用户名: 密码: 验证码:
细菌溶磷作用及其对磷矿粉重金属释放和小麦盐胁迫的缓解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶磷微生物是农业生态系统中一类重要的土壤微生物,在农业土壤和自然土壤中广泛存在。由于不同溶磷微生物对某一特定的环境适应存在差异,导致它在不同条件下的溶磷功能发挥显著不同,因而有针对性地掌握不同生态环境中溶磷微生物的分布特征,不同类型溶磷微生物的溶磷特性,是溶磷微生物走向田间应用的前提。本文通过调查不同盐渍土区、不同重金属污染区以及不同磷矿种类成矿区的溶磷微生物资源,研究了不同生态区土壤中溶磷微生物分布的特殊性以及盐分、重金属对溶磷微生物数量分布和种群结构的影响。在此基础上,开展了溶磷细菌对磷矿粉中部分伴生性重金属元素的耐受性与其溶解磷矿粉能力的关系研究;产多糖溶磷细菌对土壤难溶性固定磷的溶磷特性研究;胞外多糖在产多糖溶磷细菌溶磷过程中的作用机理探讨以及盐渍土中接种溶磷细菌EnHy-401对小麦盐胁迫的缓解效应及缓解机理研究。具体结果如下:
     分别在新疆、山东、江苏的盐渍土区,湖南、江苏、安徽的重金属污染区,湖南中方、石门、浏阳的磷矿区采集土样,从中分离出12个属的溶磷微生物,它们分属于细菌、真菌和放线菌。对溶磷细菌进行分离纯化,得到18个具有溶磷能力的纯菌株。分析不同土壤条件下溶磷微生物的多样性特点及其影响因素发现,重金属污染土壤和盐渍土中均以假单胞菌属(Pseudomonas)、芽孢杆菌属(Bacillus)的出现频度最高,盐渍土中有机质含量对溶磷细菌种群丰度的影响程度大于对溶磷细菌数量丰度的影响程度。重金属污染土壤中,综合污染指数和有机质含量是影响溶磷细菌数量的主要因素。单一重金属严重污染下的土壤,其种群丰度小于多金属复合下的轻度污染。磷矿区土壤中的溶磷细菌分布受磷矿石速效磷含量、土壤有机质水平以及土壤重金属本底值的复合影响,具有适度的速效磷水平和一定的有机质含量的磷矿区,其溶磷细菌数量多,种群丰富,反之,则数量少,种群简单。因此,一个生态区溶磷微生物种群多样性可在一定程度上反映该生态区的生态环境条件。
     以在NBRI-溴苯酚蓝(BPB)液体培养条件下BPB的褪色程度和滤液在680 nm处的吸光度作为筛选高效溶磷菌株的主要标准,在所分离纯化的18个菌株中,选出HH-1、HH-2、EnHy-401、ArHy-505和AzHy-510等高效溶磷菌株,根据其生理生化特性和16SrDNA的序列分析,将HH-1、HH-2、EnHy-401、ArHy-505和AzHy-510初步鉴定为肠杆菌属(Enterobacter)、成团泛菌(Pantoea agglomerans)、球状节杆菌(Arthobacter globiformis)、肠杆菌属(Enterobacter)和德克斯氏固氮菌(Dexiragumosa),均分离于湖南中方磷矿区土壤。此结果显示,从缺磷环境下分离到的溶磷微生物并不一定具备高溶磷活性,溶磷微生物并不局限于在缺磷土壤中存在。
     通过对溶磷细菌溶解不同磷矿粉以及连续发酵磷矿粉的溶磷效果研究,发现,磷矿粉中的部分伴生性金属元素会随着磷的释放而溶出,,其溶出的难易程度随伴生性金属元素在随磷矿粉中的位置而不同。在测定的5种伴生性金属元素中,Zn是与磷的释放联系最密切的金属元素,随磷释放的Zn量最多可占该磷矿粉中总Zn量的90%以上,其溶出率可间接反映磷矿粉磷的释放程度。而Pb是不易随磷溶出的伴生性金属元素。这些伴生性金属的溶出对溶磷细菌的生长和溶磷相关代谢产生抑制作用,从而影响菌株溶磷作用的发挥。在一般情况下,菌株在同一磷矿粉的第二次发酵的溶磷能力要大于对该磷矿粉第一次发酵的溶磷能力。在低磷条件下不耐锌的溶磷菌,其在发酵不同批次磷矿粉间的溶磷能力差异越大;伴生性锌较稳定的磷矿粉,其在菌株不同次发酵中的溶磷效果差异较小。因此,在选用溶磷菌提高磷矿粉生物有效性时,应兼顾其溶磷能力与低磷下的抗锌能力。
     通过比较不同类型溶磷细菌对土壤不同难溶性磷酸盐的活化效果发现,不同类型的溶磷细菌对不同形式固定态磷的活化有不同的针对性。产多糖溶磷细菌溶解Al-P和Fe-P的能力较弱,但在促进Ca-P型固定磷的溶解能力上具有明显优势。将各产多糖溶磷菌株磷酸钙发酵液中的速效磷分别与发酵液中的总多糖与胞外多糖做相关性分析,发现,产多糖溶磷细菌的溶磷能力与胞外多糖高度相关。根据胞外多糖中磷与胞外多糖提取前后上清液Pi之差的高度相关性(r=0.97,p<0.05),可以推测胞外多糖具有吸持溶液中可溶性磷的能力,此持磷能力的大小预示着胞外多糖对有机酸溶磷协同效应的强弱。除此之外,胞外多糖与有机酸溶磷的协同效应还受到胞外多糖浓度、有机酸种类的影响。有机酸溶磷动力曲线与有机酸-胞外多糖复合溶磷动力曲线的差异表明,多糖对有机酸的协同溶磷效应主要是改变了有机酸的溶磷动力学特征,在有机酸单独溶解磷酸三钙时,16 h时磷酸钙的溶解趋于平衡。