用户名: 密码: 验证码:
全长人源抗VEGF抗体库的构建及展示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肾癌是泌尿系统威胁人类健康的常见恶性肿瘤,对放疗、化疗均不敏感。由于肾癌起病隐匿,在诊断时有25~30%已发生转移。而且,即使是局限性肾癌,采取根治术后仍有近30%患者会复发。针对这部分转移及复发肾癌的治疗是泌尿外科的难点和研究方向。
     随着研究深入,发现肾癌特别是透明细胞癌多存在Von Hippel-Lindau(VHL)基因突变,乏氧诱导因子(hypoxia-inducible factor, HIF)及血管内皮生长因子(vascular endothelial growth factor, VEGF)表达增高,而且VEGF增高与肿瘤分期及预后密切相关。因此,抑制或阻断VHL-HIF-VEGF信号通路,特别是阻断VEGF或其受体VEGFR,就可能抑制肾癌的生长。
     贝伐单抗(Bevacizumab)是VEGF特异性的经过人源化改造的鼠源抗体,能特异性与VEGF结合并阻断其生物活性。贝伐单抗联合IFN-α可以提高转移性肾癌的客观缓解率(ORR)和无疾病进展率(PFS)。2007年12月美国FDA批准贝伐单抗联合IFN-α作为靶向治疗转移性肾癌的一线治疗方案。
     然而,通过杂交瘤技术获得的单抗需经过人源化改造,一方面不可能完全去除抗体的免疫原性,另一方面抗体空间构型可能发生改变,亲和力往往会降低,很难达到预期的作用效果。
     为了尽可能减少药用抗体的免疫原性,研究者尝试利用哺乳动物细胞表面抗体展示技术用于人源抗体的筛选,但目前的这些哺乳动物细胞表面展示技术所构建抗体库容量多局限于104~106,筛选抗体多样性不足,不能满足筛选高亲和力抗体的要求。
     为了克服哺乳动物细胞表面展示技术筛选全长人源抗体存在的上述不足,本课题组对现有的哺乳动物细胞展示技术作了技术改良。
     人的VEGF是一种自身蛋白,以来自于自身免疫病患者的外周血淋巴细胞为材料构建抗体库筛选到抗VEGF抗体的几率更大。通过提取自身免疫病患者的外周血淋巴细胞的总RNA,进行RT-PCR扩增全套抗体基因,随后使用哺乳动物细胞表达载体pDGB-HC-TM,构建了三个全长人源抗体基因库,库容量达到1010以上。将抗体基因库通过四片段连接插入哺乳动物细胞表达载体pDGB4,然后将其稳定转染FCHO细胞。由于采用基因定点整合技术,每个细胞只表达一种抗体,从而成功建成能展示全长抗体的哺乳动物细胞库。
     本课题通过全基因合成的方法合成了贝伐单抗的全长基因,并根据哺乳动物细胞对密码子的选择性对抗体基因的碱基序列进行表达优化,既作为筛选抗体的阳性对照,同时也用于抗体的链置换筛选技术,以提高筛选VEGF特异性抗体的成功率;与已经构建好的三个抗体库基因进行链置换,构建了全长人源抗VEGF抗体库,并成功将其展示于哺乳动物细胞表面。
     一、全长人源初级抗体库的构建及展示
     目的:
     构建大容量的全长人源初级抗体基因库。
     方法:
     1.外周血淋巴细胞的分离及总RNA的提取
     从供体中采集适量静脉血,置于肝素抗凝管中,采用密度梯度离心法分离外周血单核细胞,加入适量Buffer RLT,裂解细胞,—80℃冰箱保存备用或者直接用于提取总RNA。
     2. cDNA第一链的合成
     以总RNA为模板,应用根据V-BASE网站信息所设计合成的全套人抗体重链可变区引物和全套人抗体轻链恒定区引物,逆转录合成cDNA第一条链。
     3.全套IgG1重链可变区基因和轻链K型全长基因的扩增
     以合成的cDNA为模板,用相应的特异性引物扩增全套IgG1轻链K型全长基因及全套IgG1重链可变区基因(3套轻链引物,3套重链引物)。PCR条件为:94-C预变性5分钟,然后进行35个循环的PCR扩增(94℃变性30s,55℃退火30s,72℃延伸1min),随后在延长温度下反应7min,以确保全长目的片段的合成。
     PCR扩增产物的分离纯化
     用PCR扩增抗体全套Kappa轻链和重链可变区基因。PCR产物用1%的琼脂糖凝胶电泳分离纯化目的片段。然后将回收得到的3组重链基因PCR扩增产物,再次经1%琼脂糖凝胶电泳后回收目的片段备用。并用同样方法处理3组轻链PCR扩增产物。
     重链抗体基因库及轻链基因库的构建及鉴定
     以BsmBI对重链基因扩增产物及载体pDGB-HC-TM进行酶切,电泳分离纯化目的片段,将回收的载体片段和抗体基因片段用T4DNA连接酶按1:1比例混合连接,在16℃反应24h后导入化学转化感受态大肠杆菌TOPO-10,构建重链基因库。
     轻链全长基因的扩增产物经SfiI酶切后回收,与同样经SfiI酶切回收的载体pDGB-HC-TM片段用T4DNA连接酶按1:1比例混合连接,在16℃反应24h后导入化学转化感受态大肠杆菌TOPO-10,构建轻链基因库。
     分别从重链抗体库和轻链抗体库中各随机挑取10个单克隆,摇菌培养过夜后抽提质粒,测序分析抗体基因库的质量及多样性。
     4.抗体库在哺乳动物细胞表面的展示
     分别将中提所获得的重链库pDGB-HClib-TM与轻链库pDGB-LClib的质粒DNA共转染293T细胞,将上述转染后继续培养48-72h的293T细胞进行回收,然后行免疫荧光染色及流式细胞学分析。
     结果与讨论:
     分离获得淋巴细胞的数量总计为1.4×108个。取一定量的细胞裂解物,提取获得约3.5u g总RNA,其A260/A280的值为1.90。PCR扩增共获得约2μg的全套IgG1轻链K型全长基因和约2μg的全套重链可变区基因。
     根据在带有氨苄青霉素抗性的LB平皿上长出的细菌克隆数,计算所构建的抗体重链基因库库容量为1.89×105,背景克隆的比例为3.60%;抗体轻链基因库库容量为6.54×104,背景克隆的比例为1.65%。用同样的方法一共构建了三个大容量的全长人源抗体基因库,库容量分别为1.19×1010、2.0×1010和5.27×1011。在其中一个抗体基因库里面的重链库和轻链库中各挑取10个单克隆进行测序分析,结果表明重链库的10个单克隆中有8个含有正确的VH编码序列,编码8个特异的氨基酸序列;轻链库的10个单克隆中有7个含有正确的LCκ编码序列,编码7个特异的氨基酸序列。将此重链库和轻链库共转染哺乳动物细胞后,理论上抗体库的多样性可以达到6.67×109[(1.89×105×80%)×(6.54x104x70%)],可以满足筛选高亲和力、高特异性抗体的要求。将抗体库瞬时转染293T细胞后,在63.40%的细胞表面可以检测到全长人源抗体的表达。
