用户名: 密码: 验证码:
特高压输电塔线体系脱冰动力响应数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特高压输电具有节约资源、有利于超远距离大容量输送的优点,目前我国1000kV特高压输电线路的建设工作正在广泛开展。重冰区输电线路覆冰在特定的温度和风等自然条件下脱落后会引起电线上下振动和横向摆动,从而可能导致各相导线之间、导线和地线之间的,电气绝缘间隙过小,引起跳闸;甚至由于电线张力的剧烈变化导致断线和倒塔等机械事故,中断电力输送,严重影响输电线路的安全运行。因此对于重冰区特高压塔线体系在脱冰过程中的动力响应的研究具有重要的工程实用价值。
     本论文以1000kV重冰区特高压同塔双回输电线路为研究对象,采用数值方法对覆冰导地线脱冰动力响应问题进行较全面的研究。首先利用ABAQUS有限元软件建立包括输电杆塔、导地线、绝缘子、线夹和间隔棒在内的典型三档四塔精细有限元模型,通过采用等效密度和等效加速度的方法模拟塔线体系的覆冰荷载、风荷载及导地线的脱冰荷载的方法,数值模拟在典型脱冰工况下塔线耦合体系导地线脱冰后的动力响应,给出导地线在脱冰过程中的运动轨迹,并将其计算结果与不考虑杆塔变形的电线模型脱冰过程模拟结果比较,得到杆塔变形对于导地线脱冰后的位移幅值的影响很小的结论。其次,利用电线模型模拟了不同参数条件和脱冰工况下导地线的脱冰动力响应,得到了档距、档数、冰厚、风速、脱冰率和导线型号等因素对于导地线脱冰后最大冰跳高度和横向摆幅的影响规律。结果表明,最大冰跳高度和横向摆幅随档距、脱冰率、冰厚的增大而增大,而连续档档数对其值影响较小。最后,基于数值模拟结果,得到导线脱冰后最大冰跳高度与导线脱冰前后静止状态的弧垂差之间的线性关系以及有风荷载时导线脱冰后最大横向摆幅与导线脱冰前后静止风偏差之间的关系,进而给出连续档导线最大冰跳高度和横向摆幅的工程实用计算公式。此外,以该典型线路中直线杆塔为例,讨论了在覆冰和脱冰过程中导线之间以及导地线之间最小间隙的计算方法,利用该方法和工程实用计算公式可以简化重冰区特高压输电线导线之间以及导地线之间安全间隙的设计。
Ultra-high Voltage (UHV) transmission technology, which is beneficial for the conservation of resources and large-capacity transmission, has been widely used in engineering practice.
     Ice-shedding from transmission lines under certain conditions may cause vertical jump and horizontal swing of the lines, and in turn may lead to trip because of the too small clearances between any two different phase conductors and/or between a conductor and a ground wire during vibration, which usually jeopardizes the safe operation of power supply. Therefore it is important to investigate the dynamic responses of UHV transmission tower-line system after ice-shedding in heavy ice zones.
     The dynamic responses of typical sections of 1000 kV transmission tower-line in heavy ice zone after ice-shedding are numerically simulated comprehensively in this thesis. Firstly, The finite element models, including transmission towers, conductor lines, ground wires, insulators and spacers, of the transmission tower-line system are created in ABAQUS/CAE. The static load generated by the weight of the ice accreted on the transmission tower-line system and the dynamic loads induced by the ice-shedding from the electric lines are simulated by means of the modification of the density and the gravity acceleration of the lines. By the comparison with the results of transmission line model, it shows the deformation of tower have little effect on the jump height or horizontal amplitude of conductor after ice-shedding.
     The dynamic responses of the transmission line system with different structure parameters in different ice-shedding conditions are then numerically simulated with ABAQUS software, and the effects of various factors, including the span length, the ice thickness, the number of spans and the wind speeds, on the maximum jump height and horizontal amplitude of the electric lines after ice-shedding are investigated. It is shown that the maximum jump height and the maximum horizontal amplitude of the electric lines after ice-shedding go up with the increases of the span length ,ice-shedding rate and the ice thickness, and change very small with the number of spans for multi-span systems. A linear relation between the maximum jump height of a line after ice-shedding and the lag difference of the line before and after ice-shedding, and a linear relation between the maximum horizontal amplitude of the line after ice-shedding and the wind swing difference before and after ice-shedding are obtained according to the analysis on the numerical results. Based on the two linear relations, the simplified formulas for the jump height and horizontal amplitude of electric lines with odd number of multi-spans after ice-shedding are suggested for the design of the UHV Transmission lines. Moreover the method for minimum gap between the different phase conductor and/or between a conductor and a ground wire before or during the ice-shedding of conductor are also suggested for the design..
