and the3parameter values for precise N application in rice which was suitable for application in Jiangyan, the spatial distribution map of soil nutrient and the map of precise N prescription in county scale were aslo made. On that basis, the geographic information system of precise fertilization in rice (V1.0) based on Visual Basic6.0and MapObjects2.2, which were suitable for cadres and peasants and owned proprietary intellectual property rights, were developed. The system consisted of Jiangyan survey, E-map, fertilizer decision, fertilizer models, fertilizer knowledge, et al. It had many functions such as information browse, map navigation, property query, decision support, learning tutorship and I/O, et al. It owned advantage such as usability, reliability and ease of use, which achieved system design goal and got the production application. As the assistant platform, the system can be used to supply an effective decision support and learning tutorship service for precise fertilization technology in rice, which had theoretical and practical dual meanings. As one of the main innovation points, the technology of nitrogen application reduced in rice at county scale including the system won the second prize of science and technology in2005in prefecture-level city of Taizhou.
     4. The decision support system of precise N application in rice at county scale based on PDA (Pocket PC) was developed based on the operating system of Windows Mobile and Embedded Visual Basic3.0and ArcGIS9.2and GPS navigation module. It integrated GPS real-time orientation, thematic map browse, decision support of precision N application according to soil group or soil local type, learning tutorship, system help and explain, and so on, furthermore, it owned basic function of decision support of precision N application in rice at county scale and had the good removability and portability and supplied a service of decision support for users in real time and in-place. The system combined the function module with geographic information, which can be easily operated in application precision nitrogen technology in rice according to the soil group and the soil local type.
     5. Based on the developed the geographic information system of precise fertilization in rice, the software (V1.0) of Decision Support System of rice precision cultivation based on Visual Basic6.0and MapObjects2.2in county scale taking Jiangyan city as a case was developed. It had friendly surface, complete functions, abundant contents, strong updating and high graph productivity. The system integrated the latest productions of rice precise quantitative cultivation technology and it covered many contents such as proper layout, proper seed period, precision quantity of base seedling, decision support of precision N application, precise irrigation, precise plant protection, meteorological database and brainpower learning and so on. It also had base GIS spatial analysis functions such as an e-map navigation, GIS spatial information obtaining and so on. According to application of departments of crop cultivation and soil fertilizers in region, its functions was useable, dependability and ease of use, the users were very satisfied with it. The system had obtained the copyright in computer software (2008SR18123) registered by the State Copyright Administration.
引文
[1]张凤荣.土壤地理学[M].北京:中国农业出版社,2002:1-23.
    [2]王政权.地统计学及在生态学的应用[M].北京:科学出版社,1999:35-189.
    [3]王劲峰,等.空间分析[M].北京:科学出版社,2006:62-73.
    [4]吴忠东,张照录,乔忠,等.时空数据模型研究原则与表达方法的探讨[J].山东理工大学学报(自然科学版),2004,18(2):106-110.
    [5]Getis A,Ord J K.The analysis of spatial association by use of distance statistics[J].Geographical Analysis,1992,24(3):189-206.
    [6]Abraham T, Roddick J F. Survey of spatio-temporal database[J].Geoinformatica, 1999,3(1):61-99.
    [7]Fisher P F.Visualizing uncertainty in soil maps by animation[J].Cartographics, 1993,30 (2):20-27.
    [8]Tabios G.Jose D.A comparative analysis of techniques for spatial interpolation of precipitation[J].Water Resources Bulletin,1985,21 (3):365-380.
    [9]Tobler W A.Smooth pycnophylactic interpolation for geographical regions [J] Journal of American Statistical Association,1979,74:519-529.
    [10]Upton G J GDistance-weighted geographic interpolation[J].Environment and Planning(A),1985,17:667-671.
    [11]Roddick J F,Hornsby K,Spiliopoulou M.An updated bibliography of temporal,spatial and spatio-temporal data mining research[C].Proceedings of the International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining.2000:147-163.
    [12]Anselin L.Local indicators of spatial association-LISA[J].Geographical Analysis,1995,27:93-115.
    [13]Kyriakidis Phaedon C,Journel Andre GGeostatistical space-time models:A review[J].Mathematical Geology,1999,31 (6):651-684.
    [14]Caruso C,Quarta F.Interpolation methods comparison[J].Computers and Mathematics with Applications,1998,35(12):109-126.
    [15]Cesare L De,Myers D E,Posa D.Estimating and modeling space-time correlation structures.Statistics and Probability Letters,2001,51:9-14.
    [16]许红卫,高克异,王珂,等.稻田土壤养分空间变异与合理取样数研究[J].植物营养与肥料学报,2006,12(1):37-43.