     结论:
     本研究采用哺乳动物细胞展示技术,成功用哺乳动物细胞表面展示载体pDGB-HC-TM构建了库容量大且多样性好的全长人源抗体基因库,可以满足筛选高亲和力、高特异性抗体的要求。
     二、全长人源二级抗体库的构建及展示
     目的:
     将第一部分构建好的三个初级抗体基因库通过四片段连接插入哺乳动物细胞表达载体pDGB4,构建三个全长人源二级抗体库,并将此三个抗体基因库合并一起稳定转染哺乳动物细胞FCHO,获得能够稳定展示全长人源抗体的哺乳动物细胞库。
     方法:
     1.双表达载体pDGB4的制备
     以BsmBI和SfiI对载体pDGB4进行双酶切,经1%琼脂糖凝胶电泳鉴定,并分离纯化5kb和3kb的两段目的DNA片段。
     2.抗体基因的制备
     以第一部分已经制备的抗体重链基因库(pDGB-HClib-TM)的细菌沉淀为来源,进行质粒中提获得抗体重链基因库的质粒DNA;用BsmBI进行酶切,用1%琼脂糖凝胶电泳分离纯化0.45kb的DNA片段。
     以第一部分已经制备的抗体轻链基因库(pDGB-LClib)的细菌沉淀为来源,进行质粒中提获得抗体轻链基因库的质粒DNA;用SfiI进行酶切,用1%琼脂糖凝胶电泳分离纯化0.75kb的DNA片段。
     3.转化感受态大肠杆菌TOPO-10及单克隆转染
     将获得的抗体轻重链基因库片段插入到pDGB4载体的相应酶切位点之间,获得pDGB-Full-Length-lib。转化化学感受态大肠杆菌TOPO-10,构建全长人源二级抗体库。用同样的方法将第一部分所构建的另外2个初级抗体基因库构建成为四片段连接的全长人源二级抗体库。在转化菌落中随机挑取十个单克隆,进行质粒DNA的小提。
     4.抗体库在哺乳动物细胞表面的展示
     将二级抗体库的质粒DNA瞬时转染293T细胞,用PE标鼠抗人kappa链抗体进行细胞免疫荧光染色,用流式细胞仪进行检测分析。
     5.构建稳定表达单克隆抗体的细胞库
     将上述构建的三个四片段连接二级抗体库质粒中提后进行1:1:1合并,与pOG44的质粒DNA共转染常规培养至对数生长期的FCHO细胞,构建稳定表达抗体的细胞库。
     结果与讨论:
     根据在带有氨苄青霉素抗性LB平皿上长出的克隆数,计算所构建的全长抗体二级基因库库容量为2.476x106,背景克隆的比例为0.30%。用同样的方法将第一部分构建好的第二、第三个初级抗体库基因通过四片段连接插入哺乳动物细胞表达载体pDGB4,构建了第二、第三个四片段连接二级抗体库,库容量分别为9.22×105和1.0828×106,背景克隆的比例分别为0.06%和0.17%。从二级抗体库的建库菌平皿中随机挑取十个单克隆进行质粒小提后瞬时转染293T细胞,流式细胞仪检测有9个克隆能够表达出抗体。将中提获得二级抗体库的质粒DNA进行293T细胞的瞬时转染,有61.78%的细胞表面可成功展示可被检测到的全长抗体。将三个四片段连接二级抗体库基因进行质粒中提后稳定转染FCHO细胞,成功构建了稳定细胞库,库容量为3.76×106,用流式细胞仪检测有59.62%的细胞表面可成功展示可被检测的全长抗体。
     结论:
     成功将第一部分构建好的三个初级抗体库基因通过四片段连接插入哺乳动物细胞双表达载体pDGB4,构建了三个全长人源二级抗体库,并将此三个基因库合并一起稳定转染哺乳动物细胞FCHO,获得能够稳定展示全长人源抗体的哺乳动物细胞库,为特异性抗体的筛选奠定了基础。
     三、全长人源抗VEGF抗体库的构建及展示
     目的:
     合成并优化贝伐单抗的全长基因,与前面构建好的三个抗体库进行链置换,构建全长人源抗VEGF抗体库。
     方法:
     1.贝伐单抗序列的合成与优化
     在贝伐单抗的重链可变区碱基序列前面加上BstXI和BsmBI的酶切序列以及信号肽序列,将其序列进行人类密码子偏向性优化以及基因表达的优化,以BsmBI进行酶切,1%琼脂糖凝胶电泳分离纯化0.45kb大小的目的DNA片段。
     在贝伐单抗的轻链可变区碱基序列前面加上SfiI的酶切序列以及信号肽序列,将其序列进行人类密码子偏向性优化以及基因表达的优化,采用重叠延伸PCR技术进行轻链全长的制备,再以SfiI进行酶切,用1%琼脂糖凝胶电泳分离纯化0.714kb大小的目的片段。
     2.双表达载体pDGB4片段的制备
     以BsmBI和SfiI对载体pDGB4进行双酶切,经1%琼脂糖凝胶电泳鉴定,并分离纯化5kb大小和3kb大小的两段目的DNA片段。
     3.构建质粒pDGB4-avastin
     将载体pDGB4片段和优化后合成、制备的贝伐单抗重链抗体片段、轻链抗体片段分别酶切并纯化后,抗体重链基因和抗体轻链基因同时插入到pDGB4载体的相应酶切位点之间,转化化学感受态大肠杆菌TOPO-10,随机挑取单克隆,使用两套引物分别对单克隆的贝伐单抗链可变区序列和轻链可变区序列进行PCR鉴定,根据PCR鉴定的结果,将单克隆菌液进行扩增培养、小提测序分析。
     4.链置换法构建抗VEGF抗体库
     以BsmBI对载体pDGB4进行单酶切,分离纯化8.65kb大小的目的片段。将该载体片段与经由BsmBI进行酶切并纯化后的贝伐单抗重链抗体片段进行连接获得新质粒pDGB4-avastin-vh,转化化学感受态大肠杆菌TOPO-10,用引物247和引物248来进行PCR鉴定后进行质粒中提,以SfiI进行酶切,分离纯化约8.3kb大小的目的片段,与同样经由SifI进行酶切全长人源轻链基因库(pDGB-LClib)手纯化出的轻链抗体库基因片段进行连接,获得新质粒pDGB4-avastin-vh-Hu-LCs,转化化学感受态大肠杆菌TOPO-10,构建含贝伐单抗重链的全长人源抗VEGF抗体库,计算抗体库的库容量。
     同样用链置换方法,获得新质粒pDGB4-avastin-vk-Hu-HCs,转化化学感受态大肠杆菌TOPO-10,构建含贝伐单抗轻链的全长人源抗VEGF抗体库,计算抗体库的库容量。
