用户名: 密码: 验证码:
直驱式电动汽车用新型横向磁通永磁电机控制应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统汽车日益严重的燃油消耗和尾气排放不断加剧着能源危机和环境污染,也间接促进了电动汽车的快速发展。横向磁通永磁电机(Transverse Flux Permanent Magnet Motor, TFPMM)具有低速性能好、转矩密度高的突出特点,是电动汽车直驱式轮毂电机的优选实施方案之一。为此,本文以课题组研制的拟应用于直驱式电动汽车的一种新型TFPMM为控制对象,针对不同层面的应用需求,探讨有效的驱动控制方案,以为实际应用提供有重要指导价值的理论依据和技术支撑。首先,简要介绍新型TFPMM的基本结构、运行原理和电磁参数。在此基础上,分别建立永磁同步和无刷直流两种驱动模式下的数学分析模型,为后续驱动控制方案的研究奠定基础。接下来,从系统的开环控制入手,结合实际应用需要,对新型TFPMM的永磁同步和无刷直流两种驱动模式进行综合对比研究。结果表明,无刷直流驱动模式更适合于新型TFPMM,但需要采用提前换相方式削弱电枢反应影响、改善换相过程,使电机运行性能进一步提高。采用后轮双驱形式的现场装车试验证实了该结论的正确性和应用的可行性。更进一步地,针对120°导通方式的开环无刷直流驱动模式,以最大转矩电流比为控制目标,提出了基于提前换相的有位置传感器控制新方案。根据直流母线电流和电机转速在线计算确定提前换相角,实现了变负载运行的自补偿提前换相控制,获得了满意的效果,电机运行效率和过载能力显著提升。此外,鉴于电动汽车高可靠性对无位置传感器控制技术的实际需要,深入分析了相电压检测法在新型TFPMM中产生附加误差的机理,由此提出改进的补偿方案,并由仿真结果和实验结果证实该方案的有效性和实用性。新型TFPMM开环运行时,不可避免存在转矩脉动,但可以通过直接转矩控制加以改善。兼顾高转矩电流比和低转矩脉动,本文提出了基于提前换相的有位置传感器直接转矩控制新方案。根据转子位置和转矩滞环比较器选择电压矢量,规避了传统直接转矩控制中的定子磁链给定困难和起动困难。仿真结果和实验结果证实,该方案尤其适合于动态品质要求较高的新型TFPMM驱动应用场合。无位置传感器控制技术仍是电动汽车的高可靠性应用需求。在传统直接转矩控制基础上,针对定子磁链给定难问题,本文提出了无位置传感器磁链自适应直接转矩控制新方案,仅利用定子磁链位置和转矩滞环比较器决定电压矢量,配合换相补偿以修正定、转子磁链夹角与最佳提前换相角之间的偏差。系统仿真和实验研究结果表明,该方案不仅有效规避了定子磁链给定难问题,还能兼顾高转矩电流比和低转矩脉动,有效提升了电机的运行效率和负载能力,是新型TFPMM在直驱式电动汽车应用中的重要技术支撑。
The aggravation of global energy crisis and environmental pollution is intensified by massive fuel consumption and serious exhaust emissions of traditional vehicles, which indirectly promotes the rapid development of electric vehicles (EV). With relatively high torque density and good performance at low speeds, transverse flux permanent magnet motor (TFPMM) has been expected to be a preferred embodiment of direct-drive EV. Therefore, as applied in direct-drive EV, a novel TFPMM designed by our research group is taken as the control object in this paper. And effective control schemes for different levels of application requirements are deeply researched to provide powerful theoretical basis and technical support for its application.Firstly, this paper gives a brief analysis on the basic structure, operating principle and electromagnetic parameters of the novel TFPMM. And the mathematical models of permanent magnet synchronous motor (PMSM) drive and brushless DC (BLDC) drive are respectively established as the foundation for control of the novel TFPMM.The next research work starts with open-loop control applications. In reference to practical application, the comparable investigations on the two drive modes (namely PMSM and BLDC drive) are implemented. And it is indicated from comparative results that BLDC drive is much more suitable for novel TFPMM. However, it should be cooperated with phase advance commutation to weaken the influence of armature reaction and shorten the commutation interval, which further improves the performance of the motor. The field test with two prototypes installed in a sample car is carried out to verify the correctness of the conclusion and the feasibility of its application.Furthermore, for open-loop BLDC drive with 120°conduction, a position-sensor approach based on phase advance commutation is proposed to obtain maximum torque per ampere (MTPA). Under varying load torque conditions, the required phase advance angle is automatically calculated by DC bus current and rotor speed, achieving satisfactory performance, including much higer efficiency and much stronger load capacity. Besides, with