    [17]姚荣江,杨劲松,刘广明.土壤盐分和含水量的空间变异性及其Co K.riging估值——以黄河三角洲地区典型地块为例[J].水土保持学报,2006,20(5):133-138.
    [18]张伟,陈洪松,王克林,等.桂西北喀斯特洼地土壤有机碳和有效磷的空间变异[J].生态学报,2007,27(12):5168-5175.
    [19]戴明新,师荣光,赵玉杰,等.四川泸县农业土壤Cd含量空间变异性研究[J].农业环境科学学报,2007,26(3):1093-1099.
    [20]汪景宽,赵永存,张旭东,等.海伦县土壤重金属含量的空间变异性研究[J].土壤通报,2003,34(5):398-403.
    [21]Cambardella C A,Moorman T B,Novak J M,et al.Field-scale variability of soil properties in central Iowa soils [J].Soil Science Society of America Journal,1994,58:1501-1511.
    [22]苏荣瑞,金卫斌,艾天成,等.基于GIS的湖北省江陵县土壤养分空间变异研究[J].长江大学学报(自然科学版)农学卷,2007,4(3):13-17.
    [23]高祥照,胡克林,郭焱,等.土壤养分与作物产量的空间变异特征与精确施肥[J].中国农业科学,2002,35(6):660-666.
    [24]苑小勇,黄元仿,高如泰,等.北京市平谷区农用地土壤有机质空间变异特征[J].农业工程学报,2008,24(2):70-76.
    [25]刘杨,孙志梅,杨军,等.京东板栗主产区土壤氮磷钾的空间变异[J].应用生态学报,2010,21(4):901-907.
    [26]王人潮,史舟,王珂,等.农业信息科学与农业信息技术[M].北京:中国农业出版社,2003:1-12.
    [27]许善祥,杜建强.地理信息系统在精准农业中的应用[J].现代化农业,2003,2:33-34.
    [28]潘瑜春,赵春江.地理信息技术在精准农业中的应用[J].农业工程学报,2003,19(4):1-6.
    [29]黄杏元,马劲松,汤勤.地理信息系统概论[M].北京:高等教育出版社,2001:3-4.
    [30]牛文杰,朱大培,陈其明.贝叶斯残余克里金插值方法的研究[J].工程图学学报,2001,2:68-76.
    [31]朱求安,张万昌,余钧辉.基于GIS的空间插值方法研究[J].江西师范大学学 报(自然科学版),2004,28(2):183-188.
    [32]谭继强,丁明柱.空间数据插值方法的评价[J].测绘与空间地理信息,2004,27(4):11-13.
    [33]杨秀虹,李适宇.地统计学方法在环境污染研究中的应用[J].中山大学学报(自然科学版),2005,44(3):97-101.
    [34]张红艳,高如泰,江树人,等.北京农田土壤中有机氯农药残留的空间分析[J].中国农业科学,2006,39(7):1403-1410.
    [35]王茯泉.地统计分析在ArcGIS和ⅠDRISI中实现特点的讨论[J].计算机工程与应用,2006,15:210-215.
    [36]周小文,付晖.Kriging法在大区域场地砂土液化范围判别中的应用研究[J].长江科学院院报,2005,22(4):48-51.
    [37]高玉蓉,许红卫,周斌.稻田土壤养分的空间变异性研究[J].土壤通报,2005,36(6):822-825.
    [38]谢正苗,李静,徐建明,等.杭嘉湖平原土壤中氟元素的空间分布特征[J].中国环境科学,2005,25(6):719-723.
    [39]泰州市环境保护局.泰州市2009年环境状况公报[EB/OL].2010-06-04.http://www.tzhb.gov.cn/news_show.aspx?CID=35&ID=1914.
    [40]李大文,陈謇.关于测土配方施肥技术推广的思考[J].中国农技推广,2006,3:37-39.
    [41]农业部种植业管理司,全国农业技术推广服务中心.测土配方施肥技术问答[M].北京:中国农业出版社,2005:17-82.
    [42]凌启鸿,张洪程,丁艳锋,等.水稻精确定量栽培理论与技术[M].北京:中国农业出版社,2007:99-125.
    [43]高辉,张洪程,戴其根,等.不同土种土壤氮素等养分与水稻基础产量的关系[J].扬州大学学报(农业与生命科学版),2007,28(1):49-53.
    [44]崔增团.测土配方施肥是确保粮食安全的战略性举措[J].甘肃农业,2004,8:55-56.
    [45]叶青松,姚强,李德智,等.测土配方施肥必要性的调查[J].安徽农业科学,2006,34(12):2801.
    [46]刘如清.施肥技术的发展趋势[J].湖南农业,1999,10:9.
    [47]丰兆亭,王颖,宋培新.农作物测土配方施肥应用效果[J].现代化研究,2002,8:22-23.
