用户名: 密码: 验证码:
铝/铁基及铝/纯钛基双金属复合管件的冷成形及铝层陶瓷化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核聚变工程包层的管路对电绝缘、抗腐蚀等性能方面具有特殊要求,所以需要在管路内表面制备高质量的氧化铝陶瓷层。但是由于管路连接件如三通、弯头形状相对复杂,采用常规方法难以实现在其内表面制备氧化铝陶瓷涂层的目的。另外,在航空、航天、石化等工程领域中常使用钛合金管道,而钛合金由于自身抗冲刷、耐磨损性能较差,亦需要在复杂的管道内表面制备氧化铝涂层。
     基于上述问题,本文提出了新的技术路线:首先采用内爆法将铝管与钢管(或钛管)进行爆炸复合,使纯铝覆层与基管之间实现冶金结合;其次采用冷推弯及液压胀形的先进成形工艺对带有铝层的双金属管坯进行塑性变形,制备双金属复合弯头及三通管件;后采用微弧氧化工艺将铝层实施陶瓷化处理。通过本工艺路线,最终在弯头或三通管件内表面原位生成氧化铝陶瓷层。本文的三项关键技术分别为:制备带有铝层且界面具有冶金结合的高质量双金属复合管;双金属复合弯头及三通的塑性成形规律及变形机理;纯铝层的陶瓷化以获得致密的α-Al_2O_3。
     采用爆炸复合工艺制备了尺寸精度高、内表面质量好、界面结合强度高的双金属复合管。对铝-316L不锈钢体系、铝-纯铁体系、铝-CLAM钢体系的双金属复合管起爆端、中部及尾部结合质量进行了评价。采用压剪试验、径向压扁及弯曲试验对双金属复合管的结合性能进行了测试,铝-纯铁、铝-316L不锈钢、铝-CLAM钢的界面剪切强度分别为76.0、75.6、73.8MPa;三种体系的复合管弯曲试样内弯及外弯角度超出138°时、径向压扁率为33%时,界面无任何开裂。结果表明,纯铝覆层与基管的界面结合性能优良,可以经受大的塑性变形。
     在铝-316L不锈钢双金属复合管的冷推弯成形中,采用有限元方法系统研究了不同的相对旋转半径、不同的芯棒材料及摩擦系数对推弯成形效果的影响。研究结果表明,在相同的管坯直径条件下,随着弯曲段相对旋转弯曲半径的增大,复合管坯材料的贴模效果、圆截面畸变及壁厚均匀性得以明显改善;芯棒材料对于成形效果具有重要影响,使用刚性芯棒和低熔点合金芯棒对于减小圆截面椭圆度效果最佳,但刚性芯棒的界面剪切应力明显大于低熔点合金;摩擦系数越低,界面最大剪切应力越小,壁厚均匀性越好。在铝-纯铁双金属复合弯头的冷推弯成形中,研究了推弯后的界面结合情况、等效应力场及应变场。另外,研究了两端带有直段且具有矩形截面的铝-CLAM钢双金属特殊弯管冷推弯成形,提出了不同于圆形截面管材的推弯塑性变形机理:材料的流动沿轴向进行,难以越过刚性棱边进行径向补料,故最终造成弯曲段外侧减薄难以快速补料,减薄更加严重;弯曲段内侧则由于刚性区的作用,增厚现象得以抑制。
     在铝-316L不锈钢双金属复合三通的内高压成形中,采用有限元模拟方法研究了支管顶部位置及过渡圆角区域的钢层节点、铝层节点随时间变化的历史曲线;其次研究了各金属层在典型截面线上的厚度分布规律,并与单层不锈钢三通壁厚规律进行了对比分析。另外,对复合三通成形中的内压力、摩擦系数以及推进距离对于支管高度以及壁厚减薄率的影响规律进行了系统研究。结果表明,复合三通的成形内压不宜过高;应选择具有较小摩擦系数的润滑剂;轴向推进距离对于复合三通的壁厚均匀性无明显影响,但对支管高度影响较大。在铝-CLAM钢体系的双金属复合三通的内高压成形中,研究了内压及摩擦系数对铝-CLAM钢铁双金属壁厚分布及支管高度影响。根据模拟结果,对铝-316L不锈钢、铝-纯铁及铝-CLAM体系的双金属复合三通进行了实际的内高压成形试验,最终获得了高质量的复合三通管件。
     通过上述工艺,可实现在纯钛管件内表面制备氧化铝层。首先对铝-纯钛进行爆炸复合,对复合后的界面形貌、元素分布及物相进行了表征;对内、外层的界面结合强度以及压扁、压缩等性能进行了测试。采用冷推弯及液压胀形工艺成功制备了铝-纯钛双金属复合弯头及三通管件。
     采用微弧氧化工艺对铝-316L不锈钢、铝-纯铁、铝-CLAM钢及铝-纯钛体系的双金属复合管件纯铝层进行陶瓷化处理。首先研究了基于硅酸盐体系的电解液配方、电流密度及氧化时间对氧化铝层厚度、显微硬度、表面粗糙度及氧化铝晶型的影响规律并分析了微弧氧化成膜机理。研究结果表明,采用2g/L的氢氧化钾、3g/L硅酸钠、5g/L六偏磷酸钠、10g/L酒石酸钠的电解液,通过20A/dm~2的电流密度90min氧化处理可获得致密的、厚度约为145μm,且α-Al_2O_3含量超出67.2%的高质量陶瓷层。通过使用含有氧化铬粒子的电解液,可以制备出Al_2O_3+Cr_2O_3复合陶瓷层。对制备的陶瓷层分别进行了结合性能、摩擦磨损性能、耐腐蚀性能及抗冲刷性能、电绝缘性能的测试。结果表明,氧化铝层、复合陶瓷层与基体的结合性能不低于55N及60N;Al_2O_3+Cr_2O_3复合陶瓷层的磨损量最小,Al_2O_3层次之;带有氧化铝陶瓷层试样的自腐蚀电位Ecoor约为-0.26V,腐蚀电流Icorr约为1.1E-7,Al_2O_3+Cr_2O_3复合陶瓷层的自腐蚀电位约为-0.23V,腐蚀电流约为7.56E-8;氧化铝陶瓷层的抗冲刷性能优良;氧化铝陶瓷层的体积电阻率约为1.73×10~(12) cm,远超出设计值10~4Ω m。
The stainless steel pipe-fittings in the test blanket module of fusion engineering aredemanded to possess high properties in electrical isolation and anti-corrosion. Ceramic coatinglike Al_2O_3on the inner surface of the pipe-fittings is needed to attain this goal. However, it isdifficult to prepare Al_2O_3layer on the inner surface of the pipe joints, such as T-shapes and elbows,owing to their complex profile and irregular surface. In addition, in the fields of aeronautics,astronautics, and petrochemical industry, Al_2O_3coating in the irregular titanium pipe joints is alsoa feasible method to overcome the defects of titanium alloys products, including erosion andscouring abrasion.