sensorless control regarded as the actual requirement of EV for much higher reliability, the mechanism of the additional detection error in novel TFPMM is deeply analyzed, which is produced by the phase-voltage method. A corresponding compensation scheme is proposed and then verified through both simulated and experimental results.When the novel TFPMM operates in open loop, relatively large torque ripple is inevitable. However, direct torque control (DTC) can be employed to reduce torque ripple. Hence, to obtain MTPA and reduce torque ripple, this paper presents a new position-sensor DTC based on phase advance commutation. The desired voltage vector is properly selected in terms of both rotor position signals and torque hysteresis comparator, avoiding the problems of stator flux reference and motor starting that exist in conventional DTC. Simulated and experimental results show that the proposed approach is especially suited to the drive applications of the novel TFPMM with relatively good dynamic quality.Sensorless control is still the ideal approach to meet application requirements of EV for much higher reliability. Based on the conventional DTC, direct torque and adaptive flux sensorless control is proposed as a solution to stator flux reference, where the desired voltage vector is only determined by stator flux position and torque hysteresis comparator. However, it should be cooperated with reasonable compensation angle for the difference of optimal phase advance angle and the angle between stator and rotor flux. The proposed sensorless DTC is demonstrated through both simulated and experimental results to avoid the problem of stator flux reference and obtain larger torque per ampere, smaller torque ripple, higher efficiency and stronger load capacity, which is an important technical support for further application of the novel TFPMM in direct-drive EV.
引文
[1] 陈清泉.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [2] 孙重祥,曾志斌.电动汽车的基本知识[J].实用汽车技术,2006,(2):7-8.
    [3] 白钰枝.混合动力汽车的发展现状与前景[J].科技创新导报,2011,12:249.
    [4] 任勇,秦大同,杨亚联等.混合动力电动汽车的研发实践[J].重庆大学学报,2004,27(4):27-28.
    [5] 麻友良,陈全世.混合动力电动汽车的发展[J].公路交通科技,2001,18(1):78-80.
    [6] 孙远涛,张洪田.混合动力汽车研究状况及发展趋势[J].黑龙江工程学院学报,2011,25(2):13-16.
    [7] 李建,梁刚,刘巍.纯电动汽车的结构原理与应用探讨[J].装备制造技术,2011,(1):108-117.
    [8] 刘龙岩,欧阳宁东.浅谈中国纯电动汽车的发展现状及存在的问题[J].大众科技,2010,9:115-116.
    [9] Lorico A, Taiber J, Yanni T. Effect of inductive power technology systems on battery-electric vehicle design [C].37th Annual Conference on IEEE Industrial Electronics Society,2011:4563-4569.
    [10]顾云青,张立军.电动汽车电动轮驱动系统开发现状与趋势[J].汽车研究与开发,2004,(12):27-30.
    [11] Cakir K, Sabanovic A. In-wheel motor design for electric vehicles [C]. International Workshop on Advanced Motion Control,2006:613-618.
    [12] Rahman, Khwaja M. Application of direct-drive wheel motor for fuel cell electric and hybrid electric vehicle propulsion system [J]. IEEE Transactions on Industry Applications,2006,42(5):1185-1192.
    [13] Katsuhiko Kamiya. Junichi Okuse, Kazufumi Ooishi, et al. Development of in-wheel
    motor system for micro EV [C]. Proceedings of the 18th International Electric Vehicle Symposium,2001.
    [14]郭建龙,陈世元.电动汽车驱动用电机的选择[J].汽车电机,2007,(1):9-12.
    [15]褚文强,辜承林.电动车用轮毂电机研究现状与发展趋势[J].电机与控制应用,2007,(4):1-5.
    [16]褚文强,辜承林.国内外轮毂电机应用概况和发展趋势[J].微电机,2007,(9):77-81.
