用户名: 密码: 验证码:
质子交换膜中甲醇迁移及其机理的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以甲醇为燃料的直接甲醇燃料电池(DMFC)由于具有功率密度高、能量转换效率高、低温启动和无污染等优异特性,已被广泛认为是新一代电动汽车的最佳候选电源,并且在其它便携式小型电源、家庭用热电联供系统、分散电站等方面具有广阔的应用前景。目前,DMFC开发与大规模应用所面临的一个重要问题是甲醇穿透问题。所谓甲醇穿透是指甲醇由阳极透过质子交换膜穿透到阴极的现象。穿透到阴极的甲醇在Pt催化剂的作用下与O2发生化学氧化反应,产生“混合过电位”效应,从而降低了阴极电位和能量转换效率,并造成燃料的浪费以及阴极需氧量的增加;同时,甲醇穿透还对阴极电极结构、流场以及DMFC电池组的设计都有很大的影响。因此,深入细致地研究全氟磺酸(PFSA)质子交换膜的微观结构和性能;质子、中性甲醇分子和水分子等在膜中的分布与迁移;以及膜的微观结构和质子、甲醇分子、水分子等迁移性质的关系,是当前燃料电池领域最热门的前沿研究课题之一。但由于实验条件和研究对象的限制,采用分子动力学(MD)模拟方法研究质子交换膜中中性分子的迁移就显得非常必要。
     本论文从分子水平出发,利用MD模拟方法对甲醇水溶液水化的PFSA质子交换膜的微观结构,电场作用下中性甲醇分子和水分子在PFSA质子交换膜中的电渗迁移和扩散迁移性质以及影响电渗迁移的重要因素进行了深入的研究,并对中性分子的电渗迁移机制进行了探讨,本论文的主要研究工作如下:
     开发了合适的PFSA分子间(内)相互作用位能函数。分子间(内)相互作用位能函数是MD模拟的基础,文献报导的数据往往由于参数不全、分子体系不全、移植性欠佳等原因,难以直接引用。我们在文献报导的位能函数模型的基础上,采用量子化学从头算方法对PFSA分子间(内)相互作用位能函数进行优化和补充。
     提出了GAUSSIAN函数形式的二面角转动位能函数模型。一个二面角转动引起的能量变化比较复杂时,通常用多项具有不同周期的余弦函数、正弦函数或正余弦复合函数来表示。这样的解决方案使参数计算过程变得非常复杂。根据二面角转动过程中构象和能量的关系,本文提出了新的位能函数模型并成功描述了1,2-二卤代乙烷分子中二面角X-C-C-Y转动引起的能量变化和分子绕C-C单键引起的能量变化。与原有二面角转动位能参数计算过程相比,新模型更简单,方便快速,为描述其它二面角转动时引起的能量变化提供了可行性。
     利用MD模拟方法对甲醇水溶液水化的PFSA质子交换膜的微观结构,氢键网络,并对体系中的甲醇分子的分布进行了详细研究。研究发现经甲醇溶液水化的PFSA膜与纯水水化的PFSA膜的微观结构非常相似,是一种油包水的反胶束结构。PFSA膜中,磺酸基团、甲醇分子、水合氢离子和水分子周围形成了连续氢键网络,其中甲醇分子和水分子既作为氢键受体接受氢,又作为氢键给体给出氢,磺酸基团和水合氢离子则分别作为氢键受体及氢键给体接受氢和给出氢。另外发现甲醇分子不仅可存在于亲水相区,也趋向于分布在疏水主链周围。因而,甲醇分子在膜中的穿透量既与亲水相中的水(或水合氢离子)有关,又与疏水相中的PFSA主链有关。这些为制备具有超低电渗系数的质子交换膜材料提供了设计思路。
     发展了一种利用MD模拟计算水和甲醇分子电渗迁移系数的方法。虽然可利用燃料电池、浓差电池等多种实验装置测定水的电渗迁移系数,但电渗往往与扩散等其它多种迁移同时存在,难于精确测量电渗系数,且测量结果常有分歧。我们利用MD模拟方法得到相轨迹,建立各种带电离子和中性分子的速度分布函数,计算带电离子和中性分子在电场作用下的平均迁移速率,得到水分子和甲醇分子的电渗迁移系数。这是我们自主提出并发展的研究电渗迁移的新方法,未见文献报导。
     提出了两种基于分子水平的电渗迁移机制,解释了电渗迁移的本质。基于hopping迁移和vehicle迁移两种不同的质子迁移机制,我们提出了中性水分子和甲醇分子的电渗迁移机制,描述了电场如何牵引水合氢离子运动,水合氢离子又如何把动量传递给中性分子的过程,有助于我们从分子水平上认识中性分子在质子交换膜中的电渗迁移现象。
     MD模拟从原子水平来研究物质的性质,同时它不受实验条件的限制,可以解决一些通过实验手段难以解决的问题。本文的研究为开发既具有高温质子电导率,又具有良好阻醇性的新型质子交换膜材料提供有价值的基础资料。
Direct methanol fuel cells (DMFCs) are found potential applications in fields ranging from small portable consumer electronics to vehicles for their high energy conversion efficiency, high energy density, simplicity of operation, and etc. However, there are still some technical barriers need to be overcome for the large scale commercialization of DMFCs. One major technical obstacle is thought to be methanol crossover, which is defined as the phenomenon of the transport of methanol from anode to cathode via the proton exchange membrane. Methanol crossover will lead to reduced energy conversion efficiency because of the direct chemical oxidation of methanol in the cathodic half cell, and hence degrade fuel cell performance dramatically (e.g. the oxidation of methanol in the cathodic hall cell may cause explosion, etc.). Therefore, the investigations of membrane microstructure and the transport of molecules in the membrane are one of the main directions in the area of fuel cell. However, for the reason of limitation of experimental conditions and lack of experimental methods, it is very necessary and important to investigate the transport of molecules in membrane by means of molecular dynamics simulation.
     This dissertation focuses on the investigation of molecule diffusion and electroosmosis, as well as the methanol distribution and the membrane microstructure in hydrated poly(perfluorosulfonic acid) by aqueous methanol solution from the view of atomistic level. The research topics are as follows:
     A specialized all-atom force field for molecular dynamics (MD) simulation of poly(perfluorosulfonic acid) (PFSA) membrane is developed. The kernel of MD simulation is the force field consisting of classical potential energy expressions and the associated adjustable parameters, which is used to describe the intramolecular and intermolecular interaction between each component in the systems. Currently, most of the force fields for PFSA study are based on the generalized force fields, including the OPLS-AA, AMBER, CHARMM, DREIDING, and so on. These generalized force fields perform quite well for specific set of molecules such as hydrocarbons, proteins and nucleic acids, since they are deduced from the experimental data of molecular sets with similar structures. However, if these force fields are applied to simulate PFSA, only structural properties are acceptable to some extent, and transport properties are not acceptable. In this work, based on the classical potential energy expressions reported in literatures and a set of model molecules that are specifically designed according to the structure of PFSA, we developed a specialized all-atom force field for PFSA by employing ab initio calculations.
     A new torsion potential function for bond rotations without rotational symmetry is proposed. This function is composed of a few Gaussian-type terms each corresponding to an eclipsed conformation of the 1, 2 substituents of the C-C bonds. Different from the truncated Fourier series or the truncated cosine polynomial, it is easy to determine how many terms are needed to represent any type of torsion potential barrier at a glance. It could also intuitively deduce the physical meaning of the expansion parameters of the new torsion potential function, which corresponds to the barrier height, the dihedral defining the eclipsed conformations, and the characteristics of the substituents, respectively. The new torsion potential function is also applied to the 1, 2-substituted haloethanes with atisfactory results, where three Gaussian-type terms corresponding to the fully eclipsed and the partially eclipsed conformations are needed. Using this new function, it is feasible to describe the torsion potential profile of other molecules, accurately and quick.
     The membrane microstructure and the methanol distribution in hydrated poly(perfluorosulfonic acid) electrolyte membrane are studied using MD simulations under various electric fields applied, as well as the hydrogen bonding characteristics. The results indicate that the PFSA hydrated by mixed solvent forms a reversed micelle structure of water-in-oil, similar to the microstructure of PFSA hydrated by pure water. A continuous hydrogen bond network is formed by sulfonate anion groups, water molecules, hydronium cations, and methanol molecules, where methanol and water molecules act both as hydrogen donors and hydrogen acceptors, while the sulfonate anion groups (or hydronium cations) only serve as hydrogen acceptors (or hydrogen donors). It is also found that the methanol molecules not only favorably distributes in the hydrophilic subphase but also in the surroundings of the hydrophobic backbones, suggesting that methanol crossover not only depends on the interaction between methanol and water (or hydronium) in hydrophilic subphase but also on the interaction between the methanol and PFSA oligomer in hydrophobic subphase. This relationship provides help in the design of novel membrane with low electroosmotic drag coefficient.