     结果与讨论:
     分别在贝伐单抗的重链可变区序列前面加上了BstXI和BsmBI的酶切序列和信号肽序列、在贝伐单抗的轻链可变区序列前面加上SfiI的酶切序列和信号肽序列,并且进行了人类密码子偏向性优化以及基因表达的优化。经过优化,贝代单(?)重链可变区碱基序列的密码子适应指数(CAI)从0.80提高到0.87,最优密码子使用频率(FOP)也得到了优化,而GC含量变化不大;轻链可变区碱基序列的密码子适应指数(CAI)从0.80提高到0.85,最优密码子使用频率(FOP)也得到了优化,而GC含量变化不大。通过与前面构建好的三个抗体库进行链置换,构建了库容量分别为7.58x105和1.33×106,背景克隆的比例分别为2.51%和1.37%的全长人源抗VEGF抗体库。将抗体库瞬时转染293T细胞后,在细胞表面可以检测到全长人源抗VEGF抗体的表达;在抗VEGF抗体库1中,有22%的细胞表面可成功展示可被检测到的全长抗体,在抗VEGF抗体库2中,有28.05%的细胞表面可成功展示可被检测到的全长抗体。
     结论:
     成功在贝伐单抗的重链可变区序列和轻链可变区序列的前面加上了相应的酶切序列和信号肽序列并进行优化、全基因合成与制备,与前面构建好的三个抗体库基因进行链置换,构建了全长人源抗VEGF抗体基因库,将抗体库瞬时转染293T细胞后,在细胞表面可以检测到全长人源抗VEGF抗体的表达,为进一步利用贝伐单抗的抗VEGF导向选择作用,以便筛选具有与贝伐单抗相同的抗原亲和性和抗原结合表位的全长人源抗VEGF抗体做好了准备,也为开展全长人源抗VEGF单抗靶向治疗转移性肾癌奠定了实验基础。
Renal cell carcinoma (RCC) is the most common kidney malignant tumor, which is not sensitive to radiotherapy and chemotherapy. Due to its insidious onset,25to30percent of patients had metastasis in the time of diagnosis and nearly30%of localized renal cell carcinoma will relapse even after radical resection. People are looking forward to a new therapeutic approach to solve this problem.
     With in-depth study, Von Hippel-Lindau (VHL) gene mutation is found in most renal cell carcinoma, especially clear cell carcinoma, with a high level of hypoxia-inducible factor and vascular endothelial growth factor. VEGF is closely related to tumor stage and prognosis. Therefore, inhibition or blocking of VHL-HIF-VEGF signaling pathway, in particular, blocking VEGF or its receptors VEGFR, may inhibit the growth of renal cell carcinoma.
     Bevacizumab is a VEGF-specific murine antibody, which is humanized and due to its biological activity of blocking VEGF, is used for the treatment of patients with solid tumors and high level of VEGF. Bevacizumab combined with IFN-a can increase the Objective Response Rate (ORR) and Progression Free Survival (PFS) of metastatic renal cell carcinoma. Thus, U.S. FDA approved bevacizumab plus IFN-alpha as first-line treatment of the targeted therapy of metastatic renal cell carcinoma in December2007.
     However, humanization of monoclonal antibodies obtained by hybridoma technology, on the one hand, can not completely remove antibodies' immunogenicity. On the other hand, the antibody space configuration may be changed, the affinity tends to reduce and it is verydifficult to achieve the desired effect.
     In order to minimize the immunogenicity of pharmaceutical antibodies, the researchers are trying to use mammalian cell surface display technology for the screening of human antibodies. The diversity of the antibody library contructed by mammalian display technology was limited to104to106so far and can not meet the requirements of screening high affinity antibodies.