在有多糖存在的条件下,磷酸钙的溶解一直可以缓慢持续到40 h,溶解平衡时间的延迟,表明在此之前的溶解平衡被打破,并向磷释放的方向发生了移动,使溶磷量提高11.6%。难溶性磷酸钙盐的溶解动态平衡与三个因素有关:环境中的酸度;溶液中的钙离子;溶液中的H_2PO_4~-或HPO_4~(2-)量。由于多糖具有一定的持磷作用,因此,多糖对有机酸溶磷动态平衡的改变可以理解为多糖通过对有机酸溶下的速效磷的即时吸持,从而影响了了单纯有机酸溶磷的平衡,并推动了平衡向磷溶解方向移动,促进了磷酸钙盐的持续溶解,但这种促进作用受到多糖持磷量的限制。环境中的C/N、N源、可溶磷水平分别作用于产多糖溶磷菌EnHy-401的溶磷相关因子(有机酸、多糖),溶磷相关因子与溶磷的相关程度决定了产多糖溶磷细菌EnHy-401的溶磷作用受营养条件中C/N、氮源以及可溶性磷酸盐水平等不同变量的影响程度,该菌株只有在适合于产溶磷高效有机酸的前提下,才有较强的溶磷作用,如果又有持磷多糖的分泌,其溶磷作用会更强。
     盆栽试验结果显示,产多糖溶磷细菌EnHy-401可以在滨海盐渍土中很好地定殖,并在一定程度上提高盐渍土中的有效磷水平,改变了盆栽条件下小麦根系形态的分布特证。与对照相比,生长在接种处理的小麦,其根系表现出根轴数量增多而长度减少,侧根密度降低而长度增加的现象,该现象既是小麦磷素营养得到改善的结果,又进一步加强了小麦对磷、钾、钙以及镁等矿质营养元素的吸收,从而对小麦盐胁迫产生缓解效应,与对照相比,接菌处理的小麦植株中对磷、钙、钾和镁的吸收率分别比对照提高了34.4%、36.3%、31.5%、6.3%。该菌株所表现出来的对盐渍土壤中磷素有效性的提高、对小麦吸收K~+、Ca~(2+)、Mg~(2+)、P等矿质营养的促进作用以及小麦生长与矿质营养元素吸收之间高度的相关性表明,溶磷菌株Enterobacteria sp.EnHy-401对小麦盐胁迫的缓解效应主要是通过改善盐渍土中部分矿质营养的供应,增强植株对P、Ca,Mg、K等营养元素的选择性吸收以及多糖调渗作用而实现,该缓解效应受到土壤盐分和营养基质的影响,在贫瘠的高盐分盐渍土中,添加适量的生物有机肥可以提高土壤有机质含量,降低盐胁迫对溶磷菌株溶磷活性的抑制作用,提高菌株对植株盐胁迫的缓解作用。
Phosphate-solubilizing microbes are one kind of important soil microbes in agricultural ecosystem,which exist extensively in the agricultural and natural soil. Grasping the microbes' distribution and their phosphate-solubilizing function characteristics are the preconditions for their application in practice because there is significant difference among different conditions in phosphate-solubilizing function for their different adaptations to certain environment.Their special distribution,the effect of salinity and heavy metals on their quantity and population structure and the relationship between their resistance to heavy metals and p-solubilizing ability,etc.were studied in this study.The results are as follows:
     12 families of P-solubilizing microbes were isolated from the soil samples collected respectively from the saline area in XinJiang,ShanDong and JiangSu,the polluted area by heavy metal in HuNan,JiangSu,AnHui,the Phosphorus Mineral Region in ZhongFang, ShiMen,LiuYang of HuNan.18 pure strains were isolated from the P-solubilizing bacteria. Analysis of