     A new method has been developed to evaluate the electroosmotic drag coefficient from the average transport velocities of hydroniums, water and methanol molecules based on the molecular velocity distribution functions using MD simulations with an electric field applied. Although various experimental techniques have been developed for the measurement of the electroosmotic drag coefficient, the experimental electroosmotic drag coefficient still differs from measurement to measurement due to the complexity of electroosmosis mechanism and the coupling between several of the water transport phenomena. In this work, we firstly evaluated the molecular velocity distribution functions from the trajectory file recorded during the MD simulation. And then, we fitted the molecular velocity distribution functions to the Maxwellian distribution function or the peak shifted Maxwellian distribution function. Finally, we obtained the electric field induced transport velocities of hydroniums and water molecules, and evaluated the electroosmotic drag coefficients of water and methanol molecules. This is the first atomistic MD simulation study of the electroosmosis of hydrated PFSA membrane based on the evaluation of velocity distribution functions.
     Two mechanisms for the molecular transport in hydrated PFSA are proposed: the vehicle mechanism or association mechanism, and the momentum transfer mechanism. Based on the vehicle and hopping mechanism of proton, we present the electroosmotic transport mechanisms of molecules, which is useful to describe the motion of hydronium under the electric field applied and the momentum transfer process from the hydronium to the molecules. It is important for us to understanding the electroosmotic transport of molecules in the proton exchange membrane.
     As one approach capable of solving the classical many-body problem in contexts relevant to the study of matter at the atomistic level, molecular dynamics methods have proved themselves indispensable in both pure and applied research. The research result of this dissertation provides valuable and fundamental information to the development of membrane which has high-temperature conductivity and methanol-shielding ability.
引文
[1] Frusteri, F.; Espro, C.; Arena, F.; Passalacqua, E.; Patti, A.; Parmaliana, A. Partial oxidation of propane on NAFION supported catalytic membranes. Catal. Today, 2000, 61(1-4): 37-41.
    [2] Rajendran, R.G. Polymer electrolyte membrane technology for fuel cells. www.mrs.org/publications/bulletin, 2005.
    [3] Icardi, U.A.; Specchia, S.; Fontana, G.J.R.; Saracco, G.; Specchia, V. Compact direct methanol fuel cells for portable application. J. Power Sources, 2008, 176(2): 460-467.
    [4] H?hlein, B.; Biedermann, P.; Grube, T.; Menzer, R. Fuel cell power trains for road traffic. J. Power Sources, 1999, 84(2): 203-213.
    [5] Cremers, C.; Scholz, M.; Seliger, W.; Racz, A.; Knechtel, W.; Rittmayr, J.; Grafwallner, F.; Peller, H.; Stimming, U. Developments for improved direct methanol fuel cell stacks for portable power. Fuel Cells, 2007, 7(1): 21-31.
    [6] Grubb, W.T.; Niedrach, L.W. Batteries with solid ion-exchange membrane electrolytes. J. Electrochem. Soc., 1960, 107(2): 131-135.
    [7] Wiley, R.H.; Venkatachalam, T.K. Sulfonation of polystyrene crosslinked with pure m-divinylbenzene. J. Polym. Sci. Part A, 1966, 4(7): 1892-1894.
    [8] Grot, W. Perfluorierte kationenaustauscher-polymere. Chem. Ing. Tech. - CIT, 1975, 47(14): 617-618.
    [9] Prater, K. The renaissance of the solid polymer fuel cell. J. Power Sources, 1990, 29(1-2): 239-250.
    [10] Doyle, M.; Rajendran, G., Handbook of fuel cells–fundamentals, technology and applications, ed. W. Vielstich, A. Lamm, and H. Gasteiger. Vol. 3. 2003, Chichester, UK: John Wiley & Sons. 351-395.
    [11] Mauritz, K.A.; Moore, R.B. State of understanding of NAFION. Chem. Rev., 2004, 104(10): 4535-4585.
    [12] Elliott, J.A.; Hanna, S.; Elliott, A.M.S.; Cooley, G.E. Interpretation of the small-angle x-ray scattering from swollen and oriented perfluorinated ionomer membranes. Macromolecules, 2000, 33(11): 4161-4171.
    [13] Gierke, T.D.; Munn, G.E.; Wilson, F.C. The morphology in NAFION perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J. Polym. Sci. Pol. Phys., 1981, 19(11): 1687-1704.
    [14] Hsu, W.Y.; Gierke, T.D. Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules, 1982, 15(1): 101-105.
    [15] Hsu, W.Y.; Gierke, T.D. Ion transport and clustering in NAFION perfluorinated membranes. J. Membr. Sci., 1983, 13(3): 307-326.
    [16] James, P.J.; Elliott, J.A.; McMaster, T.J.; Newton, J.M.; Elliott, A.M.S.; Hanna, S.; Miles, M.J. Hydration of NAFION studied by AFM and x-ray scattering. J. Mater. Sci., 2000, 35(20): 5111-5119.
    [17] Macknight, W.J.; Taggart, W.P.; Stein, R.S. A model for the structure of ionomers. J. Polym. Sci. Polym. Symp., 1974, 45(1): 113-128.
    [18] Yarusso, D.J.; Cooper, S.L. Microstructure of ionomers: Interpretation of small-angle x-ray scattering data. Macromolecules, 1983, 16(12): 1871-1880.
    [19] Yarusso, D.J.; Cooper, S.L. Analysis of SAXS data from ionomer systems. Polymer, 1985, 26(3): 371-378.
    [20] Yeager, H.L.; Steck, A. Cation and water diffusion in NAFION ion exchange membranes: Influence of polymer structure. J. Electrochem. Soc., 1981, 128(9): 1880-1884.
    [21] Fujimura, M.; Hashimoto, T.; Kawai, H. Small-angle x-ray scattering study of perfluorinated ionomer membranes: I. Origin of two scattering maxima. Macromolecules, 1981, 14(5): 1309-1315.
    [22] Dreyfus, B.; Gebel, G.; Aldebert, P.; Pineri, M.; Escoubes, M.; Thomas, M. Distribution of the 'micelles' in hydrated perfluorinated ionomer membranes from SANS experiments. J. Phys. (Paris), 1990, 51(12): 1341-1354
    [23] Litt, M.H. Reevaluation of NAFION morphology. Polym. Prepr., 1997, 38(1): 80-81.
    [24] Haubold, H.-G.; Vad, T.; Jungbluth, H.; Hiller, P. Nano structure of NAFION: A SAXS study. Electrochim. Acta, 2001, 46(10-11): 1559-1563.
    [25] Rubatat, L.; Rollet, A.L.; Gebel, G.; Diat, O. Evidence of elongated polymericaggregates in NAFION. Macromolecules, 2002, 35(10): 4050-4055.
    [26] Gierke, T.D.; Hsu, W.Y., Perfluorinated ion exchange membranes, in Perfluorinated Ionomer Membranes, A. Eisenberg and H.L. Yeager, Editors. 1982, American Chemical Society: Washington, DC. p. 283-307.
    [27] Faverjon, F.; Durand, G.; Rakib, M. Regeneration of hydrochloric acid and sodium hydroxide from purified sodium chloride by membrane electrolysis using a hydrogen diffusion anode-membrane assembly. J. Membr. Sci., 2006, 284(1-2): 323-330.
    [28] Jiang, J.H.; Wu, B.L.; Cha, C.S. Investigation of the mass transport of electroactive compounds in an SPE membrane used for electro-organic synthesis. J. Electroanal. Chem., 1998, 446(1-2): 159-163.
    [29] Gray, F.M., Solid polymer electrolytes-fundamental and technological application. 1991: VCH, New York.
    [30] Wisniewski, N.; Reichert, M. Methods for reducing biosensor membrane biofouling. Colloids and Surf. B, 2000, 18(3-4): 197-219.
    [31] Inoue, H.; Urquhart, R.S.; Nagamura, T.; Grieser, F.; Sakaguchi, H.; Furlong, D.N. Ultra-fast photoresponses of CdS nanoparticles in NAFION films. Colloids and Surf. A, 1997, 126(2-3): 197-208.