    [48]白由路,杨俐苹.我国农业中的测土配方施肥[J].土壤肥料,2006,2:3-6.
    [49]朱兆良,等.我国农业面源污染的控制政策和措施[J].科技导报,2005,23(4):47-51.
    [50]高祥照,马常宝,杜森.测土配方施肥技术[M].北京:中国农业出版社,2005:1-10.
    [51]白由路,等.测土施肥的原理与技术[M].河南:科技出版社,1993:1-15.
    [52]于洪江.推广配方施肥技术,为粮食增产做贡献[J].吉林畜牧兽医,1999,3:37.
    [53]潘团胜.测土配方施肥技术在水稻上的应用效果试验[J].广西农学报,2006,21(5):17-18.
    [54]余学祥.配方施肥对水稻产量及效益的影响[J].安徽农业科学,2006,34(24):6551-6553.
    [55]李影.测土施肥是建设健康农田的关键[J].中国农业信息,2006,11:37.
    [56]向习军,吴跃明,王建平,等.测土配方施肥技术研究与应用[J].湖南农业科学,2006,3:73-74,76.
    [57]王更新,韩超,田莉杰,等.注重土壤类型调查和测土配方施肥技术[J].科技致富,2006,3:36.
    [58]邓彩清,叶伟建,等.水稻测土施肥技术应用效果[J].福建农业科技,2005,5:66.
    [59]王建,白世彪,陈晔.Surfer 8地理信息制图[M].北京:中国地图出版社,2004:189-211.
    [60]彭桂兰,张学军,王旭东.现代化农业的发展趋势——精确农业[J].农机化研究,2002,2:6-9.
    [61]房世波,杨武年,潘剑君等.GIS、RS和GPS支持下的精确施肥理论技术及展望[J].成都理工大学学报(自然科学版),2003,6:603-607.
    [62]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:1-30.
    [63]汪仁,安景文,邢月华.精准施肥技术应用效果及发展前景[J].农业经济,2004,8:36-37.
    [64]承继成.精准农业技术与应用[M].北京:科学出版社,2004:12-20.
    [65]刘耀林.土地信息系统[M].北京:中国农业出版社,2003:30-35.
    [66]杨敏,赵春生,张涛等.3S技术在精细农业发展中的应用[J].河北农业大学学报,2002,4:241-243.
    [67]彭望禄,程惠贤.农业信息技术与精确农业的发展[J].农业工程学报,2001,2:9-11.
    [68]严力蛟.我国发展精确农业若干问题的思考[J].农业系统科学与综合研究,2002,4:273-276.
    [69]徐国强,高献坤,田辉等.精细农业研究[J].农机化研究,2004,6:1-5.
    [70]丁圣彦.精确农业的技术体系与应用研究进展[J].农业现代化研究,2002,3:222-225.
    [71]喻歌农,周泳.试论精确农业及我国行动对策[J].自然资料学报,1999,14(1):69-74.
    [72]高辉,马群,李国业,等.氮肥水平对不同生育类型粳稻稻米蒸煮食味品质的影响[J].中国农业科学,2010,43(21):4543-4552.
    [73]中华人民共和国国家统计局.中国统计年鉴(2010)[M].北京:中国统计出版社,2010.
    [74]凌启鸿,张洪程,丁艳锋,等.水稻丰产高效技术及理论[M].北京:中国农业出版社,2005:12-20.
    [75]王人潮.农业资源信息系统[M].北京:中国农业出版社,2000:213-238.
    [76]薛利红,杨林章,李刚华.遥感技术在精确施肥管理中的应用进展[J].农业工程学报,2004,5:22-26.
    [77]张书慧,马成林,吴才聪,等.地理信息系统在精确农业变量施肥中的应用[J].农业机械学报,2003,3:92-95.
    [78]冯加根,高辉,柳虹,等.GIS在农业上应用面临的新问题与对策[J].中国农学通报,2005,11:379-380.
    [79]Zhao C.Progress of Information Technology in Agricultural[M].Beijing:China Agriculture Press,2004.
    [80]邬伦,刘瑜,张晶,等.地理信息系统—原理、方法和应用[M].北京:科学出版社,2001:1-10.
    [81]兰运超,利光秘,袁征,等.地理信息系统原理[M].广州:广东地图出版 社,1991:1-22.
    [82]李德仁.地理信息系统导论[M].北京:测绘出版社,1993:1-16.
    [83]邬伦,任伏虎,谢昆青等.地理信息系统教程[M].北京:北京大学出版社,1994:1-7.
    [84]张超,陈丙咸,邬伦.地理信息系统[M].北京:高等教育出版社,1995:100-140.
    [85]边馥苓.GIS地理信息系统原理和方法[M].北京:测绘出版社,1996:30-44.