     We had made technical improvements of the existing mammalian cell surface display technology in order to overcome these shortcomings of it.
     Using total RNA isolated from peripheral blood lymphocytes of patients with autoimmune disease as starting material, whole set of antibody genes were amplified by RT-PCR and then the antibody genes were inserted into the mammalian cell expression vector pDGB-HC-TM, Three full-lenth fully human antibody gene libraries have been constructed with a diversity of1010. Using four-way ligation, the antibody heavy and light genes were simultaneously inserted into mammalian display vector pDGB4to construct the sub-libraries. After transfection of the libraries into FCHO cell, a cell library which could stably display full-length antibodies on cell surface was successfully constructed.
     Both heavy and light chain genes of Bevacizumab were synthesized and the codons were optimized for high expression of the antibody in mammalian cells. It will be used as a positive control during antibody screen. And it has also been used in chain exchange screen strategy to increase the success rate of screen. Replacing the heavy chain or light chain libraries in vector pDGB4with light chain or heavy chain genes of Bevacizumab, the full-length fully human anti-VEGF antibody libraries have been successfully constructed.
     Part Ⅰ:Construction of Full-length Fully Human primary Antibody Display Library
     Objective:
     To construct3full-length human primary antibody display libraries with large capacity.
     Methods:
     Human peripheral blood mononuclear cells (PBMCs) were isolated from the blood of selected donors by gradient centrifugation. The total RNA was isolated from the purified PBMC using RNA Easy kit. The concentration of the total RNA was measured.
     The amplification of heavy chain variable domain and full length kappa chain was carried out by two-step RT-PCR using specific forward and reverse primers. The vector pDGB-HC-TM and RT-PCR amplified DNA fragments were digested by proper restriction enzymes. The ligation was performed at16℃for24hours. The transformation efficiency was calculated and antibody gene libraries were constructed. The transfection of libraries into293T cells was carried out in12-well plate. The antibody expression on cell surface was detected by FACS and the data were analazed using FCS Express V3software.
     Results and discussion:
     Total6PCR reactions were carried out to amplify antibody genes,3for heavy chain variable domain (VH), and3for full length kappa chain. The sizes of these fragments are about0.45kb for VH and0.75kb for kappa chain. The PCR fragments were separated by electrophoresis and the right size fragments were purified. After digestion of VH library by BsmBI, the VH fragments were inserted into vector pDGB-HC-TM between comparable BsmBI sites. The light chain fragments were insterted into the vector pDGB-HC-TM between SfiI to replace the HC-TM in the original vector. The heavy chain library constructed has a size of1.89×105and light chain library has a size of6.54×104. Totoal3pairs of heavy and light chain liraries were constructed using this method.10heavy chain clones and10light chain clones were randomly picked up for sequence and expression analysis. Results show that8heavy chain clones and7light chain clones contain right coding regions for unique amino acid sequences. The heavy chain and light chain gen libraries were co-transfected into the293T cells. The expression of full length antibodies on293T cell surface were analyzed by FACS. The results show that63.40%cells expressed detectable antibodies.
     Conclusion:
     Using vector pDGB-HC-TM, three full-length human mammalian display antibody libraries with a combinatory diversity of1.19×10、2.0×1010and5.27×1011were successfully constructed, which allows the display of full-length antibodies on mammalian cell surface.
     Part Ⅱ:Construction of Full-length Fully Human secondary Antibody Display Library
     Objective:
     To construct three full-length human secondary antibody display libraries with large combinatory diversity.
     Methods:
     After digestion of VH library by BsmBI and light chain library with SfiI, both VH and light chain fragments were simultaneously inserted vector pDGB4by four-way ligation. Totoal3liraries were constructed using this method. After tranformation of libraries into competent bacteria cell, the transformation efficiency and library size were calculated. The stable transfection of libraries into293T cells was carried out in a12-well plate. The antibody expression on cell surface was detected by FACS and the data were analyzed using FCS Express V3software.
     Results and discussion:
     A four-way ligation library was constructed with a size of2.476x106and a background of0.30%. Another two libraries were constructed using this method, with sizes of9.22×105and1.0828×106, backgrounds of0.06%and0.17%. The transfection of one of these four-way ligation libraries to293T cells was carried out in a12-well plate with61.78%cells expressed detectable antibodies.
     After the four way ligation library was stably transfected into FCHO cell, a cell library which could stably display full-length antibodies was successfully constructed, with a size of3.76×106. We could detect that there were59.62%cells in the cell library could display full-length library. This cell library would be used for screening of specific antibody.
     Conclusion:
     We have successfully constructed three secondary antibody display libraries with large combinatory diversity and a stable cell library with a size of3.76×106, which could stably display full-length antibodies for antibody screen.
     Part Ⅲ:Construction of Anti-VEGF Antibody Display Library
     Objective:
     To construct a full-length human anti-VEGF antibody library by using chain exchange strategy.
     Methods:
     Both heavy and light chain genes of antibody avastin were synthesized and the codons were optimized for high expression of the antibody in mammalian cells. The appropriate restriction enzyme recognizing sequences and signal peptide sequences were added in front of the heavy chain and the light chain genes. Then both genes were simultaneously inserted into the vector pDGB4to construct the avastin expression vector. The heavy chain or light chain libraries in secondary Antibody Display Library constructed previously was replaced with avastin light chain or heavy chain. In that way, the heavy or light chain in the library was exchanged.
     The appropriate restriction enzyme sequence and signal peptide sequence was added in front of the heavy chain variable variable region and the light chain variable region sequence, which was then optimiazed in order to improve gene expression and meet the human codon bias. After digestion of avastin-VH by BsmBl and digestion of avastin-Vk by SfiI, the fragments were inserted into the vector pDGB4between comparable BsmBI sites and SfiI sites; a new vetor pDGB4-avastin was constructed. And then another new vector pDGB4-avastin-vh was constructed. The light chain fragments were insterted into the new vector pDGB4-avastin-vh between SfiI sites in order to construct vector pDGB4-avastin-vh-Hu-LCs. Finally, a full-length human anti-VEGF antibody library was built by the transformation of the new vector pDGB4-avastin-vh-Hu-LCs.