     A new technical route was proposed to solve these problems in this study. The steps of thenew method were as follows: firstly, stainless steel or titanium pipes were metallurgical bondedwith aluminum pipes through explosive welding. Then, the forming clad pipes were processedinto clad T-shapes and elbows by means of cold push-bending and hydroforming respectively.Finally, the aluminum layer of as-prepared pipe-fittings was oxidized into Al_2O_3by micro-arcoxidation. The complex pipe-fittings with ceramic layer of Al_2O_3were obtained through the newtechnical route. The key technology of the study was including preparation of clad pipe with highquality, plastic forming mechanism of clad elbow and clad T-shapes and the oxidation of thealuminum to obtain the dense α-Al_2O_3layer.
     Al-316L SS, Al-Fe and Al-CLAM steel clad pipes were prepared by explosive welding whichexhibited high dimensional accuracy, inner surface flatness and bonding strength. The bondingstrength of the clad pipes at the initial explosive end, middle part, and tail end was characterizedthrough pressure-shear test, radial flattening test, and bending test. The results showed thatAl-316L, Al-Fe and Al-CLAM samples displayed bonding strength of76.0,75.6and73.8MPa,respectively. And adhered interface could keep well-bonded when the pipes were bent at an angleexceeded138°and radial flattened by33%. Therefore, the pure aluminum layer was stronglybonded with matrix alloys and the clad pipe could undergo large deformation in the later plasticdeformation.
     The cold push-bending process of the Al-316L SS clad pipes was simulated by FE software.The effects of relative radius, mandrel material and friction coefficient on the quality ofpush-bended parts were investigated by the numerical simulation. For the tube blanks with thesame diameters, larger relative radius of gyration at the bended part led to lower distortion ofcircular section, better material filling quality and homogeneity of thickness distribution, indicating better quality of plastic formed pipes. Using rigid material and low melting point alloyas mandrel in the forming process could apparently reduce the distortion of circular section.Among them, low melting point alloy was more favorable than rigid mandrel due to its muchlower interfacial shear stress. In addition, lower friction coefficient resulted in smaller shear stressand better homogeneity of thickness distribution. For the Al-Fe clad pipes, the shear stress,equivalent stress and strain were analyzed during the cold push-bending process. Based on thecold push-bending results of Al-CLAM pipes with rectangular section and straight segment on theends, plastic formation mechanism differed from circular pipes was proposed. The material waseasy to flow along the axial direction but difficult to flow over the rigid ridge of tube blank.Therefore, extrados with large deformation exhibited severe thinning while intrados exhibitedsuppressed thickening.