    [86]郭达志,盛业华,余兆平,等.地理信息系统基础与应用[M].北京:煤炭工业出版社,1997:6-14.
    [87]陈俊,宫鹏.实用地理信息系统——成功地理信息系统的建设与管理[M].北京:科学出版社,1998:1-7.
    [88]陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999:1-12.
    [89]李德仁,关泽群.空间信息系统的集成与实现[M].武汉:武汉测绘科技大学出版社,2000:1-18.
    [90]汤国安,赵牡丹.地理信息系统[M].北京:科学出版社,2000:1-8.
    [91]陈述彭.地学信息图谱的探索研究[M].北京:商务印书馆,2001:10-18.
    [92]龚健雅.地理信息系统基础[M].北京:科学出版社,2001:50-54.
    [93]郭仁忠.空间分析(第二版)[M].北京:高等教育出版社,2001:6-15.
    [94](美)Michael N. DeMers.武法东,付宗堂,王晓东等译.地理信息系统基本原理(第二版)[M].北京:电子工业出版社,2001:1-3.
    [95]汪懋华.“精细农业”发展与工程创新技术[J].农业工程学报,1999,15(1):1-8.
    [96]王人潮,史舟,黄敬峰,吕晓勇.论农业信息系统工程建设[J].浙江农业大学学报,1999,25(2):111-116.
    [97]Watkins D. W. et al.1996.Use of GIS in ground-water flow modeling [J] Journal of Water resource Planning and management.V122 (2).
    [98]Norman B. B. and Reybold W. U.Small-scale digital soil maps for interpreting natural resource [J] J. Soil and Water Cons..1989,44 (6):30-34.
    [99]M.F. Goodchild & K.K. Kemp. Introduction to GIS [M].National Center for Geographic Information and Analysis.University of California,1991.
    [100]Kang-tsung Chang.Introduction to Geographic Information Systems(Third Edition) [M].匕京:科学出版社,2006:1-10.
    [101]尚虎君,旺志农.计算机模拟优化决策在我国农业中的应用[J].计算机与农业,2002,(6):3-5.
    [102]米湘成,邹应斌.水稻高产栽培专家决策系统的研制[J].湖南农业大学学报(自然科学版),2002,28(3):188-191.
    [103]陈蓉蓉,周治国,曹卫星等.农田精确施肥决策支持系统的设计和实现[J].中国农业科学,2004,37(4):516-521.
    [104]赵春江,诸德辉,李鸿祥等.小麦栽培管理计算机专家系统的研究与应用[J].中国农业科学,1997,30(5):42-49.
    [105]郭银巧,郭新宇等.玉米栽培管理知识模型系统的设计与实现[J].玉米科学,2005,13(2):112-115.
    [106]冯利平,韩学信.棉花栽培计算机模拟决策系统[J].棉花学报,1999,11(5):251-254.
    [107]陈文伟.决策支持系统及其开发(第二版)[M].北京:清华大学出版社,2000:5-20.
    [108]高洪深.决策支持系统(DSS):理论·方法·案例[M].北京:清华大学出版社,2000:1-8.
    [109]黄梯云.智能决策支持系统[M].北京:电子工业出版社,2001:1-5.
    [110]高亮之,金之庆.水稻栽培计算机模拟优化决策系统[M].北京:中国农业出版社,1992:1-9.
    [111]曹卫星,李存东,李旭,等.基于作物模型的专家系统预测和决策功能的结合[J].计算机与农业,1998,2:8-10.
    [112]熊范伦,何茂彬,丁力.计算机专家咨询系统及建立[J].信息与控制,1986,1:33-38.
    [113]熊范纶.农业专家系统及开发工具[M].北京:清华大学出版社,1999:1-12.
    [1]王劲峰,等.空间分析[M].北京:科学出版社,2006:116-121.
    [2]Wachowicz M, Healey R. C. Toward temporality in GIS:Innovation in GIS[M].London:Taylor and Francis,1994:1-20.
    [3]Abraham T, Roddick J F. Survey of spatio-temporal database[J].Geoinformatica, 1999,3(1):61-99.
    [4]Roddick J F,Hornsby K,Spiliopoulou M.An updated bibliography of temporal,spatial and spatio-temporal data mining research[C].Preceedings of the International Workshop on Temporal,Spatial and Spatio-Temporal Data Mining.2000:147-163.
    [5]Kyriakidis Phaedon C,Journel Andre G.Geostatistical space-time models:A review[J].Mathematical Geology,1999,31 (6):651-684.
    [6]Cesare L De,Myers D E,Posa D.Estimating and modeling space-time correlation structures[J].Statistics and Probability Letters,2001,51:9-14.
    [7]王家耀,魏海平,成毅,等.时空GIS的研究与进展[J].海洋测绘,2004:1-4.