    [32] Krishnan, M.; White, J.R.; Fox, M.A.; Bard, A.J. Integrated chemical systems: Photocatalysis at semiconductors incorporated into polymer (NAFION)/mediator systems. J. Am. Chem. Soc., 1983, 105(23): 7002-7003.
    [33] Smotkin, E.S.; Brown, R.M.J.; Rabenberg, L.K.; Salomon, K.; Bard, A.J.; Campion, A.; Fox, M.A.; Mallouk, T.E.; Webber, S.E.; White, J.M. Ultrasmall particles of cadmium selenide and cadmium sulfide formed in NAFION by an ion-dilution technique. J. Phys. Chem., 1990, 94(19): 7543-7549.
    [34] Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett., 1995, 244(5-6): 456-462.
    [35] Kreuer, K.-D.; Rabenau, A.; Weppner, W. Vehicle mechanism, A new model for the interpretation of the conductivity of fast proton conductors. Angew. Chem. Int. Ed. Engl., 1982, 21(3): 208-209.
    [36] Paddison, S.J. Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Annu. Rev. Mater. Res., 2003, 33: 289-319.
    [37] Hogarth, W.H.J.; Diniz da Costa, J.C.; Lu, G.Q. Solid acid membranes for high temperature (>140°C) proton exchange membrane fuel cells. J. Power Sources, 2005, 142(1-2): 223-237.
    [38] Song, Y.; Xu, H.; Wei, Y.; Kunz, H.R.; Bonville, L.J.; Fenton, J.M. Dependence of high-temperature PEM fuel cell performance on NAFION? content. J. Power Sources, 2006, 154(1): 138-144.
    [39] Zhang, J.; Xie, Z.; Zhang, J.; Tang, Y.; Song, C.; Navessin, T.; Shi, Z.; Song, D.; Wang, H.; Wilkinson, D.P. High temperature PEM fuel cells. J. Power Sources, 2006, 160(2): 872-891.
    [40] Um, S.; Wang, C.-Y. Computational study of water transport in proton exchange membrane fuel cells. J. Power Sources, 2006, 156(2): 211-223.
    [41] Pasaogullari, U.; Wang, C.-Y. Two-phase modeling and flooding prediction of polymer electrolyte fuel cells. J. Electrochem. Soc., 2005, 152(2): A380-A390.
    [42] Yang, C.; Costamagna, P.; Srinivasan, S.; Benziger, J.; Bocarsly, A.B. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J. Power Sources, 2001, 103(1): 1-9.
    [43] Samms, S.R.; Wasmus, S.; Savinell, R.F. Thermal stability of NAFION? in simulated fuel cell environments. J. Electrochem. Soc., 1996, 143(5): 1498-1504.
    [44] Cruickshank, J.; Scott, K. The degree and effect of methanol crossover in the direct methanol fuel cell. J. Power Sources, 1998, 70(1): 40-47.
    [45] Hogarth, M.; Christensen, P.; Hamnett, A.; Shukla, A. The design and construction of high-performance direct methanol fuel cells: II. Vapour-feed systems. J. Power Sources, 1997, 69(1-2): 125-136.
    [46] Tricoli, V. Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cations. J. Electrochem. Soc., 1998, 145(11): 3798-3801.
    [47] Pu, C.; Huang, W.; Ley, K.L.; Smotkin, E.S. A methanol impermeable protonconducting composite electrolyte system. J. Electrochem. Soc., 1995, 142(7): L119-L120.
    [48] Choi, W.C.; Kim, J.D.; Woo, S.I. Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell. J. Power Sources, 2001, 96(2): 411-414.
    [49] Hobson, L.J.; Ozu, H.; Yamaguchi, M.; Hayase, S. Modified NAFION 117 as an improved polymer electrolyte membrane for direct methanol fuel cells. J. Electrochem. Soc., 2001, 148(10): A1185-A1190.
    [50] Hobson, L.J.; Nakano, Y.; Ozu, H.; Hayase, S. Targeting improved DMFC performance. J. Power Sources, 2002, 104(1): 79-84.
    [51] Adjemian, K.T.; Lee, S.J.; Srinivasan, S.; Benziger, J.; Bocarsly, A.B. Silicon oxide NAFION composite membranes for proton-exchange membrane fuel cell operation at 80-140°C. J. Electrochem. Soc., 2002, 149(3): A256-A261.
    [52] Adjemian, K.T.; Srinivasan, S.; Benziger, J.; Bocarsly, A.B. Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes. J. Power Sources, 2002, 109(2): 356-364.
    [53] Antonucci, P.L.; Aricò, A.S.; Cretì, P.; Ramunni, E.; Antonucci, V. Investigation of a direct methanol fuel cell based on a composite NAFION?-silica electrolyte for high temperature operation. Solid State Ionics, 1999, 125(1-4): 431-437.
    [54] Jung, D.H.; Cho, S.Y.; Peck, D.H.; Shin, D.R.; Kim, J.S. Performance evaluation of a NAFION/silicon oxide hybrid membrane for direct methanol fuel cell. J. Power Sources, 2002, 106(1-2): 173-177.
    [55] Miyake, N.; Wainright, J.S.; Savinell, R.F. Evaluation of a sol-gel derived NAFION/silica hybrid membrane for proton electrolyte membrane fuel cell applications: I. Proton conductivity and water content. J. Electrochem. Soc., 2001, 148(8): A898-A904.
    [56] Miyake, N.; Wainright, J.S.; Savinell, R.F. Evaluation of a sol-gel derived NAFION/silica hybrid membrane for polymer electrolyte membrane fuel cell applications: II. Methanol uptake and methanol permeability. J. Electrochem. Soc., 2001, 148(8): A905-A909.
    [57] Staiti, P.; Aricò, A.S.; Baglio, V.; Lufrano, F.; Passalacqua, E.; Antonucci, V. Hybrid NAFION-silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics, 2001, 145(1-4): 101-107.
    [58] Zoppi, R.A.; Yoshida, I.V.P.; Nunes, S.P. Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution: Morphology and thermal analysis. Polymer, 1998, 39(6-7): 1309-1315.
    [59] Alberti, G.; Casciola, M.; Palombari, R. Inorgano-organic proton conducting membranes for fuel cells and sensors at medium temperatures. J. Membr. Sci., 2000, 172(1-2): 233-239.
    [60] Tazi, B.; Savadogo, O. Parameters of PEM fuel-cells based on new membranes fabricated from NAFION? silicotungstic acid and thiophene. Electrochim. Acta, 2000, 45(25-26): 4329-4339.
    [61] Dimitrova, P.; Friedrich, K.A.; Stimming, U.; Vogt, B. Modified NAFION? based membranes for use in direct methanol fuel cells. Solid State Ionics, 2002, 150(1-2): 115-122.
    [62] Deng, Q.; Wilkie, C.A.; Moore, R.B.; Mauritz, K.A. TGA-FTi.r. investigation of the thermal degradation of NAFION? and NAFION?/[silicon oxide]-based nanocomposites. Polymer, 1998, 39(24): 5961-5972.
    [63] Savinell, R.; Yeager, E.; Tryk, D.; Landau, U.; Wainright, J.; Weng, D.; Lux, K.; Litt, M.; Rogers, C. A polymer electrolyte for operation at temperatures up to 200°C. J. Electrochem. Soc., 1994, 141(4): L46-L48.
    [64] Wasmus, S.; Valeriu, A.; Mateescu, G.D.; Tryk, D.A.; Savinell, R.F. Characterization of H3PO4-equilibrated NAFION? 117 membranes using 1H and 31P NMR spectroscopy. Solid State Ionics, 1995, 80(1-2): 87-92.
    [65] Li, Q.; Hjuler, H.A.; Bjerrum, N.J. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes. Electrochim. Acta, 2000, 45(25-26): 4219-4226.
    [66] Doyle, M.; Choi, S.K.; Proulx, G. High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. J. Electrochem. Soc., 2000, 147(1): 34-37.
    [67] Florjańczyk, Z.; Wielgus-Barry, E.; Po?tarzewski, Z. Radiation-modified NAFION membranes for methanol fuel cells. Solid State Ionics, 2001, 145(1-4): 119-126.
    [68] Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45): 11225-11236.
    [69] Jang, S.S.; Blanco, M.; Goddard III, W.A.; Caldwell, G.; Ross, R.B. The source of helicity in perfluorinated n-alkanes. Macromolecules, 2003, 36(14): 5331-5341.