     The hydroforming process of the Al-316L clad pipe was also simulated by FE software.Historical curves of nodes on both the stainless steel and aluminum layer at the area of protrusionand fillet were investigated during the hydroforming process. Also, the thickness distribution oflayers at crucial sections was studied and compared with that of single layer stainless-steelT-shapes. In addition, process parameters including inner pressure, friction coefficient and feeddistance were optimized based on the analysis of their influence on the protrusion height and wallthinning rate. It indicated that proper inner pressure and lubricant with lower friction coefficientshould be selected during the forming process. Feed distance at axial direction exhibited stronginfluence on the protrusion height, but poor relevance with the thickness homogeneity. Similarly,the effects of the inner pressure and friction coefficient on the protrusion height were alsoinvestigated for the Al-CLAM clad pipe. Finally, these clad pipes were practically hydroformedinto T-shapes according to the simulation results.
     Same technical route was performed to prepare Al_2O_3layer on the inner surface of TA1pipe-fittings. Aluminum pipe and TA1pipe were firstly cladded by explosive welding. Themicrostructure of the Al-TA1clad pipe was characterized including morphology, elementdistribution and phase structure. The interfacial bonding strengths between the layers, radialflattening and compression properties were measured to evaluate the quality of welded pipes. Theclad pipe-fittings were successfully fabricated by cold push-bending and hydroforming process.
     Micro-arc oxidation technology was employed to fabricate Al_2O_3layer on the inner surfaceof the prepared clad pipe-fittings based on Al-316L SS, Al-Fe, Al-CLAM steel and Al-TA1. Wesystematically studied the influence of the electrolyte component, current density, oxidizationduration on the Al_2O_3layer’s thickness, micro-hardness, surface roughness and crystal structure.Consequently, mechanism of micro-arc oxidation to obtain the high content of α-Al_2O_3was proposed. Al_2O_3layer with length of145μm and α-Al_2O_3phase proportion of67.2%wasprepared through micro-arc oxidation at current density of20A/dm~2for90min in optimizedelectrolyte, containing2g/L potassium hydroxide,3g/L sodium silicate,5g/L sodiumhexametaphosphate and10g/L sodium tartrate. Al_2O_3/Cr_2O_3composite layer was fabricated usingthe electrolyte contained Cr_2O_3particles. The properties of the ceramic layer such as bondingstrength, wear resistance, erosion resistance and electrical isolation was evaluated. The resultsindicated that bonding strength between Al_2O_3and matrix, composite layer and matrix was largerthan55N and60N respectively, while the composite layer exhibited better wear resistance thansingle Al_2O_3layer. Samples with Al_2O_3layer displayed natural corrosion potential (Ecoor) of-0.26V and corrosion current (Icorr) of1.1E-7, while those with composite layer displayed Ecoorof-0.23V and Icorr of7.56E-8. Al_2O_3ceramic layer displayed good anti-erosion performance andexcellent volume resistivity of1.73×10~(12) cm, much larger than the designed value of10~4Ω m.
引文
[1] Salavy J F, Boccaccini L V, L sser R, et al. Overview of the last progresses for the EuropeanTest Blanket Modules projects [J]. Fusion Engineering and Design,2007,82:2105-2112.
    [2] Ying A, Abdou M, Wong C, et al. An overview of US ITER test blanket module program [J].Fusion Engineering and Design,2006,81:433-441.
    [3]郭智慧,黄群英,宋勇,等. CLAM钢基体上大气等离子体喷涂制备氧化铝涂层工艺研究[J].核科学与工程,2008,28(4):295-299.
    [4]山常起.氚与防氚渗透材料[M].北京:原子能出版社,2005.
    [5] Hollenberg G W, Simonen E P, Kalinin G, et al. Tritium/hydrogen barrier development [J].Fusion Engineering and Design,1995,28(2):190-208.
    [6] Perujo A, Forcey K S. Tritium permeation barriers for fusion technology [J]. FusionEngineering and Design,1995,28(2):252-257.
    [7]王佩璇.材料中的氦及氚渗透[M].北京:国防工业出版社,2002.
    [8] Briant C L, Chollocoop N. hydrogen Embrittlement of Commercial Purity Titanium [J].Corrosion Science,2002,44:1875-1879.
    [9]沈嘉年,李凌峰,张玉娟,等.不锈钢表面渗铝并热氧化处理对氢渗透的影响[J].腐蚀科学与防护技术,2005,17(1):15-19.
    [10]蒋国强,罗德礼,陆光达,等.氚和氚的工程技术[M].北京:国防工业出版社,2007.
    [11] Smith D L, Konys J, Muroga T, et al. Development of coatings for fusion power application[J]. Journal of Nuclear Materials,2002,307-311:1314-1322.
    [12]张桂凯,李炬,陈长安,等.不锈钢异型件表面阻氚层制备技术的研究进展[J].机械工程材料,2010,34(4):5-10.