    [8]黄昌勇.土壤学[M].北京:中国农业出版社,2000:1-35.
    [9]方琳娜,赵庚星,李秀娟,等.基于GIS的土壤养分时空动态变化分析——以山东省茌平县为例[J].山东农业大学学报(自然科学版),2006,37(1):57-64.
    [10]郭旭东,傅伯杰,陈利顶,等.河北省遵化平原土壤养分的时空变异特征——变异函数与Kriging插值分析[J].地理学报,2000,55(5):556-567.
    [11]吴新民,潘根兴,李恋卿.长江三角洲土壤质量演变趋势分析[J].地理与地理信息科学,2006,22(3):88-91.
    [12]吕晓男,孟赐福,麻万诸,等.土壤质量及其演变[J].浙江农业学报,2004,16(2):105-109.
    [13]李艳,史舟,徐建明,等.地统计学在土壤科学中的应用及展望[J].水土保持学报,2003,17(1):178-182.
    [14]姜城,杨俐苹,金继运,等.土壤养分变异与合理取样数量[J].植物营养与肥料学报,2001,7(3):262-270.
    [15]王人潮,史舟,等.农业信息科学与农业信息技术[M].北京:中国农业出版社,2003:35-46.
    [16]邬伦,刘瑜,张晶,等.地理信息系统——原理、方法和应用[M].北京:科学出版社,2001:180-191.
    [17]张书慧,马成林,吴才聪等.地理信息系统在精确农业变量施肥中的应用[J].农业机械学报,2003,3:92-95.
    [18]曹卫星.农业信息学[M].北京:中国农业出版社,2005:259-286.
    [19]曹卫星,朱艳.作物管理知识模型[M].北京:中国农业出版社,2005:3-6.
    [20]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000:25-30.
    [21]高祥照,马常宝,杜森.测土配方施肥技术[M].北京:中国农业出版社,2005:1-10.
    [22]白由路,等.测土施肥的原理与技术[M].河南:科技出版社,1993:1-15.
    [23]Yan Xiang,Jin Jiyun,He Ping.Recent Advances on the Technologies to Increase Fertilizer Use Efficiency [J]. Agricultural Sciences in China,2008,7 (4):469-479.
    [24]朱兆良,孙波,杨林章,等.我国农业面源污染的控制政策和措施[J].科技导报,2005,23(4):47-51.
    [25]朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783.
    [26]朱兆良,范晓晖,孙永红,王德建.太湖地区水稻土上稻季氮素循环及其环境效应[J].作物研究,2004,4:187-191.
    [1]Kanevski M,Parkin R,Pozdnukhov A,et al.Environmental data mining and modeling based on machine learning algorithms and geostatistics[C].Presented at the 2002 International Conference of International Environmental Modeling and Software Society,2002:211-218.
    [2]Isaaks E,Srivastava R.Applied geostatistics[M].Oxford:Oxford University Press,1989:1-15.
    [3]Shao Y.,A. Henderson-Sellers.Modeling soil moisture:a project for intercomparison of land surface parameterization schemes Phase 2[J].Journal of Geophysical Research,1996,101:7227-7250.
    [4]Cesare L De,Myers D E,Posa D.Estimating and modeling space-time correlation structures [J]. Statistics and Probability Letters,2001,51:9-14.
    [5]Kyriakidis Phaedon C,Journel Andre G.Geostatistical space-time models:A review[J].Mathematical Geology,1999,31 (6):651-684.
    [6]Fisher P F.Visualizing uncertainty in soil maps by animation[J].Cartographics,1993, 30(2):20-27.
    [7]李小昱,雷廷武,王为.农田土壤特性的空间变异性及Kriging估值法[J].西北农业大学学报,2000,28(6):30-35.
    [8]张淑娟,何勇,方慧.基于GPS和GIS的田间土壤特性空间变异性的研究[J].农业工程学报,2003,19(2):39-44.
    [9]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究——以河北省遵化市为例[J].应用生态学报,2000,11(4):557-563.
    [10]许红卫,高克异,王珂,等.稻田土壤养分空间变异与合理取样数研究[J].植物营养与肥料学报,2006,12(1):37-43.
    [11]姚荣江,杨劲松,刘广明.土壤盐分和含水量的空间变异性及其Co Kriging估值——以黄河三角洲地区典型地块为例[J].水土保持学报,2006,20(5):133-138.
    [12]张伟,陈洪松,王克林,等.桂西北喀斯特洼地土壤有机碳和有效磷的空间变异[J].生态学报,2007,27(12):5168-5175.
    [13]戴明新,师荣光,赵玉杰,等.四川泸县农业土壤Cd含量空间变异性研究[J].农业环境科学学报,2007,26(3):1093-1099.