    [17] Weh H, May H. Achievable force densities for permanent magnet excited machines in new configurations [C]. Proceedings of International Conference on Electrical Machines,1986:1107-1111.
    [18] Weh H, May H. New permanent magnet excited synchronous machine with high efficiency at low speed [C]. Proceedings of International Conference on Electrical Machines,1988:35-40.
    [19]江建中,李永斌,施进浩.横向磁场永磁电机的研究与发展现状[J].微特电机,2003,(5):3-12.
    [20]陈金涛.电力助动车用新型永磁电机及其优化设计[D].武汉:华中科技大学图书馆,2004.
    [21] Henneberger G, Bork M. Development of a new transverse flux motor [C]. IEE Colloquium on New Topologies for Permanent Magbet Machines,1997:1-6.
    [22] Mitcham A J. Transverse flux motors for electric propulsion of ships [C]. IEE Colloquium on New Topologies for Permanent Magbet Machines,1997:3/1-3/6.
    [23] Silva Hiti, et al. Propulsion system control for next generation of EV [C]. EV 16, Beijing,1999.
    [24] Masmoudi A. The sizing of TFPM machines for bus and truck hybrid vehicle applications [C]. EV16, Beijing,1999.
    [25] Masmoudi A, Elantably A. A simple assessment of cogging torque in a transverse flux permanent magnet machine [C]. IEEE International Electric Machines and
    Drives Conference,2001:754-759.
    [26] Masmoudi A, Njeh A, Mansouri A, et al. Optimizing the overlap between the stator teeth of a claw Pole transverse-flux permanent-magnet machine [J]. IEEE Transactions on Magnetics,2004,40(3):1573-1578.
    [27] Hasubek B E, Nowicki E P. Two dimensional finite element analysis of passive rotor transverse flux motors with slanted rotor design [C]. IEEE Canadian Conference on Electrical and Computer Engineering,1999,2:1199-1204.
    [28] Arshad W M, Backstorm T, Sadarangani C. Analytical design and analysis procedure for a transverse flux machine [C]. IEEE Electric Machines and Drives Conference, 2001:115-121.
    [29]陈金涛,辜承林.新型横向磁通永磁电机研究[J].中国电机工程学报,2005,(15):155-160.
    [30] Huang S R, Luo J, Lipo T A. Analysis and evaluation of the transverse flux circumferential current machine [C]. IEEE Industry Application Society Annual Meeting,1997:378-384.
    [31] Polinder H, Mecrow B C, Jack A G. Conventional and TFPM linear generators for direct-drive wave energy conversion [J]. IEEE Transactions on Energy Conversion, 2005,20(2):260-267.
    [32] NozakiY, Baba J, Shutoh K, et al. Improvement of transverse flux linear induction motors performances with third order harmonics current injection [J]. IEEE Transactions on Applied Superconductivity,2004, (2):1846-1849.
    [33] Guo Y G, Zhu J G, Peter A, et al. Comparative study of 3-D flux electrical machines with soft magnetic composite cores [J]. IEEE Transactions on Industry Applications, 2003, (6):1696-1703.
    [34]郑文鹏,江建中.基于三维磁网络法E型铁心横向磁场电机的设计与研究[J].电机工程学报,2004,24(8):138-141.
    [35]李永斌,袁琼,江建中.一种新型聚磁式横向磁通永磁电机研究[J].电工技术
    学报,2003,18(5):46-49.
    [36]施进浩,李永斌,江建中.聚磁式横向磁场永磁电机自定位转矩研究[J].电工技术学报,2005,20(3):36-39.
    [37]施进浩.新型横向磁场永磁电机设计与研究[D].上海:上海大学,2006.
    [38]王建宽.横向磁场永磁电机及其驱动系统研究[D].上海:上海大学,2007.
    [39]刘哲民,陈谢杰,唐任远等.基于3D-FEM的新型横向磁通永磁电机的研究[J].电工技术学报,2006,(5):19-23.
    [40]刘哲民.横向磁场永磁同步电机研究[D].沈阳:沈阳工业大学,2006.
    [41] Chen Lixiang, Li Bingnan, Tang Renyuan. Design and study of novel transverse flux permanent magnet synchronous motor [C]. International Conference on Electrical Machines and Systems,2008:3554-3558.