    [13]宋贵宏,杜昊,贺春林.硬质与超硬涂层-结构、性能、制备与表征[M].北京:化学工业出版社,2007.
    [14] Alefeld G, Volkl J. Hydrogen in Metal [M].Berlin: Springer-Verlag,1978.
    [15] Aiello A, Ciampichetti A, Benamati G. An overview on tritium permeation barrierdevelopment for WCLL blanket concept [J]. Journal of Nuclear Materials,2004,329-333,2:1398-1402.
    [16]谭云,丰杰,周德惠,等.热喷涂纯铝激光重熔涂层的阻氢性能与组织[J].材料科学与工程,2000,18(1):32-35.
    [17] Bruzzoni P, Bruhl S P, Gomez B J A, et al. Hydrogen permeation modification of4140steelby ion nitriding with pulsed plasmas [J]. Surface and Coatings Technology,1998,110,1-2:13-18.
    [18] Fazio C, Stein-Fechner K, Serra E, et al. Investigation on the suitability of plasma sprayedFe-Cr-Al coatings as tritium permeation barrier [J]. Journal of Nulear Materials,1999,273,3:233-238.
    [19]潘晓霞,谭云,丰杰,等. Fe-31Ni-15Cr沉淀强化不锈钢表面磁控溅射纯铝涂层的阻氢性能[J].表面技术,2000,29(3):13-14.
    [20] Dumitrescu L, Maury F. Al2O3coatings on stainless steel from Al metal-organic chemicalvapor deposition and thermal treatments [J]. Surface and Coatings Technology,2000,125:419–423.
    [21]邓畅光,邓春明,刘敏,等.大气和低压等离子喷涂氧化铝涂层[J].材料工程,2008,5:48-56.
    [22]邓春明,周克崧,刘敏,等.低压等离子喷涂氧化铝涂层的特性[J].无机材料学报,2009,24(1):117-121.
    [23]张勤俭,张建华,李敏,等.用溶胶-凝胶法制备Al2O3涂层工程陶瓷的表面改性研究[J].硅酸盐学报,2001,29(05):416-421.
    [24]王喜娜,敬承斌,刘爱云,等.溶胶-凝胶法制备氧化铝涂层的镀膜新工艺研究[J].2004,02:14-16.
    [25]沈嘉年,李凌峰,张玉娟,等.不锈钢表面包埋渗铝-热氧化处理制备氧化铝膜及其对氢渗透的影响[J].原子能科学技术,2005,39(supply):73-78.
    [26]占勤,杨洪广,赵巍巍,等.渗铝-真空预氧化工艺制备FeAl-Al2O3防氚渗透涂层性能[J].材料热处理学报,2008,29(2):158-161.
    [27]刘歆粤.渗铝涂层不锈钢氘渗透特性实验研究[D].哈尔滨:哈尔滨工程大学,2006.
    [28] Serra E, Kelly P J, Ross D K, et al. Alumina sputtered on MANET as an e.ective deuteriumpermeation barrier[J]. Journal of Nuclear Materials,1998,257:194-198.
    [29] Serra E, Glasbrenner H, Perujo A. Hot-dip aluminium deposit as a permeation barrier forMANET steel [J]. Fusion Engineering and Design,1998,41:149–155.
    [30]杨钟时,贾建峰,田军,等.不锈钢表面Al2O3膜的微弧氧化制备[J].无机材料学报,2004,19(6):1446-1450.
    [31] Nakamichi M, Kulsartov T V, Hayashi K, et al. In-pile tritium permeation through F82H steelwith and without ceramic coating of Cr2O3-SiO2including CrPO4[J]. Fusion Engineeringand Design,2007,82:2246-2251.
    [32] Kulsartov T V, Hayashi K, Nakamichi M, et al. Investigation of hydrogen isotope permeationthrough F82H steel with and without ceramic coating of Cr2O3-SiO2including CrPO4[J].Fusion Engineering and Design,2006,81:701-705.
    [33]陶杰,黄镇东,陈照峰,等.316L不锈钢阻氢或氢同位素渗透搪瓷壁垒层的制备及性能研究[J].核科学与工程,2008,28(4):347-353.
    [34]黄镇东.阻氢和氢同位素渗透玻璃质陶瓷壁垒层的制备及性能研究[D].南京:南京航空航天大学,2008.
    [35]陶杰,黄镇东,汪涛.不锈钢用阻氢或氢同位素渗透玻璃质壁垒层及其制备方法[P].中国专利:10191961.5,2007.
    [36]宋建敏.熔盐电镀铝过程中镀铝层与镀液特性的研究[D].大连:大连交通大学,2010.
    [37]李小凡,玲玲,新华,等.铝的研究进展[J].材料导报,2001,15(12):14-16.
    [38]陶杰,刘红兵,徐江.在铝材表面获得高含量α-Al2O3涂层的制备方法[P].中国专利: ZL200810024868.X,2008.