    [14]汪景宽,赵永存,张旭东,等.海伦县土壤重金属含量的空间变异性研究[J].土壤通报,2003,34(5):398-403.
    [15]Cambardella C A, Moorman T B, Novak J M, et al. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America Journal,1994,58: 1501-1511.
    [16]王政权.地统计学及在生态学的应用[M].北京:科学出版社,1999:35-189.
    [17]苏荣瑞,金卫斌,艾天成,等.基于GIS的湖北省江陵县土壤养分空间变异研究[J].长江大学学报(自然科学版)农学卷,2007,4(3):13-17.
    [18]高祥照,胡克林,郭焱,等.土壤养分与作物产量的空问变异特征与精确施肥[J].中国农业科学,2002,35(6):660-666.
    [19]苑小勇,黄元仿,高如泰,等.北京市平谷区农用地土壤有机质空间变异特征[J].农业工程学报,2008,24(2):70-76.
    [20]刘杨,孙志梅,杨军,等.京东板栗主产区土壤氮磷钾的空问变异[J].应用生态学报,2010,21(4):901-907.
    [21]王建,白世彪,陈晔.Surfer 8地理信息制图[M].北京:中国地图出版社,2004:189-211.
    [22]农业部种植业管理司,全国农业技术推广服务中心.测土配方施肥技术问答[M].北京:中国农业出版社,2005:17-82.
    [23]凌启鸿,张洪程,丁艳锋,等.水稻精确定量栽培理论与技术[M].北京:中国农业出版社,2007:99-125.
    [24]高辉,张洪程,戴其根,等.不同土种土壤氮素等养分与水稻基础产量的关系[J].扬州大学学报(农业与生命科学版),2007,28(1):49-53.
    [25]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [26]凌启鸿,张洪程,丁艳锋,等.水稻丰产高效技术及理论[M].北京:中国农业出版社,2005:12-20.
    [27]高辉,冯加根,张洪程,等.江苏水稻精确施肥技术发展分析及其对策研究[J].中国农学通报,2006,22(11):198-201.
    [1]凌启鸿,张洪程,丁艳锋,等.水稻丰产高效技术及理论[M].北京:中国农业出版社,2005:1-20.
    [2]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [3]王绍华,吉志军,刘胜环.水稻氮素供需差与不同叶位叶片氮转运和衰老的关系[J].中国农业科学,2003,36(11):1261-1265.
    [4]H. Lal, J. W. Jonesetal. FARMSYS A Whole Farm Machinery Management Decision Support System [J]. Agricultural Systems,1992,38:257-273.
    [5]Leung Y.Intelligent spatial decision support system[M]. Berlin, New York:Springer-Verlag,1997:20-34.
    [6]H. Montas and C. A. Madramootoo. A Decision Support System for soil conservation planning [J]. Computers and Electronics in Agriculture,1992,7:187-202.
    [7]周治国,曹卫星,朱艳,等.基于GIS的作物生产管理信息系统[J].农业工程学报,2005,21(1):114-118.
    [8]房世波,杨武年,潘剑君等GIS、RS和GPS支持下的精确施肥理论技术及展望[J].成都理工大学学报(自然科学版),2003,6:603-607.
    [9]汪仁,安景文,邢月华.精准施肥技术应用效果及发展前景[J].农业经济,2004,8:36-37.
    [10]张书慧,马成林,吴才聪等.地理信息系统在精确农业变量施肥中的应用[J].农业机械学报,2003,3:92-95.
    [11]王人潮.农业资源信息系统[M].北京:中国农业出版社,2000:1-17.
    [12]王兴仁,陈新平,张福锁,等.施肥模型在我国推荐施肥中的应用[J].植物营养与肥料学报,1998,4(1):67-74.
    [13]高辉,张洪程,冯加根.江苏粮食安全问题的目标定位与对策[J].农业现代化研究,2007,28(3):271-274.
    [14]中国土壤学会化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983:1-120.
    [15]熊范纶.农业专家系统及开发工具[M].北京:清华大学出版社,1999:1-18.
    [16]严泰来.土地信息系统[M].北京:科学技术文献出版社,1993:5-12.
    [17]史舟,王人潮.土壤信息系统技术的发展与思考[M].计算机与农业,1997,34(4):5-7.
    [18]于东升,史学正.GIS中土壤信息系统的研究进展[M].土壤学进展,1993,21(6):26-31
    [19]曹卫星.农业信息学[M].北京:中国农业出版社,2005:259-286.
    [20]刘大鹏.国产软件产品易用性何去何从[J].程序员,2006,2:58-60.
    [21]张海藩.软件工程导论[M].北京:清华大学出版社,1998:1-35.