    [70] Radom, L.; Hehre, W.J.; Pople, J.A. Molecular orbital theory of the electronic structure of organic compounds. XIII. Fourier component analysis of internal rotation potential functions in saturated molecules. J. Am. Chem. Soc., 1972, 94(7): 2371-2381.
    [71] Watkins, E.K.; Jorgensen, W.L. Perfluoroalkanes: Conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations. J. Phys. Chem. A, 2001, 105(16): 4118-4125.
    [72] Ise, M.; Kreuer, K.D.; Maier, J. Electroosmotic drag in polymer electrolyte membranes: An electrophoretic NMR study. Solid State Ionics, 1999, 125(1-4): 213-223.
    [73] Kreuer, K.-D.; Paddison, S.J.; Spohr, E.; Schuster, M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. , 2004, 104(10): 4637-4678.
    [74] Pivovar, B.S. An overview of electro-osmosis in fuel cell polymer electrolytes. Polymer, 2006, 47(11): 4194-4202.
    [75] Ren, X.; Henderson, W.; Gottesfeld, S. Electro-osmotic drag of water in ionomeric membranes: New measurements employing a direct methanol fuel cell. J. Electrochem. Soc., 1997, 144(9): L267-L270.
    [76] Zawodzinski, T.A.; Davey, J.; Valerio, J.; Gottesfeld, S. The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes. Electrochim. Acta, 1995, 40(3): 297-302.
    [1] Chang, T. Dominoes in carbon nanotubes. Phys. Rev. Lett., 2008, 101(17): 175501.
    [2] Wang, F.; Izvekov, S.; Voth Gregory, A. Unusual "amphiphilic" association of hydrated protons in strong acid solution. J. Am. Chem. Soc., 2008, 130(10): 3120-3126.
    [3] Selvan, M.E.; Liu, J.; Keffer, D.J.; Cui, S.; Edwards, B.J.; Steele, W.V. Molecular dynamics study of structure and transport of water and hydronium ions at the membrane/vapor interface of NAFION. J. Phys. Chem. C, 2008, 112(6): 1975-1984.
    [4] Sezer, D.; Freed, J.H.; Roux, B. Parametrization, molecular dynamics simulation, and calculation of electron spin resonance spectra of a nitroxide spin label on a polyalanineα-helix. J. Phys. Chem. B, 2008, 112(18): 5755-5767.
    [5] Barthwal, R.; Agrawal, P.; Tripathi, A.N.; Sharma, U.; Jagannathan, N.R.; Govil, G. Structural elucidation of 4'-epiadriamycin by nuclear magnetic resonance spectroscopy and comparison with adriamycin and daunomycin using quantum mechanical and restrained molecular dynamics approach. Arch. Biochem. Biophys., 2008, 474(1): 48-64.
    [6] Stang, P.J. 124 years of publishing original and primary chemical research: 135,149 publications, 573,453 pages, and a century of excellence. J. Am. Chem. Soc., 2003, 125(1): 1-8.
    [7] Colquhoun, H.M.; Aldred, P.L.; Zhu, Z.; Williams, D.J. First structural analysis of a naphthalene-based poly(ether ketone): Crystal and molecular simulation from x-ray powder data and diffraction modeling. Macromolecules, 2003, 36(17): 6416-6421.
    [8] Stomphorst, R.G.; van der Zwan, G.; van Zandvoort, M.A.M.J.; Sieval, A.B.; Zuilhof, H.; Vergeldt, F.J.; Schaafsma, T.J. Spectroscopic study of erythrosin B in PVA films. J. Phys. Chem. A, 2001, 105(17): 4235-4240.
    [9] Andrews, D.H. The relation between the Raman spectra and the structure of organic molecules. Phys. Rev., 1930, 36(3): 544-554.
    [10] Foloppe, N.; MacKerell Jr., A.D. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem., 2000, 21(2): 86-104.
    [11] MacKerell Jr., A.D.; Wiórkiewicz-Kuczera, J.; Karplus, M. An all-atom empirical energy function for the simulation of nucleic acids. J. Am. Chem. Soc., 1995, 117(48): 11946-11975.
    [12] MacKerell Jr., A.D.; Bashford, D.; Bellott, M.; Dunbrack Jr., R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher III, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998, 102(18): 3586-3616.
    [13] Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 1995, 117(19): 5179-5197.
    [14] Allinger, N.L.; Chen, K.; Lii, J.-H. An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem., 1996, 17(5-6): 642-668.
    [15] Allinger, N.L.; Fan, Y. Molecular mechanics studies (MM4) of sulfides and mercaptans. J. Comput. Chem., 1997, 18(15): 1827-1847.
    [16] Mayo, S.L.; Olafson, B.D.; Goddard III, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem. B, 1990, 94(26): 8897-8909.
    [17] Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45): 11225-11236.
    [18] Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and nenzene compounds. J. Phys. Chem. B, 1998, 102(38): 7338-7364.
    [19] McQuaid, M.J.; Sun, H.; Rigby, D. Development and validation of COMPASSforce field parameters for molecules with aliphatic azide chains. J. Comput. Chem., 2004, 25(1): 61-71.
    [20] Sun, H.; Ren, P.; Fried, J.R. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci., 1998, 8(1-2): 229-246.
    [21] Halgren, T.A.; Nachbar, R.B. Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J. Comput. Chem., 1996, 17(5-6): 587-615.
    [22] Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1996, 17(5-6): 490-519.
    [23] Lifson, S.; Warshel, A. Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J. Chem. Phys. , 1968, 49(11): 5116-5129.
    [24] Leach, A.R., Molecular modelling: Principles and applications, second edition. 2001, Pearson Education EMA.
    [25] Kohn, W. Nobel Lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys., 1999, 71(5): 1253-1266.
    [26] Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133-A1138.
    [27] Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B, 1964, 136(3): 864-871.
    [28] Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Chem., 1980, 58(8): 1200-1211.
    [29] Slater, J.C., The self-consistent field for molecular and solids, in quantum theory of molecular and solids. 1974, McGraw-Hill: New York.
    [30] Becke, A.D. Correlation energy of an inhomogeneous electron gas: A coordinate-space model. J. Chem. Phys., 1988, 88(2): 1053-1062.
    [31] Becke, A.D. Density-functional exchange-energy approximation with correctasymptotic behavior. Phys. Rev. A, 1988, 38(6): 3098-3100.
    [32] Lee, C.; Yang, W.; Par, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37(2): 785-789.
    [33] Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3): 200-206.
    [34] Becke, A.D. Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys., 1992, 97(12): 9173-9177.
    [35] Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46(11): 6671-6687.
    [36] Alder, B.J.; Wainwright, T.E. Phase transition for a hard sphere system. J. Chem. Phys., 1957, 27(5): 1208-1209.
    [37] Born, M.; Von Kármán, T.über schwingungen in raumgittern. Physik. Z. , 1912, 13: 297-309.
    [38] Pratt, L.R.; Haan, S.W. Effects of periodic boundary conditions on equilibrium properties of computer simulated fluids. I. Theory. J. Chem. Phys., 1981, 74(3): 1864-1872.
    [39] Honeycutt, J.D.; Andersen, H.C. The effect of periodic boundary conditions on homogeneous nucleation observed in computer simulations. Chem. Phys. Lett., 1984, 108(6): 535-538.
    [40] Hoffmann, K.H.; Schreiber, M., Computaional physics. 1996, Springer-Verlag: Berlin Heidelberg. p. 268-326.
    [41] Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8): 3684-3690.
    [42] Andersen, H.C. Molecular dynamics simulations at constant pressure and/ortemperature. J. Chem. Phys., 1980, 72(4): 2384-2393.
    [43] Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52(12): 7182-7190.
    [44] Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 1985, 31(3): 1695-1697.
    [45] Nosé, S. A molecular-dynamics method for simulations in the canonical ensemble. Mol. Phys., 1984, 52(2): 255-268.
    [46] Verlet, L. Computer 'experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 1967, 159(1): 98-103.
    [47] Hockney, R.W.; Eastwood, J.W., Computer simulation using particles. 1981, New York: Mc-Graw-Hill.
    [48] Auerbach, D.J.; Paul, W.; Bakker, A.F.; Lutz, C.; Rudge, W.E.; Abraham, F.F. A special purpose parallel computer for molecular dynamics: Motivation, design, implementation, and application. J. Phys. Chem., 1987, 91(19): 4881-4890.
    [49] Ewald, P.P. Die berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys., 1921, 369(3): 253-287.
    [50] Heyes, D.M. Electrostatic potentials and fields in infinite point charge lattices. J. Chem. Phys., 1981, 74(3): 1924-1929.