    [39] Liu H B, Tao J, Xu J, et al. Microstructure and mechanical properties of alumina coatingsprepared by double glow plasma technique [J]. Applied Surface Science.2010,256(20):5939-5945.
    [40] Liu H B, Tao J, Zhang P Z, et al. Modeling of Residual Stresses in Functionally GradientAl2O3Coating on316L Substrate [J]. Journal of Computational and Theoretical Nanoscience,2008,5(8):1677-1680.
    [41] Liu H B, Tao J, Xu J, et al. Microstructure characterization of oxidation of aluminizedcoating prepared by a combined process [J]. Journal of Nuclear Materials,2008,378,2:134-138.
    [42] Liu H B, Tao J, Xu J, et al. Corrosion and tribological behaviors of chromium oxide coatingsprepared by the glow-discharge plasma technique [J]. Surface&Coatings Technology,2009,204:28-36.
    [43] Liu H B, Tao J, Yoann G, et al. Simulation of thermal stresses in SiC-Al2O3composite tritiumpenetration barrier by finite element analysis [J]. Materials and Design,2009,30:2785-2790.
    [44]高强,陶杰,骆心怡,等.316L不锈钢表面双层辉光离子渗金属技术制备Cr2O3涂层[J].原子能科学技术,2008,42(S1):213-216.
    [45]李转利,陶杰,刘红兵,等.316L不锈钢表面双层辉光离子渗金属技术制备Al2O3涂层[J].原子能科学技术,2008,42(S1):217-223.
    [46]杨扬.金属爆炸复合技术与物理冶金[M].北京:化学工业出版社,2006.
    [47]王晓峰. H62黄铜/碳钢双金属管内压扩散复合的研究[D].大连:大连交通大学,2005.
    [48]吴宏,赵达生,宋五一,等.一种双金属复合管的制造方法[P].中国专利:02114525.3,2002-10-23.
    [49]许云华.双金属管的制造工艺[P].中国专利:95106239.5,1996.
    [50]陈中平. Monel/cu爆炸复合棒的制备及复合过程数值模拟研究[D].长沙:中南大学,2008.
    [51]章新生.一种可用于双金属管和内壁耐磨金属管产生的方法[P].中国专利:97101519.8,1998.
    [52]郑远谋.爆炸焊接和金属复合材料及其工程应用[M].湖南:中南大学出版社,2002.
    [53]郑远谋.爆炸焊接和爆炸复合材料的原理及应用[M].湖南:中南大学出版社,2007.
    [54]吕海源.金属复合管弯曲过程数值模拟与实验验证[D].上海:上海交通大学,2008.
    [55]宋鹏,王小松,徐永超,等.内压对薄壁铝合金管材充液压弯过程的影响[J].中国有色金属学报,2011,21(2):311-317.
    [56]戴宇昕.不锈钢-碳钢双层复合弯头充液成形研究[D].哈尔滨:哈尔滨工业大学,2009.
    [57]张尧武,曾卫东,戴毅,等.基于虚拟正交试验的热推弯管工艺参数优化设计[J].塑性工程学报,2009,16(06):91-95.
    [58]赵俐敏.几何工艺参数对热推弯管过程影响规律的研究[D].秦皇岛:燕山大学,2007.
    [59]鹿晓阳,史宝军,徐秉业,等.牛角芯棒热推弯管成形过程力学原理及分析求解方法[J].塑性工程学报,1999,06(03):31-36.
    [60]孙郧立.中频感应局部加热弯管工艺及设备参数优化[D].西安:西北工业大学,2003.
    [61] Yuan S J, Xu Z, Wang Z R, et al. The integrally hydro-forming process of pipe elbows [J].International Joumal of Pressure Vessels and Piping,1998,75:7-9.
    [62] Yuan S J, Teng B G, Wang Z R. A new hydroforming process for large elbow pipes [J].Journal of Materials Processing Technology,2001,117:28-31.
    [63] Wang Z R, Liu G, Yuan S J, et al. Progress in shell hydroforming [J]. Journal of MaterialsProcessing Technology,2005,167:230-236.
    [64] Yang J B, Jeon B H, Oh S I. The tube bending technology of a hydroforming process for anautomotive part [J]. Journal of Materials Processing Technology,2001,111:175-181.
    [65]曾元松,李志强.连接管件的先进塑性成形技术试验研究[J].金属成形工艺,2003,21(3):4-7.
    [66] Zeng Y S, Li ZQ. Experimental research on the tube push-bending process [J]. Journal ofMaterials Processing Technology.2002,122(2-3):237-240.
    [67]苑世剑.现代液压成形技术[M].北京:国防工业出版社,2009.
    [68] Singh H. Fundamentals of hydroforming [M]. Society of Manufacturing Engineers,2003.