    [22]高辉,张洪程,戴其根,等.不同土种土壤氮等养分与水稻基础产量的关系 [J].扬州大学学报(农业与生命科学版),2007,28(1):49-53.
    [23]高辉,马群,李国业,等.氮肥水平对不同生育类型粳稻稻米蒸煮食味品质的影响[J].中国农业科学,2010,43(21):4543-4552.
    [24]刘光.地理信息系统——组件开发篇[M].中国电力出版社,2003:143-156.
    [25]闾国年,张书亮,龚敏霞,等.地理信息系统集成原理与方法[M].北京:科学出版社,2003:1-3.
    [26]邝继双.变量施肥智能空间决策支持系统(VRF-ISDSS)一地理信息系统Arc View GIS在精细农业中的应用[J].河北农业大学学报,2000,23(3):91-97.
    [27]邬伦,刘瑜,张晶,等.地理信息系统——原理、方法和应用[M].北京:科学出版社,2001:180-191.
    [28]刘光,刘小东.地理信息系统二次开发实例教程——VB.NET和MapObjects实现[M].北京:清华大学出版社,2004:1-29.
    [29]刘南,刘仁义.(?)VebGIS原理及其应用——主要WebGIS平台开发实例[M].北京:科学出版社,2007:1-46.
    [1]Mei Zhonghui,Meng Qingmin,Li Xiaofei,Wu Lenan.PDA detector for DS-CDMA cooperative system [J] Journal of Electronics(China),2009,26(6):812-818.
    [2]Liu Shoumin, Tian Zhi. A Kalman-PDA approach to soft-decision equalization for frequency-selective MIMO channels [J]. IEEE Transactions on Signal Processing, 2005,53(10),3819-3830.
    [3]Li Xiaofei, Mei Zhonghui. On the equivalence of PDA algorithm and SIC-MMSE algorithm [J]. Journal of Electronics (China),2008,25 (2),274-276.
    [4]Auernhammer H.The role of electronics and decision support system for a new mechanization [C].Proceedings of the 8th Meeting of the Full Members,CLUB of BOLOGNA,Edition UNACOMA Service sir,Italy 1997.
    [5]Speckmann H.Johns G.Development and application of an agricultural BUS for data transfer [J].Computers and Electronics in Agriculture,1999,23 (3):219-237.
    [6]邱小雷,刘小军,朱艳,等.基于Pocket PC的小麦栽培管理知识模型系统的设计与实现[J].农业工程学报,2007,23(10):182-185.
    [7]孟志军,王秀,赵春江,等.基于嵌入式组件技术的精准农业农田信息采集系统的设计与实现[J].农业工程学报,2005,21(4):91-96.
    [8]陈立平,姚光强,赵春江,等.基于掌上电脑的饲料配方系统的设计与开发[J].农业工程学报,2008,24(6):179-183.
    [9]胡建东,余泳昌,江敏,等.PDA作物施肥通专家系统的技术研究[J].农业工程学报,2006,22(8):149-152.
    [10]刘小军,邱小雷,孙传范,等.基于知识模型和PDA的精确农作系统设计及应用[J].农业工程学报,2010,26(1):210-215.
    [11]凌启鸿,张洪程,丁艳锋,等.水稻精确定量栽培理论与技术[M].北京:中国农业出版社,2007:92-125.
    [12]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [13]凌启鸿,张洪程,丁艳锋,等.水稻丰产高效技术及理论[M].北京:中国农业出版社,2005:12-20.
    [14]高辉,张洪程,戴其根,等.不同土种土壤氮素等养分与水稻基础产量的关系[J].扬州大学学报(农业与生命科学版),2007,28(3):49-53.
    [15]高辉,冯加根,张洪程,等.江苏水稻精确施肥技术发展分析及其对策研究[J].中国农学通报,2006,22(11):198-201.
    [16]周荣辉,孙彪.专业PDA平台设计初探[J].西南石油学院学报,1997,19(2):31-35.
    [17]涂运华,王东辉,赵春江.基于、Vindows CE的HPC/PDA农业专家系统开发平台的研究与开发[J].高技术通讯,2000,10:28-31.
    [18]黄智伟.PDA的现状和发展前景[J].电子产品世界,1998,10:32-33.
    [19]高辉,仲晓春,王云,等.基于PDA的县域水稻精确施氮决策支持系统研究与开发[J].中国农学通报,2008,24(8):458-461.
    [20]Norman B. B. and Reybold W. U.Small-scale digital soil maps for interpreting natural resource [J]. J. Soil and Water Cons.,1989,44 (6):30-34.
    [21]Fisher P F.Visualizing uncertainty in soil maps by animation [J].Cartographics, 1993,30(2):20-27.
    [22]张书慧,马成林,吴才聪,等.地理信息系统在精确农业变量施肥中的应用[J].农业机械学报,2003,3:92-95.