     Results and discussion:
     Both heavy and light chain genes of antibody avastin were synthesized and the codons were optimized for high expression of the antibody in mammalian cells. After optimization, the CAI (Codon Adaptation Index) of heavy chain was improved from0.80to0.87and the CAI of light chain from0.80to0.85.
     Three new expression vetors were constructed:vector pDGB4-avastin for avastin expression; vector pDGB4-avastin-vh containing avastin heavy chain and unrelated light chain; and vector pDGB4-avastin-LC containing avastin light chain and unrelated heavy chain. Finally, a full-length fully human anti-VEGF antibody library, pDGB4-avastin-vh-Hu-LCs, was constructed with a size of7.58×105and a background of2.51%by the replacement of the unrelated light chain in the vector pDGB4-avastin-vh by light chain library. Using the similar method, another full-length fully human anti-VEGF antibody library, pDGB4-avastin-vk-Hu-HCs, was constructed with a size of1.33×106and a background of1.37%by the replacement of the unrelated heavy chain in the vector pDGB4-avastin-vk by heavy chain library.
     Conclusion:
     We have successfully constructed a full-length fully human anti-VEGF antibody library by using chain exchange strategy.
引文
[I]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008[J]. CA Cancer J Clin, 2008,58(2):71-96.
    [2]Cheville J C, Lohse C M, Zincke H, et al. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma[J]. Am J Surg Pathol,2003,27(5):612-624.
    [3]Motzer RJ B N N D. Renal-cell carcinoma. N Engl J Med 1996,335: 865-875[J].
    [4]Rouviere O, Bouvier R, Negrier S, et al. Nonmetastatic renal-cell carcinoma: is it really possible to define rational guidelines for post-treatment follow-up?[J]. Nat Clin Pract Oncol,2006,3(4):200-213.
    [5]Parton M, Gore M, Eisen T. Role of cytokine therapy in 2006 and beyond for metastatic renal cell cancer[J]. J Clin Oncol,2006,24(35):5584-5592.
    [6]Motzer R J, Bacik J, Murphy B A, et al. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma[J]. J Clin Oncol,2002,20(1):289-296.
    [7]Latif F T K G J. Identification of the von Hippel-Lindau disease tumor suppressor gene.[J]. Science,1993(260):1317-1320.
    [8]Seizinger B R, Rouleau G A, Ozelius L J, et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma[J]. Nature,1988,332(6161):268-269.
    [9]Paradis V, Lagha N B, Zeimoura L, et al. Expression of vascular endothelial growth factor in renal cell carcinomas[J]. Virchows Arch, 2000,436(4):351-356.
    [10]Takahashi A, Sasaki H, Kim S J, et al. Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis[J]. Cancer Res, 1994,54(15):4233-4237.
    [11]Jacobsen J, Grankvist K, Rasmuson T, et al. Expression of vascular endothelial growth factor protein in human renal cell carcinoma[J]. BJU Int, 2004,93(3):297-302.
    [12]Kim W Y, Kaelin W G. Role of VHL gene mutation in human cancer[J]. J Clin Oncol,2004,22(24):4991-5004.
    [13]George D J, Kaelin W J. The von Hippel-Lindau protein, vascular endothelial growth factor, and kidney cancer[J]. N Engl J Med, 2003,349(5):419-421.
    [14]Moore L E, Nickerson M L, Brennan P, et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer:associations with germline VHL polymorphisms and etiologic risk factors[J]. PLoS Genet, 2011,7(10):e1002312.
    [15]Presta L G, Chen H, O'Connor S J, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders[J]. Cancer Res,1997,57(20):4593-4599.
    [16]Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma:a randomised, double-blind phase Ⅲ trial[J]. Lancet,2007,370(9605):2103-2111.
    [17]Rini B I, Halabi S, Rosenberg J E, et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma:CALGB 90206[J]. J Clin Oncol,2008,26(33):5422-5428.
    [18]Yang J C, Haworth L, Sherry R M, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer[J]. N Engl J Med,2003,349(5):427-434.
    [19]Reisner H M, Roberts H R, Krumholz S, et al. Immunochemical characterization of a polyclonal human antibody to factor Ⅸ[J]. Blood, 1977,50(l):11-19.
    [20]Ringden O, Rynnel-Dagoo B, Waterfield E M, et al. Polyclonal antibody secretion in human lymphocytes induced by killed staphylococcal bacteria and by lipopolysaccharide[J]. Scand J Immunol,1977,6(11):1159-1169.
    [21]Ishikawa H, Narimatsu H, Saito K. Mechanisms of the adjuvant effect of nystatin on in vitro antibody response of mouse spleen cells:indication of nystatin as a B-cell mitogen and as a stimulant for polyclonal antibody synthesis in B cells[J]. Microbiol Immunol,1977,21(3):137-152.
    [22]Kantha S S. A centennial review; the 1890 tetanus antitoxin paper of von Behring and Kitasato and the related developments[J]. Keio J Med, 1991,40(1):35-39.
    [23]Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity [J]. Nature,1975,256(5517):495-497.
    [24]Levy R, Dilley J. The in vitro antibody response to cell surface antigens.Ⅱ. Monoclonal antibodies to human leukemia cells[J]. J Immunol, 1977,119(2):394-400.
    [25]Gearhart P J, Sigal N H, Klinman N R. The monoclonal anti-phosphorylcholine antibody response in several murine strains:genetic implications of a diverse repertoire[J]. J Exp Med,1977,145(4):876-891.
    [26]Abbate A V T B W. Interleukin-1beta modulation using a genetically engineered antibody prevents adverse cardiac remodelling follow-ing acute myocardial infarction in the mouse[J]. Eur J Heart Fail,2010,4(12):319-322.