    [69] Park.K. Apparatus for forming serpentine hollow bodies [P]. US:731124,1903.
    [70] Ko M, Aue-u-lan Y, Altan T. On the characteristics of tubular materials forhydroforming-experimentation and analysis [J]. International Journal of Machine Tools&Manufacture,2001,41:761-772.
    [71] Ko M. Hydroforming for advanced manufacturing [M]. Woodhead Publishing,2008.
    [72] Ko M, Altan T. Prediction of forming limits and parameters in the tube hydroformingprocess [J]. International Journal of Machine Tools&Manufacture,2002,42:123-138.
    [73] Hwang Y M, Altan T. Analysis and finite element simulation of the tube bulge hydroformingprocess [J]. Journal of Material Processing Technology,2002,125-126:821-825.
    [74] Ngaile G, Jaeger S, Altan T. Lubrication in tube hydroforming (THF) Part I. Lubricationmechanisms and development of model tests to evaluate lubricants and die coatings in thetransition and expansion zones [J]. Journal of Materials Processing Technology,2004,146:108-115.
    [75] Ngaile G, Jaeger S, Altan T. Lubrication in tube hydroforming (THF) Part II. Performanceevaluation of lubricants using LDH test and pear-shaped tube expansion test [J]. Journal ofMaterials Processing Technology,2004,146:116-123.
    [76] Hwang Y M, Huang L S. Friction tests in tube hydroforming [J]. Proc. IMechE, Part B: J.Engineering Manufacture,2005,219:587-593.
    [77] Ngaile G, Yang C. Analytical model for characterizing the pear-shaped tribotest for tubehydroforming. Part1[J]. Proc. IMechE Part B: J. Engineering Manufacture,2005,222:849-863.
    [78] Imaninejad M, Subhash G, Loukus A. Loading path optimization of tube hydroformingprocess [J]. International Journal of Machine Tools&Manufacture,2005,45:1504-1514.
    [79] Manabe K, Suetakea M, Koyama H, et al. Hydroforming process optimization of aluminumalloy tube using intelligent control technique [J]. International Journal of Machine Tools&Manufacture,2006,46:1207-1211.
    [80] Lorenzo R D, Ingarao G, Chinesta F. Integration of gradient based and response surfacemethods to develop a cascade optimisation strategy for Y-shaped tube hydroforming processdesign [J]. Advances in Engineering Software,2010,41:336-348.
    [81] Cheng D M, Teng B G, Guo B, et al. Deformation and defects in hydroform ing of Y-shapedtubes [J]. Journal of Harbin Institute of Technology (New Series),2008,15(2):206-210.
    [82] Lin J F, Yuan S J. Influence of internal pressure on hydroforming of double handlescrankshaft [J]. Materials Science and Engineering A,2009,499:208-211.
    [83] Giuseppe I, Rosa Di L, Fabrizio M. Internal pressure and counterpunch action design inY-shaped tube hydroforming processes: A multi-objective optimisation approach [J].Computers and Structures,2009,87:591-602.
    [84] Cheng D M, Teng B G, Guo B, et al. Thickness distribution of a hydroformed Y-shape tube[J]. Materials Science and Engineering A,2009,49:36-39.
    [85]苑世剑.轻量化成形技术[M].北京:国防工业出版社,2010.
    [86] Islam M D, Olabi A G, Hashmi M S J. Feasibility of multi-layered tubular componentsforming byhydroforming and finite element simulation [J]. Journal of Materials ProcessingTechnology,2006,174:394-398.
    [87] Hashmi M S J, Islam M D, Olabi A G. Experimental and finite element simulation offormability and failures in multilayered tubular components [J]. Journal of Achievements inMaterials and Manufacturing Engineering,2007,24(1):212-218.
    [88] Alaswad A, Olabi A G, Benyounis K Y. Integration of finite element analysis and design ofexperiments to analyse the geometrical factors in bilayered tube hydroforming [J]. Material&Design,2011,32(2):838-850.
    [89] Zhang S H, Nielsen K B, Danckert J, et al. Numerical simulation of the integral hydro-buldgeforming of non-clearance double-layer spherical vessels: deformation analysis [J].Computers and Structure,1999,70:243-256.
    [90]李荣锋,张锦云,解德.铝-钢爆炸复合板的研究[J].材料保护,1999,32(6):31-33.
    [91]王建民,朱锡,刘润泉.铝/钢爆炸复合界面的显微分析[J].材料工程,2006,11:36-39,44.
    [92]李建智,张新华.铝-钢爆炸焊接试验与分析[J].工程爆破,2006,12(4):16-18.
    [93]杨扬,李志鹏,胡彬.内爆法制备双金属管复合参数的计算机辅助设计[J].爆炸与冲击,2004,24(6):571-574.
    [94]刘荣,汪洋,李平仓,等.铝/钢爆炸复合界面的显微分析[J].稀有金属材料与工程,2008,37(S4):645-648.