    [23]黄梯云.智能决策支持系统[M].北京:电子工业出版社,2001:1-5.
    [24]陈文伟.决策支持系统及其开发(第二版)[M].北京:清华大学出版社,2000:5-20.
    [25]高洪深.决策支持系统(DSS):理论·方法·案例[M].北京:清华大学出版社,2000:1-8.
    [26]范盛荣.Windows Mobile应用程序开发实践[M].北京:希望电子出版社,2006:209-341.
    [1]江苏省统计局.江苏统计年鉴(2006)[M].北京:中国统计出版社,2006.
    [2]凌启鸿,张洪程,丁艳锋,等.水稻丰产高效技术及理论[M].北京:中国农业出版社,2005:1-20.
    [3]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:154-197.
    [4]凌启鸿,张洪程,丁艳锋,等.水稻高产技术的新发展——精确定量栽培[J].中国稻米,2005,1:3-7.
    [5]邬伦,刘瑜,张晶,等.地理信息系统——原理、方法和应用[M].北京:科学出版社,2001:180-191.
    [6]曹卫星.农业信息学[M].北京:中国农业出版社,2005:259-286.
    [7]冯加根,高辉,戴其根,等.农业应用软件及其开发创新问题[J].中国农学通报,2006,8:536-539.
    [8]刘金网,陈船福,何松银,陆建平.稻麦模拟优化决策系统(R/WCSODS)的推广应用[J].现代农业科技(上半月刊),2006,9:104.
    [9]陈宏金.精确农业智能决策系统的技术集成[J].农机化研究,2004,2:242-243.
    [10]石元春.农业信息化现状与趋势[J].农产品市场周刊,2005,34:4.
    [11]张学俭.精准农业与3S技术[J].宁夏农林科技,2006,3:23-24.
    [12]奉公,高雪莲.精准农业一用信息技术改善资源利用[J].中国农业资源与区划,1999,6:6.
    [13]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [14]张洪程,杨勇,杨海生,等.水稻栽培科学创新与发展的探讨[J].上海交通大学学报(农业科学版),2002,20(3):190-194.
    [15]叶全宝,李华,霍中洋,等.精确农业及我国的发展对策[J].贵州农业科学,2002,30(4):58-59.
    [16]凌启鸿,张洪程,丁艳锋,等.水稻精确定量栽培理论与技术[M].北京:中国农业出版社,2007:57-137.
    [17]高辉,张洪程,戴其根,等.不同土种土壤氮等养分与水稻基础产量的关系[J].扬州大学学报(农业与生命科学版),2007,28(1):49-53.
    [18]Tabios G.Jose D.A comparative analysis of techniques for spatial interpolation of precipitation [J].Water Resources Bulletin,1985,21 (3):365-380.
    [19]Tobler W A. Smooth pycnophylactic interpolation for geographical regions [J] Journal of American Statistical Association,1979,74:519-529.
    [20]Upton G J GDistance-weighted geographic interpolation [J].Environment and Planning(A),1985,17:667-671.
    [21]Caruso C,Quarta F.Interpolation methods comparison [J].Computers and Mathematics with Applications,1998,35(12):109-126.
    [22]边馥苓.GIS地理信息系统原理和方法[M].北京:测绘出版社,1996:30-44.
    [23]郭达志,盛业华,余兆平,等.地理信息系统基础与应用[M].北京:煤炭工业出版社,1997:6-14.
    [24]陈俊,宫鹏.实用地理信息系统——成功地理信息系统的建设与管理.北京:科学出版社,1998:1-7.
    [25]郭仁忠.空间分析(第二版)[M].北京:高等教育出版社,2001:1-6.
    [26](美) Michael N. DeMers.武法东,付宗堂,王晓东等译.地理信息系统基本原理(第二版)[M].北京:电子工业出版社,2001:1-3.
    [27]农业部种植业管理司,全国农业技术推广服务中心.测土配方施肥技术问答[M].北京:中国农业出版社,2005:17-82.
    [28]王卫文.远程诊断专家系统在城市森林病虫害防治中的应用[J].中国城市林业,2004,2(5):52-54.
    [29]明亮,谢桂海,齐子元,王新锋,彭德云.基于无线网的远程视频智能监控系统[J].计算机工程,2007,33(5):266-268.
    [30]李博.基于计算机网络的数字视频监控系统[J].人民珠江,2002,3:67-68.
    [31]方仕雄,李奇,秦春华.基于WEB的视频监控系统的实现[J].工业控制计算机,2002,15(3):37-38.
    [32]王生祥,侯山峰,高稚允.视频流媒体实时捕获和预览系统的研究[J].北京理工大学学报,2002,22(4):493-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700