the diversity and the effect of P-solubilizing microbes under different soil conditions showed that Pseudomonas sp.and Bacillus sp.were found high-frequency in the area of heavy metal and salt.The influence degree of organic matter content in the area of salt on popular abundance of P-solubilizing bacteria is lager than number abundance.In the soils polluted by heavy metals,the integrated pollution index and organic matter content are the main influence factors of the number of P-solubilizing bacteria.The popular abundance in the soils heavy polluted by single heavy metal is smaller than in the soils light polluted by combined heavy metals.In the soils of phosphorus mineral region,the distribution of P-solubilizing bacteria was influenced by the content of soil available phosphor,the level of soil organic matter,and the soil background value of heavy metals.There are large quantities of P-solubilizing bacteria and abundant population in the phosphorus mineral region with the proper level of available phosphor and some organic matter content,on the contrary there are few quantities of P-solubilizing bacteria and simple population. Therefore,to a certain extent,the diversity of P-solubilizing microbes can reflect the environmental conditions of this ecological area.
     The main screening standards of high efficiency P-solubilizing strains were based on the degree of discoloration of BPB cultured in the liquid of NBRI-BPB and the absorbance OD680nm.5 high efficiency P-solubilizing strains named HH-1,HH-2,EnHy-401, ArHy-505 and AzHy-510 were screened from 18 isolated strains.Those bacteria were all isolated from Phosphorus Mineral Region in ZhongFang of HuNan and belong to the Enterobacter,Pantoea agglomerans,Arthobacter globiformis,Enterbacter,and Dexira gumos separately,which were identified primarily according to their physiological and biochemical characteristics and sequence analysis of 16SrDNA.The results indicated that P-solubilizing microbes isolated from low-phosphorus environment may not have high efficiency P-solubilizing activity.