引文
[1]胡志鹏.特高压输电影响深远[J] .电气工业,2007,4:31-33.
    [2]蒋兴良.易辉.输电线路覆冰及防护[M] .北京:中国电力出版社,2001.
    [3]苑吉河.蒋兴良.易辉等.输电线路导线覆冰的国内外研究现状[J] .高压电技术,2004,30(1):6-9.
    [4] V. T. Morgan. D. A. Swift. .Jump height of overhead-line conductors after the sudden release of ice loads[J] . Proceedings IEE 1964, 111(10):1736-1746.
    [5] J. R. Stewart. Ice as an influence on compact line phase spacing[J] . Proceedings of IWAIS, Hanover, Mew Hampshire, 1983:77-82.
    [6] G. McClure. J. Rousselet. R. Beauchenmin. Simulation of Ice-shedding on electrical transmission lines using ADINA[J] .Computers and Structures, 1993, 47:523-536.
    [7] G. McGlure. M. Lapointe. Modeling the structural dynamic response of overhead transmission lines[J] . Computers and Structures, 2003, 81:825-834.
    [8] M. Roshan Fekr. G.McClure.Numerical modeling of the dynamic response of ice-shedding on electric transmission lines[J] . Atmosphericc Research, 1998, 46:1-11.
    [9] T. Kalman.M. Farzaneh. G. McGlure.Numerical analysis of the dynamic defects of shock-load-induced ice shedding on overhead ground wires[J] .Computers & Structures 2007, 85:375-384.
    [10]陈将.严波.陈科全.重冰区架空输电线脱冰振动的数值模拟研究[J].重庆大学学报(自然科学版),2007,30(专刊):46-48.
    [11]陈科全.严波.郭跃明.梁明.陈将.超高压输电线脱冰动力响应数值模拟[J] .重庆大学学报(自然科学版),2009,32(5):544-549.
    [12]严波.郭跃明.陈科全.梁明.架空输电线脱冰跳跃高度的计算公式[J] .重庆大学学报(自然科学版),2009,32(11):1306-1310.
    [13]候镭.王黎明.朱普轩.等.特高压线路覆冰脱落跳跃的动力计算[J] .中国电机工程学报, 2008, 28(6): 1-6.
    [14]尹鹏.李黎.张行.输电线路脱冰跳跃反应控制研究[A] .电网和水力发电进展.
    [15]李黎.夏正春.付国祥等.大跨越输电塔线在线路脱冰作用下的振动[J] .振动与冲击,2008,27(9):32-34.
    [16]晏致涛.李正良.汪之松.重冰区输电塔-线体系脱冰振动的数值模拟[J] .工程力学,2010,27(1):209-227.
    [17]胡伟.陈勇.蔡炜等.1000kV交流同塔双回输电线路导线脱冰跳跃特性[J] .高电压技术,2010,36(1):275-280.
    [18]袁行飞.董石麟.二节点曲线索单元非线性分析[J].工程力学,1998,16(4):59-64.
    [19]杨孟刚.陈政请.两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1):42-47.
    [20] A.Jamaleddine et al.Weight-dropping Simulation of ice-shedding effects on an overhead transmission line model[J] . Proceedingss of IWAIS,Canada,1996:44-48.
    [21]刘小会.架空高压输电线路风偏数值模拟研究[D] .硕士学位论文,重庆:重庆大学,2007.
    [22] B Yan. Xuesong Lin. W Luo et al. Numerical study on dynamic swing of suspension insulator in overhead transmission line under wind load [J] .IEEE Transactions on Power Delivery,2010,25(1): 248-260.
    [23] Barbieri N.Honorato de Souza junior O.and Barbieri R .Dynamic analysis of transmission line cables[J] .Part II– damping estimation, Mechanical Systems and Sgnal Processing,2004, 18:659-669.
    [24] ABAQUS user’s manual[Z] . volumes,version 6.4:Hibbitt, Karlsson & Sorensen, Inc., 2003.
    [25]上海市建设和交通委员会.高耸结构设计规范[M] .第一版,北京:中国计划出版社,2007,4.
    [26]中国人民共和国国家标准.建筑结构荷载规范[M] .
    [27]邵天晓.架空送电线路的电线力学计算[M] . (第二版),北京:中国电力出版社,2003,190-194.
    [28]国家电力公司东北电力设计院.架空高压输电线路设计手册[M] .第二版,北京:中国电力出版社,2003,1.
    [29]国家电力公司东北电力设计院.电力工程高压送电线路设计手册[M] .第二版,北京:中国电力出版社,2003,1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700