    [95]王宝云,马东康,李争显.爆炸焊接铝/不锈钢薄壁复合管界面的微观分析[J].稀有金属快报,2006,25(2):26-30.
    [96]王宝云,马东康,李争显.内爆炸法制备铝/不锈钢细长双金属复合管的研究[J].焊接,2005(9):54-57.
    [97] B.B.格拉西莫夫,A.V莫纳霍夫.核工程材料[M].北京:原子能出版社,1987.
    [98]黄群英,郁金南,万发荣,等.聚变堆低活化马氏体钢的发展[J].核科学与工程,2004,24(01):56-64.
    [99]黄群英.中国低活性马氏体钢——CLAM研究进展[A]第三届反应堆物理与核材料学术研讨会论文集[C],2007.
    [100]黄群英,李春京,李艳芬,等.中国低活化马氏体钢CLAM研究进展[J].核科学与工程,2007,(01):41-50.
    [101]李春京,黄群英,吴宜灿,等.中国低活性马氏体钢CLAM热等静压扩散焊接初步研究[J].核科学与工程,2007,27(01):55-58.
    [102] Huang Q, Li C, Li Y, et al. Progress in Development of China Low Activation MartensiticSteel for Fusion Application [J]. Journal of Nuclear Material,2007,367-370:142-146.
    [103] Huang Q, Wu Y, Li C, et al. R&D Activities of Fusion Material and Technology for LiquidLiPb Blankets at ASIPP [C]. proceedings of8th China-Japan Symposium on Materials forAdvanced Energy Systems and Fission&Fusion Engineering, Sendai, Japan, Oct.2004,428:237-243.
    [104] Wu Y, FDS Team. Design Status and Development Strategy of China Liquid Lithium-LeadBlankets and Related Material Technology [J], Journal of Nuclear Material.2007,367-370:1410-1415.
    [105] Meyers M A.材料的动力学行为[M].张庆明,刘彦,黄风雷,等译.北京:国防工业出版社,2006.
    [106]王建民,朱锡,刘润泉.铝合金-纯铝-钢复合板爆炸焊接试验及性能研究[J].海军工程大学学报,2008,20(2):105-108.
    [107] GB/T246-2007.金属管压扁试验方法[S].北京:中国标准出版社,2007.
    [108]王同海.管材塑性加工技术[M].北京:机械工业出版社,1997.
    [109]夏东强.管材弯曲成形技术研究[D].重庆:重庆大学,2009.
    [110]张君.加热弯管工艺计算机数值模拟[D].西安:西北工业大学,2001.
    [111]汤月宝.管材弯曲成形数值模拟技术的研究与开发[D].南京:南京航空航天大学,2007.
    [112] Zhang Y, Redekop D. Shell element simulation of the push methods of tube bending [J].Journal of Achievement in Materials and Manufacturing Engineering,2006,17,301-304.
    [113] Baudin S, Ray P, Mac Donald B J, et al. Development of a novel method of tube bendingusing finite element simulation [J].Journal of Materials Processing Technology,2004,153-154:128-133.
    [114] Dohmann. F, Hartl. C. Tube hydroforming-research and practical application [J]. Journal ofMaterial Processing Technology,1997,71:174-186.
    [115] Xiao X T, Liao Y J. Sun Y S. Study on varying curvature push-bending technique ofrectangular section tube [J]. Journal of Materials Processing Technology,2007,187-188:476-479.
    [116]曹春晓.钛合金在大型运输机上的应用[J].稀有金属快报,2006,25(01):17-21.
    [117]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005.
    [118]程敏,赵克德译.金属钛及其应用[M].北京:冶金工业出版社,1989.
    [119] Williams J C. Alternate Materials Choices-Some Challenges to the Increased Use of TiAlloys [J]. Materials Science and Engineering A,1999,263:107-111.
    [120]李成功,傅恒志.航空航天材料[M].北京:国防工业出版社,2002.
    [121] Kahraman N, Gulenc B, Findik F. Corrosion and mechanical icrostructural aspects ofdissimilar joints of Ti-6Al-4V and Al plates [J]. International Journal of ImpactEngineering,2007,34(8):1423-1432.
    [122] Rakoch A G, Khokhlov V V, Bautin V A, et al. Model concepts on the mechanism ofmicroarc oxidation of metal materials and the control over this process [J]. Protection ofMetals,2006,42(2):158-169.
    [123]滕敏,赫晓东.铝合金等离子体微弧氧化陶瓷层组织与性能研究[J].航空材料学报,2004,24(06):47-49.
    [124] Sundararajan G, Krishna L R. Mechanisms underlying the formation of thick aluminacoatings through the MAO coating technology [J]. Surface and Coatings Technology,2003,167:269-277.
    [125]沈德久,王玉林,卢立红,等.铝合金表面微弧氧化自润滑陶瓷覆层[J].材料保护,2000,33(5):51-52.