    [51] De Leeuw, S.W.; Perram, J.W.; Smith, E.R. Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc. R. Soc. Lond. A, 1980, 373(1752): 27-56.
    [52] Hockney, R.W. The potential calculation and some applications. Methods Comput. Phys. , 1970, 9: 135-211.
    [53] Potter, D., Computational physics. 1972, Wiley: New York.
    [54] Swope, W.C.; Andersen, H.C.; Berens, P.H.; Wilson, K.R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys., 1982, 76(1): 637-649.
    [55] Beeman, D. Some multistep methods for use in molecular dynamics calculations. J. Comput. Phys., 1976, 20(2): 130-139.
    [56] van Gunsteren, W.F.; Berendsen, H.J.C. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys., 1977, 34(5): 1311-1327.
    [57] Stoddard, S.D.; Ford, J. Numerical experiments on the sochastic behavior of a Lennard-Jones gas system. Phys. Rev. A, 1973, 8(3): 1504.
    [58] Gear, C.W. The numerical integration of ordinary differential equations of various orders. Report ANL 7126, Argonne National Laboratories, 1966.
    [59] Gear, C.W., Numerical initial value problems in ordinary differential equations. 1971, Englewood Cliffs, NJ: Prentice Hall PTR. 253.
    [60] Rahman, A. Correlations in the motion of atoms in liquid argon. Phys. Rev., 1964, 136(2A): A405.
    [61] Zwanzig, R. Time-correlation functions and transport coefficients in statistical mechanics. Ann. Rev. Phys. Chem., 1965, 16(1): 67-102.
    [62] Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn., 1957, 12: 570-586.
    [63] Kreuer, K.-D.; Paddison, S.J.; Spohr, E.; Schuster, M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. , 2004, 104(10): 4637-4678.
    [64] Paddison, S.J. Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Annu. Rev. Mater. Res., 2003, 33: 289-319.
    [65] Spohr, E.; Commer, P.; Kornyshev, A.A. Enhancing proton mobility in polymer electrolyte membranes: Lessons from molecular dynamics simulations. J. Phys. Chem. B, 2002, 106(41): 10560-10569.
    [66] Wescott, J.T.; Qi, Y.; Subramanian, L.; Capehart, T.W. Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. J. Chem. Phys., 2006, 124(13): 134702.
    [67] Cui, S.; Liu, J.; Selvan, M.E.; Keffer, D.J.; Edwards, B.J.; Steele, W.V. A molecular dynamics study of a NAFION polyelectrolyte membrane and the aqueous phase structure for proton transport. J. Phys. Chem. B, 2007, 111(9):2208-2218.
    [68] Vishnyakov, A.; Neimark, A.V. Molecular dynamics simulation of NAFION oligomer solvation in equimolar methanol-water mixture. J. Phys. Chem. B, 2001, 105(32): 7830-7834.
    [69] Vishnyakov, A.; Neimark, A.V. Molecular simulation study of NAFION membrane solvation in water and methanol. J. Phys. Chem. B, 2000, 104(18): 4471-4478.
    [70] Yan, L.; Balbuena, P.B.; Seminario, J.M. Perfluorobutane sulfonic acid hydration and interactions with O2 adsorbed on Pt3. J. Phys. Chem. A, 2006, 110(13): 4574-4581.
    [71] Yan, L.M.; Zhu, S.H.; Ji, X.B.; Lu, W.C. Proton hopping in phosphoric acid solvated NAFION membrane: A molecular simulation study. J. Phys. Chem. B, 2007, 111(23): 6357-6363.
    [72] Elliott, J.A.; Hanna, S.; Elliottb, A.M.S.; Cooley, G.E. Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes. Phys. Chem. Chem. Phys., 1999, 1(20): 4855-4863.
    [73] Urata, S.; Irisawa, J.; Takada, A. Molecular dynamics simulation of swollen membrane of perfluorinated ionomer. J. Phys. Chem. B, 2005, 109(9): 4269-4278.
    [74] Weber, A.Z.; Newman, J. Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. , 2004, 104(10): 4679.
    [75] Paddison, S.J.; Zawodzinski Jr., T.A. Molecular modeling of the pendant chain in NAFION. Solid State Ionics, 1998, 113-115: 333-340.
    [76] Rivin, D.; Meermeier, G.; Schneider, N.S.; Vishnyakov, A.; Neimark, A.V. Simultaneous transport of water and organic molecules through polyelectrolyte membranes. J. Phys. Chem. B, 2004, 108(26): 8900-8909.
    [77] Urata, S.; Irisawa, J.; Takada, A.; Shinoda, W.; Tsuzuki, S.; Mikami, M. Molecular dynamics study of the methanol effect on the membrane morphology of perfluorosulfonic ionomers. J. Phys. Chem. B, 2005, 109(36): 17274-17280.
    [78] Mauritz, K.A.; Moore, R.B. State of understanding of NAFION. Chem. Rev.,2004, 104(10): 4535-4585.
    [79] Devanathan, R. Recent developments in proton exchange membranes for fuel cells. Energy Environ. Sci., 2008, 1(1): 101-119.
    [1] Andrews, D.H. The relation between the Raman spectra and the structure of organic molecules. Phys. Rev., 1930, 36(3): 544-554.
    [2] Foloppe, N.; MacKerell Jr., A.D. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem., 2000, 21(2): 86-104.
    [3] MacKerell Jr., A.D.; Wiórkiewicz-Kuczera, J.; Karplus, M. An all-atom empirical energy function for the simulation of nucleic acids. J. Am. Chem. Soc., 1995, 117(48): 11946-11975.
    [4] MacKerell Jr., A.D.; Bashford, D.; Bellott, M.; Dunbrack Jr., R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher III, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998, 102(18): 3586-3616.
    [5] Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 1995, 117(19): 5179-5197.
    [6] Allinger, N.L.; Chen, K.; Lii, J.-H. An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem., 1996, 17(5-6): 642-668.
    [7] Allinger, N.L.; Fan, Y. Molecular mechanics studies (MM4) of sulfides and mercaptans. J. Comput. Chem., 1997, 18(15): 1827-1847.
    [8] Mayo, S.L.; Olafson, B.D.; Goddard III, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem. B, 1990, 94(26): 8897-8909.
    [9] Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45): 11225-11236.
    [10] Weiner, S.J.; Kollman, P.A.; Case, D.A.; Singh, U.C.; Ghio, C.; Alagona, G.;Profeta, S.; Weiner, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc., 1984, 106(3): 765-784.
    [11] McDonald, N.A.; Jorgensen, W.L. Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J. Phys. Chem. B, 1998, 102(41): 8049-8059.
    [12] Jorgensen, W.L.; McDonald, N.A. Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. J. Mol. Struct. (Theochem), 1998, 424(1-2): 145-155.
    [13] Becke, A.D. Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys., 1992, 97(12): 9173-9177.
    [14] Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys., 1972, 56(5): 2257-2261.
    [15] Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46(11): 6671-6687.
    [16] Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45(23): 13244-13249.
    [17] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven Jr, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels,A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. GAUSSIAN 03, Revision C.2 (Gaussian, Inc., Wallingford, CT). 2004.
    [18] Vishnyakov, A.; Neimark, A.V. Molecular dynamics simulation of NAFION oligomer solvation in equimolar methanol-water mixture. J. Phys. Chem. B, 2001, 105(32): 7830-7834.
    [19] Vishnyakov, A.; Neimark, A.V. Molecular simulation study of NAFION membrane solvation in water and methanol. J. Phys. Chem. B, 2000, 104(18): 4471-4478.
    [20] Vishnyakov, A.; Neimark, A.V. Molecular dynamics simulation of microstructure and molecular mobilities in swollen NAFION membranes. J. Phys. Chem. B, 2001, 105(39): 9586-9594.
    [21] Delaplane, R.G.; Lundgren, J.O.; Olovsson, I. Hydrogen bond studies. XCVII. The crystal structure of trifluoromethanesulphonic acid dihydrate, H5O2+CF3SO3-, at 225 and 85 K. Acta Crystallogr. B, 1975, 31(9): 2202-2207.
    [22] Lundgren, J. Hydrogen bond studies. CXXX. The crystal structure of trifluoromethanesulphonic acid tetrahydrate, H9O4+CF3SO3-. Acta Crystallogr. B, 1978, 34(8): 2428-2431.
    [23] Lundgren, J. Hydrogen bond studies. CXXXI. The crystal structure of trifluoromethanesulphonic acid pentahydrate, H3O+CF3SO3-.4H2O. Acta Crystallogr. B, 1978, 34(8): 2432-2435.