    [27]Morrison S L, Wims L, Wallick S, et al. Genetically engineered antibody molecules and their application[J]. Ann N Y Acad Sci,1987,507:187-198.
    [28]Morrison S L, Wims L A, Oi V T. Genetically engineered antibody molecules: new tools for cancer therapy[J]. Cancer Invest,1988,6(2):185-192.
    [29]Morrison S L, Canfield S, Porter S, et al. Production and characterization of genetically engineered antibody molecules[J]. Clin Chem, 1988,34(9):1668-1675.
    [30]Kim K S, Kim H J, Han B W, et al. Construction of a humanized antibody to hepatitis B surface antigen by specificity-determining residues (SDR)-grafting and de-immunization[J]. Biochem Biophys Res Commun,2010,396(2): 231-237.
    [31]Khazaeli M B C R M L. Human immune response to monocle- nal antibodies [J]. J Immunother Emphasis Tumor Immunol,1994,1 (15):42-52.
    [32]Morrison S L, Johnson M J, Herzenberg L A, et al. Chimeric human antibody molecules:mouse antigen-binding domains with human constant legion domains[J]. Proc Natl Acad Sci U S A,1984,81 (21):6851-6855.
    [33]Zebedee S L, Barbas C R, Hom Y L, et al. Human combinatorial antibody libraries to hepatitis B surface antigen[J]. Proc Natl Acad Sci U S A, 1992,89(8):3175-3179.
    [34]Caldas C, Coelho V, Kalil J, et al. Humanization of the anti-CD 18 antibody 6.7:an unexpected effect of a framework residue in binding to antigen[J]. Mol Immunol,2003,39(15):941-952.
    [35]Huston J S, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites:recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli[J]. Proc Natl Acad Sci USA,1988,85(16):5879-5883.
    [36]Cabilly S, Riggs A D, Pande H, et al. Generation of antibody activity from immunoglobulin polypeptide chains produced in Escherichia coli[J]. Proc Natl Acad Sci U S A,1984,81(11):3273-3277.
    [37]Vaughan T J, Williams A J, Pritchard K, et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library[J]. Nat Biotechnol,1996,14(3):309-314.
    [38]Griffiths A D, Duncan A R. Strategies for selection of antibodies by phage display[J]. Curr Opin Biotechnol,1998,9(1):102-1.08.
    [39]Schaffitzel C, Hanes J, Jermutus L, et al. Ribosome display:an in vitro method for selection and evolution of antibodies from libraries[J]. J Immunol Methods,1999,231(1-2):119-135.
    [40]Huse W D, Sastry L, Iverson S A, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda[J]. Science, 1989,246(4935):1275-1281.
    [41]Ward E S, Gussow D, Griffiths A D, et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli[J]. Nature,1989,341(6242):544-546.
    [42]Chen W, Zhu Z, Xiao X, et al. Construction of a human antibody domain (VH) library[J]. Methods Mol Biol,2009,525:81-99.
    [43]Chen W, Zhu Z, Feng Y, et al. A large human domain antibody library combining heavy and light chain CDR3 diversity[J]. Mol Immunol, 2010,47(4):912-921.
    [44]McCarrey J R, Williams S A. Construction of cDNA libraries from limiting amounts of material[J].Curr Opin Biotechnol,1994,5(1):34-39.
    [45]McCafferty J, Griffiths A D, Winter G, et al. Phage antibodies:filamentous phage displaying antibody variable domains[J]. Nature, 1990,348(6301):552-554.
    [46]Smith G P. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface[J]. Science,1985,228(4705):1315-1317.
    [47]Lucas A H, Reason D C. Comment on "Engineering antibody heavy chain CDR3 to create a phage display Fab library rich in antibodies that bind charged carbohydrates"[J]. J Immunol,2009,182(9):5160-5161.
    [48]Yu R, Wang S, Yu Y Z, et al. Neutralizing antibodies of botulinum neurotoxin serotype A screened from a fully synthetic human antibody phage display library[J]. J Biomol Screen,2009,14(8):991-998.
    [49]Shui X, Huang J, Li Y H, et al. Construction and selection of human Fab antibody phage display library of liver cancer[J]. Hybridoma (Larchmt), 2009,28(5):341-347.
    [50]Zhang X, Wang J, Wen K, et al. Antibody binding site mapping of SARS-CoV spike protein receptor-binding domain by a combination of yeast surface display and phage peptide library screening[J]. Viral Immunol, 2009,22(6):407-415.
    [51]Clackson T, Hoogenboom H R, Griffiths A D, et al. Making antibody fragments using phage display libraries[J]. Nature,1991,352(6336):624-628.
    [52]Rojas G, Lamdan H, Padron S, et al. Efficient construction of a highly useful phage-displayed human antibody repertoire[J]. Biochem Biophys Res Commun,2005,336(4):1207-1213.
    [53]Lamdan H, Ayala M, Rojas G, et al. Isolation of a novel neutralizing antibody fragment against human vascular endothelial growth factor from a phage-displayed human antibody repertoire using an epitope disturbing strategy[J]. J Biotechnol,2011,151(2):166-174.
    [54]Liu N, Wu G, Li H, et al. A novel peptide isolated from phage display peptides library recognized by an antibody against connective tissue growth factor (CTGF)[J]. Int Immunopharmacol,2009,9(3):291-297.
    [55]Sommavilla R, Lovato V, Villa A, et al. Design and construction of a naive mouse antibody phage display library[J]. J Immunol Methods, 2010,353(1-2):31-43.
    [56]Zhao Y, Amer S, Wang J, et al. Construction, screening and identification of a phage display antibody library against the Eimeria acervulina merozoite[J]. Biochem Biophys Res Commun,2010,393(4):703-707.
    [57]Jespers L S, Roberts A, Mahler S M, et al. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen [J]. Biotechnology (N Y),1994,12(9):899-903.