    [126]辛铁柱,赵万生,刘晋春.铝合金表面微弧氧化陶瓷膜的摩擦学性能及微观结构研究[J].航天制造技术,2005(04):5-8.
    [127]王志平,孙宇博,丁坤英,等.纯铝微弧氧化陶瓷膜组织及耐腐蚀性能[J].焊接学报,2008,29(12):74-76.
    [128]张聚国,杨华.铝合金表面微弧氧化工艺条件的研究[J].表面技术,2009,38(1):48-50.
    [129]庞留洋.铝合金微弧氧化技术在军品零部件上的应用[J].新技术新工艺,2009,02:29-31.
    [130]张震,李丽,王颖,等.化学铣切保护胶的制备方法[P].中国发明专利: CN101691468A,2010.
    [131]宋斌斌,吴平,陈森,等.射频磁控溅射法制备氧化铝涂层绝缘性能及吸氢特性[J].原子能科学技术,2010,44(11):1311-1317.
    [132] Smith D L, Park J-H, Lyublinski I, et al. Progress in Coating Development for FusionSystems [J]. Fusion Engineering and Design,2002,61-62:629-641.
    [133] Wang Y K, Sheng L, Xiong R Z. Effects of additives in electrolyte on characteristics ofceramic coatings formed by micro arc oxidation [J]. Surface Engineering,1999,15(2):109-111.
    [134] Van T B, Brown S D, Wirt W G P. Mechanism of anodic spark deposition [J]. AmericanCeramic Society Bulletin,1977,56(6):563-566.
    [135]赵亚囡.熔盐电镀铝及其微弧氧化技术[D].哈尔滨:哈尔滨工业大学,2004.
    [136]孙志华,国大鹏,刘明,等.工艺参数对2A12铝合金微弧氧化陶瓷层生长的影响[J].2009,29(6):59-65.
    [137] Wu H H, Jin Z S, Long B Y, et al. Characterization of Microarc Oxidation Process onAluminum Alloy [J]. Chinese Physics Letters,2003,20(10):1815-1818.
    [138] Yang G L, Lü X Y, Bai Y Z, et al. The effects of current density on the phase compositionand microstructure properties of micro-arc oxidation coating [J]. Journal of Alloys andCompounds,2002,345(1-2):196-200.
    [139]吴汉华,汪剑波,龙北玉,等.电流密度对铝合金微弧氧化膜物理化学特性的影响[J].物理学报,2005,54(12):5743-5748.
    [140] Yerokh In A L, Snizhko L O, Gurev Ina N L, et al. Spatial characteristics of dischargephenomena in plasma electrolytic oxidation of aluminium alloy [J]. Surface and CoatingTechnology,2004,177:779-783.
    [141]熊仁章,雷廷权,王永康,等.铝合金硅酸盐系微弧氧化陶瓷层形成机制的研究[J].兵器材料科学与工程,2004,27(6):1-7.
    [142]辛铁柱.铝合金表面微弧氧化陶瓷膜生成及机理的研究[D].哈尔滨工业大学,2006.
    [143]刘荣明,郭锋,李鹏飞.电压对铝合金微弧氧化陶瓷层形成的影响[J].材料热处理学报,2008,29,1:137-140.
    [144]刘兴钊,黄秋荣,杜家驹,等. HR-1型奥氏体不锈钢镀Cr2O3及TiN膜复合材料的气相氢渗透研究[J].核科学与工程,1997,17(3):281-284.
    [145] Muhlratzer A, Zeilinger H, Esser H G. Development of Protective Coating to ReduceHydrogen and Tritium Permeation [J]. Nuclear Technology,1984,66(2):570-577.
    [146] Bhushan B, Theunissen G S A M, Li X D. Tribological studies of chromium oxide films formagnetic recording applications [J]. Thin Solid Films,1997,311(1-2):67-80.
    [147] Wang D, Lin J, Wei Y. Study on chromium oxide synthesized by unbalanced magnetronsputtering [J]. Thin Solid Films,1998,332(1-2):295-299.
    [148] Pang X L, Gao K W, Yang H S, et al. Interfacial Microstructure of Chromium OxideCoatings [J]. Advanced Engineering Materials,2007,9(7):594-599.
    [149] Nguyen N P, Ngo Thi A T, Do C L, et al. An Application of Electro chemical Method forStudying Nano-Composite Plating [J]. Metals and Materials International,2006(6):493-496.
    [150]索相波,马世宁,邱骥,等.纳米SiO2复合处理对7A52铝合金微弧氧化陶瓷层孔隙率及性能的影响[J].航空材料学报,2009,29(6):66-69.
    [151]赵坚,宋仁,李红霞,等.纳米添加剂对6063铝合金微弧氧化层组织与性能的影响[J].2010,31(4):125-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700