    [24] Borodin, O.; Smith, G.D.; Bedrov, D. A quantum chemistry based force field for perfluoroalkanes and poly(tetrafluoroethylene). J. Phys. Chem. B, 2002, 106(38): 9912-9922.
    [25] Waltman, R.J. A computer modelling study on the interaction of -(CF2CF2O)- polyperfluorinated ethers with Lewis acid sites: Perfluorodiethyl ether. J.Fluorine Chem., 1998, 90(1): 9-16.
    [26] Allinger, N.L.; Imam, M.R.; Frierson, M.R.; Yuh, Y.H.; Schafer, L. The effect of electronegativity on bond lengths in molecular mechanics calculations. Mathematics and computational concepts in chemistry, E. Horwood, London, 1986: 8.
    [27] Spohr, E.; Commer, P.; Kornyshev, A.A. Enhancing proton mobility in polymer electrolyte membranes: Lessons from molecular dynamics simulations. J. Phys. Chem. B, 2002, 106(41): 10560-10569.
    [28] Jang, S.S.; Molinero, V.; Cagin, T.; Goddard III, W.A. Nanophase-segregation and transport in NAFION 117 from molecular dynamics simulations: Effect of monomeric sequence. J. Phys. Chem. B, 2004, 108(10): 3149-3157.
    [29] Elliott, J.A.; Hanna, S.; Elliottb, A.M.S.; Cooley, G.E. Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes. Phys. Chem. Chem. Phys., 1999, 1(20): 4855-4863.
    [30] Li, H.-C.; Mccabe, C.; Cui, S.T.; Cummings, P.T.; Cochran, H.D. Development of a force field for molecular simulation of the phase equilibria of perfluoromethylpropyl ether. Mol. Phys., 2002, 100(2): 265-272.
    [31] Li, H.-C.; Mccabe, C.; Cui, S.T.; Cummings, P.T.; Cochran, H.D. On the development of a general force field for the molecular simulation of perfluoroethers. Mol. Phys., 2003, 101(14): 2157-2169.
    [1] Durig, J.R.; Qiu, H.Z.; Durig, D.T.; Zhen, M.; Little, T.S. Microwave, Infrared, and Raman spectra, conformational stability, barriers to internal rotation, ab initio calculations, and vibrational assignment of 3-fluoro-2-methylpropene. J. Phys. Chem., 1991, 95(7): 2745-2757.
    [2] Pitzer, R.M. Calculation of the barrier to internal rotation in ethane with improved exponential wavefunctions. J. Chem. Phys. , 1967, 47(3): 965-967.
    [3] Pradhan, B.; Sinha, R.K.; Singh, B.P.; Kundu, T. Origin of methyl torsional barrier in 1-methyl-2(1H)-pyridinimine and 3-methyl-2(1H)-pyridone: II. Ground state. J. Chem. Phys., 2007, 126(11): 114313.
    [4] Scott, R.A.; Scheraga, H.A. Conformational analysis of macromolecules. II. The rotational isomeric states of the normal hydrocarbons. J. Chem. Phys., 1966, 44(8): 3054-3069.
    [5] Wilson Jr., E.B. On the origin of potential barriers to internal rotation in molecules. Proc. Natl. Acad. Sci., 1957, 43: 816-820.
    [6] Mohamed, A.A. Conformations and rotational barriers of 2,2'-bithiazole and 4,4'-dimethyl-2,2'-bithiazole semiemperical, ab initio, and density functional theory calculations. Int. J. Quantum Chem., 2000, 79(6): 367-377.
    [7] Pérez-Jiménez,á.J.; Sancho-García, J.C.; Pérez-Jordá, J.M. Torsional potential of 4,4'-bipyridine: Ab initio analysis of dispersion and vibrational effects. J. Chem. Phys., 2005, 123(13): 134309.
    [8] Pradhan, B.; Singh, B.P.; Nandi, C.K.; Chakraborty, T.; Kundu, T. Origin of methyl torsional barrier in 1-methyl-2-(1H)-pyridone. J. Chem. Phys. , 2005, 122(20): 204323.
    [9] Watkins, E.K.; Jorgensen, W.L. Perfluoroalkanes: Conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations. J. Phys. Chem. A, 2001, 105(16): 4118-4125.
    [10] Allinger, N.L.; Chen, K.; Lii, J.-H. An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem., 1996, 17(5-6): 642-668.
    [11] Radom, L.; Hehre, W.J.; Pople, J.A. Molecular orbital theory of the electronicstructure of organic compounds. XIII. Fourier component analysis of internal rotation potential functions in saturated molecules. J. Am. Chem. Soc., 1972, 94(7): 2371-2381.
    [12] Ryckaert, J.-P.; Bellemans, A. Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett., 1975, 30(1): 123-125.
    [13] Schmidt, M.E.; Shin, S.; Rice, S.A. Molecular dynamics studies of Langmuir monolayers of F(CF2)11COOH. J. Chem. Phys., 1996, 104(5): 2101-2113.
    [14] Jang, S.S.; Blanco, M.; Goddard III, W.A.; Caldwell, G.; Ross, R.B. The source of helicity in perfluorinated n-alkanes. Macromolecules, 2003, 36(14): 5331-5341.
    [15] Li, H.-C.; Mccabe, C.; Cui, S.T.; Cummings, P.T.; Cochran, H.D. Development of a force field for molecular simulation of the phase equilibria of perfluoromethylpropyl ether. Mol. Phys., 2002, 100(2): 265-272.
    [16] Li, H.-C.; Mccabe, C.; Cui, S.T.; Cummings, P.T.; Cochran, H.D. On the development of a general force field for the molecular simulation of perfluoroethers. Mol. Phys., 2003, 101(14): 2157-2169.
    [17] Banks, R.E. Environmental aspects of fluorinated materials. Part 2. 'In-kind' replacements for halon fire extinguishants; some recent candidates. J. Fluorine Chem., 1994, 67(3): 193-203.
    [18] Lester, G.R. Catalytic destruction of hazardous halogenated organic chemicals. Catal. Today, 1999, 53(3): 407-418.
    [19] Sinha, R.K.; Pradhan, B.; Wategaonkar, S.; Singh, B.P.; Kundu, T. Spectroscopic studies on methyl torsional behavior in 1-methyl-2(1H)- pyridone, 1-methyl-2(1H)-pyridinimine, and 3-methyl-2(1H)-pyridone. I. Excited state. J. Chem. Phys., 2007, 126(11): 114312.
    [20] Bowen, M.S.; Becucci, M.; Continetti, R.E. Dissociative photodetachment dynamics of the iodide-aniline cluster. J. Chem. Phys., 2006, 125(13): 133309-9.
    [21] Curtiss, L.A.; McGrath, M.P.; Blaudeau, J.-P.; Davis, N.E.; Binning, J.R.C.; Radom, L. Extension of Gaussian-2 theory to molecules containing third-row atoms Ga-Kr. J. Chem. Phys., 1995, 103(14): 6104-6113.
    [22] Frisch, M.J.; Head-Gordon, M.; Pople, J.A. A direct MP2 gradient method. Chem. Phys. Lett., 1990, 166(3): 275-280.
    [23] Frisch, M.J.; Head-Gordon, M.; Pople, J.A. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett., 1990, 166(3): 281-289.
    [24] Godbout, N.; Salahub, D.R.; Andzelm, J.; Wimmer, E. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can. J. Chem., 1992, 70(2): 560–571
    [25] Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett., 1988, 153(6): 503-506.
    [26] Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys., 1980, 72(1): 650-654.
    [27] McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J. Chem. Phys., 1980, 72(10): 5639-5648.
    [28] M?ller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev. , 1934, 46(7): 618.
    [29] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven Jr, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.;Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. GAUSSIAN 03, Revision C.2 (Gaussian, Inc., Wallingford, CT). 2004.
    [30] Becke, A.D. Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys., 1992, 97(12): 9173-9177.
    [31] Krishnan, R.; Frisch, M.J.; Pople, J.A. Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. J. Chem. Phys., 1980, 72(7): 4244-4245.
    [32] Krishnan, R.; Pople, J.A. Approximate fourth-order perturbation theory of the electron correlation energy. Int. J. Quantum Chem., 1978, 14(1): 91-100.
    [33] Craig, N.C.; Chen, A.; Suh, K.H.; Klee, S.; Mellau, G.C.; Winnewisser, B.P.; Winnewisser, M. Contribution to the study of the gauche effect. The complete structure of the anti rotamer of 1,2-difluoroethane. J. Am. Chem. Soc., 1997, 119(20): 4789-4790.