    [58]Zhao Y, Amer S, Wang J, et al. Construction, screening and identification of a phage display antibody library against the Eimeria acervulina merozoite[J]. Biochem Biophys Res Commun,2010,393(4):703-707.
    [59]Sommavilla R, Lovato V, Villa A, et al. Design and construction of a naive mouse antibody phage display library [J]. J Immunol Methods, 2010,353(1-2):31-43.
    [60]Groves M A, Nickson A A. Affinity maturation of phage display antibody populations using ribosome display[J]. Methods Mol Biol,2012,805:163-190.
    [61]He M, Taussig M J. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites[J]. Nucleic Acids Res,1997,25(24):5132-5134.
    [62]Grimm S, Yu F, Nygren P A. Ribosome display selection of a murine IgG Fab binding affibody molecule allowing species selective recovery of monoclonal antibodies[J]. Mol Biotechnol,2011,48(3):263-276.
    [63]Boder E T, Wittrup K D. Yeast surface display for screening combinatorial polypeptide libraries[J]. Nat Biotechnol,1997,15(6):553-557.
    [64]Boder E T, Wittrup K D. Yeast surface display for screening combinatorial polypeptide libraries[J]. Nat Biotechnol,1997,15(6):553-557.
    [65]Ho M, Nagata S, Pastan I. Isolation of anti-CD22 Fv with high affinity by Fv display on human cells[J]. Proc Natl Acad Sci U S A, 2006,103(25):9637-9642.
    [66]Higuchi K, Araki T, Matsuzaki O, et al. Cell display library for gene cloning of variable regions of human antibodies to hepatitis B surface antigen[J]. J Immunol Methods,1997,202(2):193-204.
    [67]Lin Z, Cao P, Lei H. Identification of a neutralizing scFv binding to human vascular endothelial growth factor 165 (VEGF165) using a phage display antibody library [J]. Appl Biochem Biotechnol,2008,144(1):15-26.
    [68]Akamatsu Y, Pakabunto K, Xu Z, et al. Whole IgG surface display on mammalian cells:Application to isolation of neutralizing chicken monoclonal anti-IL-12 antibodies[J]. J Immunol Methods,2007,327(1-2):40-52.
    [69]Higuchi K, Araki T, Matsuzaki O, et al. Cell display library for gene cloning of variable regions of human antibodies to hepatitis B surface antigen[J]. J Immunol Methods,1997,202(2):193-204.
    [70]Zhou Y, Chen Z R, Li C Z, et al. A novel strategy for rapid construction of libraries of full-length antibodies highly expressed on mammalian cell surfaces[J]. Acta Biochim Biophys Sin (Shanghai),2010,42(8):575-584.
    [71]Zhou I, Zhang Z H, Li C Z, et al. Four-way ligation for construction of a mammalian cell-based full-length antibody display library [J]. Acta Biochim Biophys Sin (Shanghai),2011,43(3):232-238.
    [72]Hu H, Ran Y, Zhang Y, et al. Antibody library-based tumor endothelial cells surface proteomic functional screen reveals migration-stimulating factor as an anti-angiogenic target[J]. Mol Cell Proteomics,2009,8(4):816-826.
    [73]Zhou Y, Chen Z R, Li C Z, et al. A novel strategy for rapid construction of libraries of full-length antibodies highly expressed on mammalian cell surfaces[J]. Acta Biochim Biophys Sin (Shanghai),2010,42(8):575-584.
    [74]Zhou C, Jacobsen F W, Cai L, et al. Development of a novel mammalian cell surface antibody display platform[J]. MAbs,2010,2(5):508-518.
    [75]Zhou I, Zhang Z H, Li C Z, et al. Four-way ligation for construction of a mammalian cell-based full-length antibody display library[J]. Acta Biochim Biophys Sin (Shanghai),2011,43(3):232-238.
    [76]Huang W L, Li C Z, Chen Z R, et al. [Effects of UV-induced DNA damage on vector ligation and transformation into bacterial cells][J]. Nan Fang Yi Ke Da Xue Xue Bao,2010,30(1):111-113.
    [77]Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature,1975,256(5517):495-497.
    [78]陈振瑞,李长征,贺微,等.采用哺乳动物细胞表面展示技术构建全长人源抗肾癌抗体基因库[J].南方医科大学学报,2010(5):1059-1062.
    [79]贺微,李长征,陈振瑞,等.快速构建哺乳动物细胞表面展示的全长人抗体基因库[J].南方医科大学学报,2011(2):308-312.
    [80]黄婉玲,李长征,陈振瑞,等.紫外线照射所致的DNA损伤对连接转化的影响[J].南方医科大学学报,2010(1):111-113.
    [81]Cf B I D B J S. Phage Display:A Laboratory Manual.[M].2000.
    [82]Glanville J, Zhai W, Berka J, et al. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire[J]. Proc Natl Acad Sci U S A,2009,106(48):20216-20221.
    [83]Vaughan T J, Williams A J, Pritchard K, et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library[J]. Nat Biotechnol,1996,14(3):309-314.
    [84]Yin C C, Ren L L, Zhu L L, et al. Construction of a fully synthetic human scFv antibody library with CDR3 regions randomized by a split-mix-split method and its application [J]. J Biochem,2008,144(5):591-598.
    [85]Zhou C, Jacobsen F W, Cai L, et al. Development of a novel mammalian cell surface antibody display platform[J]. MAbs,2010,2(5):508-518.
    [86]Clackson T, Hoogenboom H R, Griffiths A D, et al. Making antibody fragments using phage display libraries[J]. Nature,1991,352(6336):624-628.
    [87]Feldhaus M J, Siegel R W. Yeast display of antibody fragments:a discovery and characterization platform[J]. J Immunol Methods,2004,290(1-2):69-80.
    [88]Rajewsky K. Clonal selection and learning in the antibody system[J]. Nature, 1996,381(6585):751-758.