    [42]陶果.新型横向磁场永磁电力推进电动机的研究[D].北京:清华大学,2007.
    [43]陶果,邱阿瑞,李大雷.新型聚磁式横向磁场永磁推进同步电动机[J].清华大学学报(自然科学版),2007,47(10):1562-1565.
    [44]邹继斌,王骞,张洪亮.横向磁场永磁直线电动机电磁力的分析与计算[J].电工技术学报,2007,22(8):126-130.
    [45]王骞.圆筒型横向磁场永磁直线电机电磁场与电磁力的研究[D].哈尔滨:哈尔滨工业大学,2010.
    [46]夏永明,卢琴芬,叶云岳等.新型双定子横向磁通直线振荡电机[J].电机工程学报,2007,27(27):104-107.
    [47]褚文强,辜承林.新型横向磁场电机磁场研究[J].中国电机工程学报,2007,27(24):58-61.
    [48]褚文强.电动车用直驱式横向磁场轮毂电机研究与实践[D].武汉:华中科技大学,2007.
    [49]程锦.电动汽车用新型横向磁场电机的试验研究[D].武汉:华中科技大学,2008.
    [50]包广清,江建中,施进浩.多相聚磁式横磁通永磁电机的自定位力矩研究[J].中
    国电机工程学报,2006,26(15):139-143.
    [51] Njeh A, Masmoudi A, Elantably A.3D FEA based investigation of the cogging torque of a claw pole transverse flux permanent magnet machine [C]. IEEE International Electric Machines and Drives Conference,2003,1:319-324.
    [52] Schmidt E.3-D finite element analysis of the cogging torque of a transverse flux machine [J]. IEEE Transactions on Magnetics,2005,41(5):1836-1839.
    [53] Harris M R, Pajooman G H, Sharkh Abu SM. The problem of power factor in VRPM (transverse-flux) machines [C]. IEE Conference on Electrical Machines and Drives, 1997:386-390.
    [54] Lu KY. Ritchie E, Rasmussem P O, et al. Modeling and power factor analysis of a single phase surface mounted permanent magnet transverse flux machine [C]. The Fifth International Conference on Power Electronics and Drive Systems,2003,2: 1609-1613.
    [55] Masmoudi A. On the attempts to optimize the performance and cost-effectiveness of TFPM drives:a crucial challenge for the automotive industry [J]. European Transactions on Electrical Power,2005,15(6):481-95.
    [56] Zhao Yu, Chai Jianyun. Power factor analysis of transverse flux permanent machines [C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems,2005,1:450-459.
    [57] Chen Anyuan, Nilssen R and Nysveen A. Performance comparisons among radial-flux, multistage axial-flux, and three-phase transverse-flux PM machines for downhole applications [J]. IEEE Transactions on Industry Applications,2010,46(2): 779-789.
    [58]陶果,邱阿瑞,李大雷.新型横向磁场永磁同步电动机电感参数计算与功率因数分析[J].微电机,2007,40(9):14-17.
    [59]王建宽,施进浩,江建中.横向磁场永磁电动机及其驱动系统的研究[J].微特电机,2005,(11):14-16.
    [60]赵宇,柴建云.横向磁场永磁电机性能研究[J].电机与控制应用,2006,33(7):9-13.
    [61] Wang Huan, Shi Yi-kai, Tang Bo, et al. An investigation of four-phase flat-type TFPM and control system [C]. International Conference on Innovative Computing, Information and Control,2009:476-479.
    [62]辜承林.机电动力系统分析[M].武汉:华中科技大学出版社,1998.
    [63]辜承林,陈乔夫,熊永前.电机学(第二版)[M].武汉:华中科技大学出版社,2005.
    [64]王晋,陶桂林,周理兵,丁永强.基于换相过程分析的无刷直流电动机机械特性的研究[J].中国电机工程学报,2005,25(14):141-145.
    [65] Upadhyay P R, Rajagopal K R, Singh B P. Effect of armature reaction on the performance of an axial-field permanent-magnet brushless DC motor using FE method [J]. IEEE Transactions on Magnetics,2004,40(4):2023-2025.