    [34] Takeo, H.; Matsumura, C.; Morino, Y. Microwave spectrum and molecular structure of gauche-1,2-difluoroethane. J. Chem. Phys., 1986, 84(8): 4205-4210.
    [35] Goodman, L.; Gu, H.; Pophristic, V. Gauche effect in 1,2-difluoroethane. Hyperconjugation, bent bonds, steric repulsion. J. Phys. Chem. A, 2005, 109(6): 1223-1229.
    [36] Durig, J.R.; Liu, J.; Little, T.S.; Kalasinsky, V.F. Conformational analysis, barriers to internal rotation, vibrational assignment, and ab initio calculations of 1,2-difluoroethane. J. Phys. Chem., 1992, 96(21): 8224-33.
    [37] Wiberg, K.B. Bent bonds in organic compounds. Acc. Chem. Res., 1996, 29(5): 229-234.
    [38] Abraham, R.J.; Gatti, G. Rotational isomerism. Part VII. Effect of substituents on vicinal coupling constants in XCH2CH2Y fragments. J. Chem. Soc. B, 1969: 961-968.
    [39] Zheng, X.M.; Phillips, D.L. Vibrational spectra and assignments of1-chloro-2-iodoethane. Vib. Spectrosc., 1998, 16(2): 145-155.
    [40] Zheng, X.M.; Phillips, D.L. Vibrational spectra and assignments of 1-bromo-2-iodoethane. Vib. Spectrosc., 1998, 17(1): 73-81.
    [41] Dixon, D.A.; Matsuzawa, N.; Walker, S.C. Conformational analysis of 1,2-dihaloethanes: A comparison of theoretical methods. J. Phys. Chem., 1992, 96(26): 10740-10746.
    [42] Durig, J.R.; Liu, J.; Little, T.S. Conformational stability, far-infrared spectra, barriers to internal rotation, vibrational assignment, and RHF/STO-3G* calculations of 1-bromo-2-fluoroethane. J. Mol. Struc., 1991, 248(1-2): 25-48.
    [43] Dixon, D.A.; Smart, B.E. Electronic structure and conformational analysis of 1,2-difluoroethane. J. Phys. Chem., 1988, 92(10): 2729-33.
    [44] Wong, M.W.; Wiberg, K.B.; Frisch, M.J. Ab initio calculation of molar volumes: Comparison with experiment and use in solvation models. J. Comput. Chem., 1995, 16(3): 385-94.
    [45] Durig, J.R.; Liu, J.; Little, T.S. Conformational analysis, barriers to internal rotation, ab initio calculations and vibrational assignment of 1-chloro-2-fluoroethane. J. Phys. Chem., 1991, 95(12): 4664-4672.
    [46] Huang, J.; Hedberg, K. Conformational analysis. 14. The dihaloethanes ClCH2CH2F, BrCH2CH2F, and BrCH2CH2Cl. Investigations of the molecular structures, rotameric compositions, anti and gauche energy and entropy differences, and barriers hindering internal rotation by gas-phase electron diffraction augmented by rotational constants and ab initio calculation. J. Am. Chem. Soc., 1990, 112(6): 2070-5.
    [47] Chandra, A.K.; Uchimaru, T. An ab initio investigation of the reactions of 1,1- and 1,2-dichloroethane with hydroxyl radical. J. Phys. Chem. A, 1999, 103(50): 10874-10883.
    [48] Gwinn, W.D.; Pitzer, K.S. Gas heat capacity and internal rotation in 1,2-dichloroethane and 1,2-dibromoethane. J. Chem. Phys., 1948, 16(4): 303-309.
    [49] Kong, Q.; Kim, J.; Lorenc, M.; Kim, T.K.; Ihee, H.; Wulff, M. Photodissociationreaction of 1,2-diiodoethane in solution: A theoretical and x-ray diffraction study. J. Phys. Chem. A, 2005, 109(45): 10451-10458.
    [50] Goodman, L.; Pophristic, V.; Weinhold, F. Origin of methyl internal rotation barriers. Acc. Chem. Res., 1999, 32(12): 983-993.
    [51] Pophristic, V.; Goodman, L. Hyperconjugation not steric repulsion leads to the staggered structure of ethane. Nature, 2001, 411(6837): 565-568.
    [1] Han, J.; Liu, H. Real time measurements of methanol crossover in a DMFC. J. Power Sources, 2007, 164(1): 166-173.
    [2] Wang, J.T.; Wasmus, S.; Savinell, R.F. Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. J. Electrochem. Soc., 1996, 143(4): 1233-1239.
    [3] Pivovar, B.S. An overview of electro-osmosis in fuel cell polymer electrolytes. Polymer, 2006, 47(11): 4194-4202.
    [4] Tschinder, T.; Schaffer, T.; Fraser, S.D.; Hacker, V. Electro-osmotic drag of methanol in proton exchange membranes. J. Appl. Electrochem., 2007, 37(6): 711-716.
    [5] Schaffer, T.; Tschinder, T.; Hacker, V.; Besenhard, J.O. Determination of methanol diffusion and electroosmotic drag coefficients in proton exchange membranes for DMFC. J. Power Sources, 2006, 153(2): 210-216.
    [6] Ren, X.; Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. Methanol transport through NAFION membranes: Electro-osmotic drag effects on potential step measurements. J. Electrochem. Soc., 2000, 147(2): 466-474.
    [7] Kallio, T.; Kisko, K.; Kontturi, K.; Serimaa, R.; Sundholm, F.; Sundholm, G. Relationship between methanol permeability and structure of different radiation-grafted membranes. Fuel Cells, 2004, 4(4): 328-336.
    [8] Ramya, K.; Dhathathreyan, K.S. Methanol crossover studies on heat-treated NAFION membranes. J. Membr. Sci., 2008, 311(1-2): 121-127.
    [9] Aricò, A.S.; Baglio, V.; Antonucci, V.; Nicotera, I.; Oliviero, C.; Coppola, L.; Antonucci, P.L. An NMR and SAXS investigation of DMFC composite recast NAFION membranes containing ceramic fillers. J. Membr. Sci., 2006, 270(1-2): 221-227.
    [10] Paik, Y.; Kim, S.-S.; Han, O.H. Methanol behavior in direct methanol fuel cells. Angew. Chem. Int. Ed., 2008, 47(1): 94-96.
    [11] Cruickshank, J.; Scott, K. The degree and effect of methanol crossover in the direct methanol fuel cell. J. Power Sources, 1998, 70(1): 40-47.
    [12] Scott, K.; Taama, W.; Cruickshank, J. Performance of a direct methanol fuel cell. J. Appl. Electrochem., 1998, 28(3): 289-297.
    [13] Jeng, K.T.; Chen, C.W. Modeling and simulation of a direct methanol fuel cell anode. J. Power Sources, 2002, 112(2): 367-375.
    [14] Schultz, T.; Sundmacher, K. Mass, charge and energy transport phenomena in a polymer electrolyte membrane (PEM) used in a direct methanol fuel cell (DMFC): Modelling and experimental validation of fluxes. J. Membr. Sci., 2006, 276(1-2): 272-285.
    [15] Urata, S.; Irisawa, J.; Takada, A. Molecular dynamics simulation of swollen membrane of perfluorinated ionomer. J. Phys. Chem. B, 2005, 109(9): 4269-4278.
    [16] Dzubiella, J.; Hansen, J.P. Electric-field-controlled water and ion permeation of a hydrophobic nanopore. J. Chem. Phys., 2005, 122(23): 234706-14.
    [17] Dzubiella, J.; Allen, R.J.; Hansen, J.P. Electric field-controlled water permeation coupled to ion transport through a nanopore. J. Chem. Phys., 2004, 120(11): 5001-5004.
    [18] Kim, D.; Darve, E. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Phys. Rev. E, 2006, 73(5): 051203.
    [19] Qiao, R.; Aluru, N.R. Charge inversion and flow reversal in a nanochannel electro-osmotic flow. Phys. Rev. Lett., 2004, 92(19): 198301.
    [20] Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45): 11225-11236.
    [21] Yan, L.M.; Ji, X.B.; Lu, W.C. Molecular dynamics simulations of electroosmosis in perfluorosulfonic acid polymer. J. Phys. Chem. B, 2008, 112(18): 5602-5610.
    [22] Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. , 1983, 79(2): 926-935.
    [23] Sun, W.; Chen, Z.; Huang, S.-Y. Molecular dynamics simulation of liquidmethanol under the influence of an external electric field. Fluid Phase Equilibr., 2005, 238(1): 20-25.