    [89]Zhang W J, Liu X R, Li G C, et al. [Construction and selection of human Fab antibody phage display library of extracellular domain of HER 2][J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2011,27(3):297-300.
    [90]Leong M K, Chen C, Shar K C, et al. Selection and characterization of lipase abzyme from phage displayed antibody libraries[J]. Biochem Biophys Res Commun,2007,361(3):567-573.
    [91]Hoogenboom H R. Selecting and screening recombinant antibody libraries[J]. Nat Biotechnol,2005,23(9):1105-1116.
    [92]Rojas G, Lamdan H, Padron S, et al. Efficient construction of a highly useful phage-displayed human antibody repertoire[J]. Biochem Biophys Res Commun,2005,336(4):1207-1213.
    [93]Zhou I, Zhang Z H, Li C Z, et al. Four-way ligation for construction of a mammalian cell-based full-length antibody display library[J]. Acta Biochim Biophys Sin (Shanghai),2011,43(3):232-238.
    [94]Zhou Y, Chen Z R, Li C Z, et al. A novel strategy for rapid construction of libraries of full-length antibodies highly expressed on mammalian cell surfaces[J]. Acta Biochim Biophys Sin (Shanghai),2010,42(8):575-584.
    [95]Aires D S F, Corte-Real S, Goncalves J. Recombinant antibodies as therapeutic agents:pathways for modeling new biodrugs[J]. BioDrugs, 2008,22(5):301-314.
    [96]Ho M, Nagata S, Pastan I. Isolation of anti-CD22 Fv with high affinity by Fv display on human cells[J]. Proc Natl Acad Sci U S A, 2006,103(25):9637-9642.
    [97]Mazor Y, Van Blarcom T, Mabry R, et al. Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli[J]. Nat Biotechnol, 2007,25(5):563-565.
    [98]Zhou Y, Chen Z R, Li C Z, et al. A novel strategy for rapid construction of libraries of full-length antibodies highly expressed on mammalian cell surfaces[J]. Acta Biochim Biophys Sin (Shanghai),2010,42(8):575-584.
    [99]Zhou C, Jacobsen F W, Cai L, et al. Development of a novel mammalian cell surface antibody display platform[J]. MAbs,2010,2(5):508-518.
    [100]黄婉玲,李长征,陈振瑞,等.紫外线照射所致的DNA损伤对连接转化的影响[J].南方医科大学学报,2010,30(1):111-113,117.
    [101]Zhao X L, Chen W Q, Yang Z H, et al. Selection and affinity maturation of human antibodies against rabies virus from a scFv gene library using ribosome display[J]. J Biotechnol,2009,144(4):253-258.
    [102]Kawamura M, Shibata H, Kamada H, et al. A novel method for construction of gene fragment library to searching epitopes[J]. Biochem Biophys Res Commun,2006,346(1):198-204.
    [103]Seeburg P H, Shine J, Martial J A, et al. Nucleotide sequence and amplification in bacteria of structural gene for rat growth hormone[J]. Nature, 1977,270(5637):486-494.
    [104]Higuchi K, Araki T, Matsuzaki O, et al. Cell display library for gene cloning of variable regions of human antibodies to hepatitis B surface antigen[J]. J Immunol Methods,1997,202(2):193-204.
    [105]Ho M, Nagata S, Pastan I. Isolation of anti-CD22 Fv with high affinity by Fv display on human cells[J]. Proc Natl Acad Sci U S A, 2006,103(25):9637-9642.
    [106]Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression[J]. Trends Biotechnol,2004,22(7):346-353.
    [107]Chiapello H, Lisacek F, Caboche M, et al. Codon usage and gene function are related in sequences of Arabidopsis thaliana[J]. Gene,1998,209(1-2):C1-C38.
    [108]Eyre-Walker A, Bulmer M. Synonymous substitution rates in enterobacteria[J]. Genetics,1995,140(4):1407-1412.
    [109]ROMERO H Z M H. Codon usage in Chlamydia trachomatis is the result of stand-specific mutational bias and a complex pattern of selective forces[J]. Nucleic Acids Res,2000(28):2090-2804.
    [110]Bierne N, Eyre-Walker A. Variation in synonymous codon use and DNA polymorphism within the Drosophila genome[J]. J Evol Biol, 2006,19(1):1-11.
    [111]Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms[J]. Mol Biol Evol,1985,2(1):13-34.
    [112]Kanaya S, Yamada Y, Kinouchi M, et al. Codon usage and tRNA genes in eukaryotes:correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis[J]. J Mol Evol,2001,53(4-5):290-298.
    [113]Chiapello H, Ollivier E, Landes-Devauchelle C, et al. Codon usage as a tool to predict the cellular location of eukaryotic ribosomal proteins and aminoacyl-tRNA synthetases[J]. Nucleic Acids Res,1999,27(14):2848-2851.
    [114]Zhang L, Li W H. Mammalian housekeeping genes evolve more slowly than tissue-specific genes[J]. Mol Biol Evol,2004,21(2):236-239.
    [115]Sharp P M, Li W H. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications [J]. Nucleic Acids Res,1987,15(3):1281-1295.
    [1 16]王力华,付士红,唐青,等.三重融合PCR法构建感染性辛德毕斯嵌合病毒cDNA克隆[J].病毒学报,2006,22(2):107-113.
    [117]Sorensen M, Mak T N, Hurwitz R, et al. Mutagenesis of Propionibacterium acnes and analysis of two CAMP factor knock-out mutants[J]. J Microbiol Methods,2010,83(2):211-216.
    [118]朱春红,孙晓庆,何素芬,等.基于Red同源重组和高效自杀性载体系统构建肠炎沙门氏菌突变株方法的比较[J].中国预防兽医学报,2009,31(2):81-84,98.
    [119]李敏,杨谦.一种高效构建同源重组DNA片段的方法——融合PCR[J].中国生物工程杂志,2007,27(8):53-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700