    [66] Upadhyay P, Rajagopal K R. Effect of armature reaction and skewing on the performance of radial-flux permanent magnet brushless DC motor [C]. International Conference on Power Electronics, Drives and Energy Systems,2006:1-5.
    [67] Guo Youguang, Zhu Jianguo, Lu Haiyan. Effects of armature reaction on the performance of a claw pole motor with soft magnetic composite stator by finite-element analysis [J]. IEEE Transactions on Magnetics,2007,43(3): 1072-1077.
    [68]陈景,张卓然,杨善水.具有切向磁钢的无刷直流电动机电枢反应对最佳换向位置影响的分析[J].微电机,2007,40(3):9-13.
    [69] Zhang Cunshan, Bian Dunxin. Armature reaction finite element computation of surface-mounted brushless DC motors [C]. International Conference on Electrical Machines and Systems,2008,351-353.
    [70] Chan C C, Jiang J Z, Xia W, et al. Novel wide range speed control of permanent magnet brushless motor drives [J]. IEEE Transactions on Power Electronics,1995,
    10(5):539-546.
    [71] Lawler J S, Bailey J M. Limitations of the conventional phase advance method for constant power operation of the brushless dc motor [C]. Proceedings IEEE SoutheastCon,2002:174-180.
    [72] Nguyen BinhMinh, Ta Minh C. Phase advance approach to expand the speed range of brushless DC motor [C]. Proceedings of the International Conference on Power Electronics and Drive Systems,2007:1255-1262.
    [73] Sue Shinn Ming, Wu Kun Lin, Syu Hih Sian, et al. A phase advanced commutation scheme for IPM-BLDC motor drives [C]. IEEE Conference on Industrial Electronics and Applications,2009:2010-2013.
    [74]杨涤.系统实时仿真开发环境与应用[M].北京:清华大学出版社,2003.
    [75]夏长亮.无刷直流电机控制系统[M].北京:科学出版社,2009.
    [76] Chen Cheng-hu, Cheng Ming-yang. A new cost effective sensorless commutation method for brushless DC motors without phase shift circuit and neutral voltage [J]. IEEE Transactions on Power Electronics,2007,22(2):644-653.
    [77]胡勤丰,严仰光.永磁式双凸极电机角度提前控制方式[J].电工技术学报,2005,20(9):13-18.
    [78] Takahashi I, Noguchi T. A new quick-response and high-efficiency control strategies of an induction motor [J]. IEEE Transactions Industry Applications,1986,22(5): 820-827.
    [79] Depenbrock M. Direct self-control of inverter-fed induction machine [J]. IEEE Transactions Power Electronics,1988,3(4):420-429.
    [80] Pyrhonen J, Niemela M, Kaukonen J, et al. Test results with the direct flux linkage control of synchronous motors [J]. IEEE Aerospace and Electronic Systems Magazine,1998,13(4):23-27.
    [81] Pyrhonen O, Niemela M, Pyrhonen J, et al. Excitation control of DTC controlled salient pole synchronous motor in field weakening range [C]. International Workshop
    on Advanced Motion Control,1998:294-298.
    [82] Zhong L, Rahman M F, Hu Y W, et al. Analysis of direct torque control in permanent magnet synchronous motor drives [J]. IEEE Transactions on Power Electronics, 1997,12(3):528-535.
    [83] Zhuang Xu, Rahman M F. Direct torque and flux regulation of an IPM synchronous motor drive using variable structure control approach [J]. IEEE Transactions on Power Electronics,2007,22(6):2487-2498.
    [84] Yongchang Zhang, Jianguo Zhu. Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency [J]. IEEE Transactions on Power Electronics,2011,26(1):235-248.
    [85] Kang Seog-Joo, Sul Seung-Ki. Direct torque control of brushless DC motor with nonideal trapezoidal back EMF [J]. IEEE Transactions on Power Electronics,1995, 10(6):796-802.
    [86] Liu Yong, Zhu Z Q, Howe D. Direct torque control of brushless DC drives with reduced torque ripple [J]. IEEE Transactions on Industry Applications,2005,41(2): 599-608.
    [87] Liu Yong, Zhu Z Q, Howe D. Commutation-torque-ripple minimization in direct-torque-controlled PM brushless DC drives [J]. IEEE Transactions on Industry Applications,2007,43(4):1012-1021.