    [24] Wescott, J.T.; Qi, Y.; Subramanian, L.; Capehart, T.W. Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. J. Chem. Phys., 2006, 124(13): 134702.
    [25] Smith, W.; Leslie, M.; Forester, T.R. Computer code DL_POLY_2.14 (CCLRC, Daresbury Laboratory, Daresbury, England). 2003.
    [26] Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 1985, 31(3): 1695-1697.
    [27] Nosé, S. A molecular-dynamics method for simulations in the canonical ensemble. Mol. Phys., 1984, 52(2): 255-268.
    [28] Hockney, R.W. The potential calculation and some applications. Methods Comput. Phys. , 1970, 9: 135-211.
    [29] Potter, D., Computational Physics. 1972, Wiley: New York.
    [30] Mohazzabi, P.; L. Helvey, S.; McCumber, J. Maxwellian distribution in non-classical regime. Phys. A, 2002, 316(1-4): 314-322.
    [31] Paddison, S.J. Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Annu. Rev. Mater. Res., 2003, 33: 289-319.
    [32] Gierke, T.D.; Munn, G.E.; Wilson, F.C. The morphology in NAFION perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J. Polym. Sci. Pol. Phys., 1981, 19(11): 1687-1704.
    [33] Zundel, G. Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Adv. Chem. Phys., 2000, 111: 1-217.
    [34] Pomès, R.; Roux, B. Structure and dynamics of a proton wire: A theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys. J., 1996, 71(1): 19-39.
    [35] Park, Y.S.; Hatae, T.; Itoh, H.; Jang, M.Y.; Yamazaki, Y. High proton-conducting NAFION/calcium hydroxyphosphate composite membranes for fuel cells. Electrochim. Acta 2004, 50(2-3): 595-599.
    [36] Banerjee, S.; Curtin, D.E. NAFION perfluorinated membranes in fuel cells. J. Fluorine Chem., 2004, 125(8): 1211-1216.
    [37] Morrone, J.A.; Tuckerman, M.E. Ab initio molecular dynamics study of proton mobility in liquid methanol. J. Chem. Phys., 2002, 117(9): 4403-4413.
    [38] Devanathan, R.; Venkatnathan, A.; Dupuis, M. Atomistic simulation of NAFION membrane: I. Effect of hydration on membrane nanostructure. J. Phys. Chem. B, 2007, 111(28): 8069-8079.
    [39] Hristov, I.H.; Paddison, S.J.; Paul, R. Molecular modeling of proton transport in the short-side-chain perfluorosulfonic acid ionomer. J. Phys. Chem. B, 2008, 112(10): 2937-2949.
    [40] Wu, C.C.; Jiang, J.C.; Boo, D.W.; Lin, S.H.; Lee, Y.T.; Chang, H.C. Behaviors of an excess proton in solute-containing water clusters: A case study of H+(CH3OH)(H2O)1-6. J. Chem. Phys., 2000, 112(1): 176-188.
    [41] Meijer, E.J.; Sprik, M. Ab initio molecular dynamics study of the reaction of water with formaldehyde in sulfuric acid solution. J. Am. Chem. Soc., 1998, 120(25): 6345-6355.
    [42] Li, S.; Tao, F.-M.; Gu, R. Theoretical study on the ionic dissociation of halosulfonic acids in small water clusters. Chem. Phys. Lett., 2006, 426(1-3): 1-7.
    [43] Narten, A.H. Liquid water: Atom pair correlation functions from neutron and x-ray diffraction. J. Chem. Phys., 1972, 56(11): 5681-5687.
    [44] Vishnyakov, A.; Neimark, A.V. Molecular dynamics simulation of NAFION oligomer solvation in equimolar methanol-water mixture. J. Phys. Chem. B, 2001, 105(32): 7830-7834.
    [45] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven Jr, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.;Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. GAUSSIAN 03, Revision C.2 (Gaussian, Inc., Wallingford, CT). 2004.
    [46] Furuhama, A.; Dupuis, M.; Hirao, K. Application of a kinetic energy partitioning scheme for ab initio molecular dynamics to reactions associated with ionization in water tetramers. Phys. Chem. Chem. Phys., 2008, 10(15): 2033 - 2042.
    [47] Garvey, J.F.; Herron, W.J.; Vaidyanathan, G. Probing the structure and reactivity of hydrogen-bonded clusters of the type (M)n(H2O)H+, via the observation of magic numbers. Chem. Rev., 1994, 94(7): 1999-2014.
    [48] Kebarle, P.; Haynes, R.M.; Collins, J.G. Competitive solvation of the hydrogen ion by water and methanol molecules studied in the gas phase. J. Am. Chem. Soc., 1967, 89(23): 5753-5757.
    [49] Wu, C.C.; Chaudhuri, C.; Jiang, J.C.; Lee, Y.T.; Chang, H.C. Structural isomerism and competitive proton solvation between methanol and water in H+(CH3OH)m(H2O)n, m + n = 4. J. Phys. Chem. A, 2004, 108(15): 2859-2866.
    [50] Seo, Y.; Kim, Y.; Kim, Y. MC-QCISD calculations for proton affinities of molecules and geometries. Chem. Phys. Lett., 2001, 340(1-2): 186-193.
    [51] Masamura, M. Ab initio molecular orbital study on the structures and energetics of CH3OH2+(H2O)n and CH3SH2+(H2O)n in the gas phase. J. Comput. Chem., 2001, 22(1): 125-131.
    [52] Jursic, B.S. Complete basis set, Gaussian, and hybrid density functional theory evaluation of the proton affinities of water and ammonia. J. Mol. Struct. (Theochem), 1999, 490(1-3): 1-6.
    [53] Bouchoux, G.; Nadège, C. Intramolecular hydrogen migrations in ionized aliphatic alcohols. Barton type and related rearrangements. Int. J. Mass Spectrom., 2000, 201(1-3): 161-177.
    [54] Hallinan Jr., D.T.; Elabd, Y.A. Diffusion and sorption of methanol and water in NAFION using time-resolved Fourier transform infrared-attenuated total reflectance spectroscopy. J. Phys. Chem. B, 2007, 111(46): 13221-13230.
    [55] Guillot, B. A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq., 2002, 101(1-3): 219-260.
    [56] Meier, F.; Kerres, J.; Eigenberger, G. Methanol diffusion in water swollen ionomer membranes for DMFC applications. J. Membr. Sci., 2004, 241(1): 137-141.
    [57] Xu, C.; Zhao, T.S.; Yang, W.W. Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells. J. Power Sources, 2008, 178(1): 291-308.
    [58] Rivin, D.; Meermeier, G.; Schneider, N.S.; Vishnyakov, A.; Neimark, A.V. Simultaneous transport of water and organic molecules through polyelectrolyte membranes. J. Phys. Chem. B, 2004, 108(26): 8900-8909.
    [59] Barragán, V.M.; Ruiz-Bauzá, C.; Villaluenga, J.P.G.; Seoane, B. Transport of methanol and water through NAFION membranes. J. Power Sources, 2004, 130(1-2): 22-29.
    [60] Kreuer, K.-D.; Rabenau, A.; Weppner, W. Vehicle mechanism, A new model for the interpretation of the conductivity of fast proton conductors. Angew. Chem. Int. Ed. Engl., 1982, 21(3): 208-209.
    [61] Ren, X.; Henderson, W.; Gottesfeld, S. Electro-osmotic drag of water in ionomeric membranes: New measurements employing a direct methanol fuel cell. J. Electrochem. Soc., 1997, 144(9): L267-L270.
    [62] Ren, X.; Gottesfeld, S. Electro-osmotic drag of water in poly(perfluorosulfonic acid) membranes. J. Electrochem. Soc., 2001, 148(1): A87-A93.
    [63] Ise, M.; Kreuer, K.D.; Maier, J. Electroosmotic drag in polymer electrolyte membranes: An electrophoretic NMR study. Solid State Ionics, 1999, 125(1-4):213-223.
    [64] Zawodzinski, T.A.; Davey, J.; Valerio, J.; Gottesfeld, S. The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes. Electrochim. Acta, 1995, 40(3): 297-302.
    [65] Fuller, T.F.; Newman, J. Experimental determination of the transport number of water in NAFION 117 membrane. J. Electrochem. Soc., 1992, 139(5): 1332-1337.
    [66] Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. Polymer electrolyte fuel cell model. J. Electrochem. Soc., 1991, 138(8): 2334-2342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700