    [88] Ozturk S B, Alexander W C, Toliyat H A. Direct torque control of four-switch brushless DC motor with non-sinusoidal back EMF [J]. IEEE Transactions on Power Electronics,2010,25(2):263-271.
    [89] Ozturk S B, Toliyat H A. Direct torque and indirect flux control of brushless DC motor [J]. IEEE/ASME Transactions on Mechatronics,2011,16(2):351-360.
    [90] Gao Jin, Hu Yuwen. Direct self-control for BLDC motor drives based on three-dimensional coordinate system [J]. IEEE Transactions on Industrial Electronics,2010,57(8):2836-2844.
    [91] Tiitinen P, Surandra M. The next generation motor control method, DTC direct torque control [C]. Proceedings of the 1996 International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth,1996,1:37-43.
    [92] Medium voltage AC drives for speed and torque control of 3-27MW motors, ABB, ACS 6000 Brochure RevB,2005.
    [93]周扬忠,胡育文.交流电动机直接转矩控制[M].北京:机械工业出版社,2010.
    [94] Ozturk S B, Toliyat H A. Direct torque control of brushless DC motor with non-sinusoidal back-EMF [J]. IEEE International Electric Machines & Drives Conference,2007,1:165-171.
    [95]夏长亮,张茂华,王迎发等.永磁无刷直流电机直接转矩控制[J].中国电机工程学报,2011,31(12):104-109.
    [96]安群涛,孙立志,刘超等.无刷直流电机的磁链自控直接转矩控制[J].中国电机工程学报,2010,30(12):86-92.
    [97]杨建飞,胡育文.无刷直流电机无磁链观测直接转矩控制[J].中国电机工程学报,2008,28(6):90-95.
    [98]高瑾,胡育文,黄文新等.六边形磁链轨迹的无刷直流电机直接自控制[J].中国电机工程学报,2007,27(15):64-69.
    [99] Lu Haifeng, Zhang Lei, Qu Wenlong. A new torque control method for torque ripple minimization of BLDC motors with un-ideal back EMF [J]. IEEE Transactions on Power Electronics,2008,23(2):950-958.
    [100] Chung S K, Kim H S, Kim C G, et al. A new instantaneous torque control of PM synchronous motor for high-performance direct-drive applications [J]. IEEE Transactions on Power Electronics,1998,13(3):388-400.
    [101] Lee J, Hong J, Nam K, et al. Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer [J]. IEEE Transactions on Power Electronics,2010,25(2):290-297.
    [102] Terzic B, Jadric M. Design and implementation of the extended Kalman filter for the
    speed and rotor position estimation of brushless DC motor [J]. IEEE Transactions on Industrial Electronics,2001,48(6):1065-1073.
    [103] Liu Yong, Zhu Z Q, Howe D. Instantaneous torque estimation in sensorless direct-torque-controlled brushless DC motors [J]. IEEE Transactions on Industry Applications,2006,42(5):1275-1283.
    [104] Fakham H, Djemai M, Busawon K. Design and practical implementation of a back-EMF sliding-mode observer for a brushless DC motor [J]. IET Electric Power Applications,2008,2(6):353-361.
    [105]郭鸿浩,周波,左广杰等.无刷直流电机转矩观测与电感自适应辨识[J].中国电机工程学报,2011,31(33):151-158.
    [106] Chung Se-Kyo, Kim Hyun-Soo, Kim Chang-Gyun, et al. A new instantaneous torque control of PM synchronous motor for high-performance direct-drive applications [J]. IEEE Transactions on Industrial Electronics,1998,13(3):388-400.
    [107] Kheng Cher Yeo, Heins G, De Boer F. Comparison of torque estimators for PMSM [C]. Australasian Universities Power Engineering Conference,2008:1-6.
    [108]孙丹,贺益康.基于恒定开关频率空间矢量调制的永磁同步电机直接转矩控制[J].中国电机工程学报,2005:25(6):112-116.
    [109]赵宏涛,吴峻.定子磁链提前换相增加直线永磁无刷直流电机的推力[J].中国电机工程学报,2011,31(3):118-123.
    [110]罗宏浩,吴峻,赵宏涛等.永磁无刷直流电机换相控制研究[J].中国电机工程学报,2008,28(24):108-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700