     Studies on the solubilization of phosphate rock by P-solubilizing bacteria and the effects of soluble phosphate of continuous batch fermentation of phosphate rock show that associated heavy metal in phosphate rock will leach out with the phosphorus release.The degree of difficulty of leach is different according to the association of associated heavy metal in phosphate rock.Test on the 5 associated heavy metals,Zinc is significantly related to the phosphorus release.The amount of released Zinc is about 90%of the total amount of Zinc in phosphate rock.The Leach rate of Zinc could indirectly reflect the degree of the phosphorus release in phosphate rock.Among the associated heavy metals,Pb shows high stability.The leach of those associated heavy metals will inhibit the growth of P-solubilizing bacteria and the metabolism of soluble phosphate,which leads to affect the advantage of phosphate-solubilization of bacteria.Generally,the ability of P-solubilizing of bacteria in the second fermentation is higher than the first fermentation.Under low-phosphorus conditions,the P-solubilizing bacteria is more sensitive to Zinc,the difference of the ability of the phosphate solubilization in different batch fermentation is significantly more;on the contrary,the difference of the ability of the phosphate solubilization in different batch fermentation is less in the phosphate rock with the stable associated Zinc.Therefore,the ability of the P-solubilizing and the ability of the resistance of Zinc in low-phosphorus conditions should be taken full consideration during selection of P-solubilizing bacteria to improve the effect of solubilization of phosphate rock.
     Results of P-solubilization by different P-solubilizing bacteria on different insoluble phosphates showed that P-solubilizing bacteria producing polysaccharide seem to be more efficient in solubilization of the calcium phosphates,but less effective in solubilizing AlPO_4 and FePO_4 compared to Bacillus megaterium P17.Analyzing the relativity between the amount of soluble phosphate in cultures and the total exopolysaccaride production,and the free water-soluble exopolysaccaride yield,respectively,it was found that the phosphate solubilization of P-solubilizing bacteria producing polysaccharide was high related to the production of the exopolysaccaride.Basing on the high relativity between the phosphorus content in exopolysaccaride and the dispersion of phosphorus concentration in superuatant between before and after EPS extracted,we could presume that the exopolysaccaride produced by P-solubilizing bacteria had ability for phosphorus-holding,which influenced the synergistic effects of exopolysaccaride and organic acid on Ca_3(PO_4)_2 solubilization. The difference existed in the solubilization kinetics of Ca_3(PO_4)_2 in NBRIP-citric acid medium with or without exopolysaccaride showed that the addition of exopolysaccaride changed the balance in homeostasis of by P-solubilization and resulted in greater phosphorus release from insoluble phosphate.The P-solubilizing activity of EnHy-401 was affected by the rate of carbon,nitrogen resource,and KH_2PO_4 content in culture.
     The results of spot experiment showed that the strain EnHy-401 had the ability to activate the insoluble accumulated phosphorus in saline soil and enhanced nutrient uptake efficiency by wheat plants,then conferred resistance in wheat plants to salt stress and resulted in a significant growth increase.In saline soil inoculated with Enterobacteria sp EnHy-401,available phosphorus and exchangeable calcium was increased from 6.4 mg kg-1 and 1162 mg kg-1 to 10.3 mg kg-1 and 1214 mg kg-1,respectively.Wheat seedling grown in soil inoculated with the EnHy-401 strain increased shoot weight by 28.1%and root weight by 14.6%compared to the control.Phosphorus,calcium,potassium,and magnesium contents in shoots increased 34.4%,36.3%,31.5%,and 6.3%compared to the control,respectively.In our experiments,the fact that the increases in available P,biomass P, and Ca2+ concentration in saline soil treated with PSB Enterobacter sp EnHy-401 inocula (Table 2),and high relativity between the P,Ca,K,and Mg content in wheat tissue and dry matter(Table 4) indicated that PSB Enterobacter sp EnHy-401 suppressed the adverse effect of salinity stress in plants through nutrient(P and Ca) supply and nutrient(K and Mg) uptake enhancement.
     The phosphate solubilizing activity of Enterobacteria sp EnHy-401 and the amelioration of salt stress on wheat plants by the strain varied with the salinity levels and content of organic matter in the saline soil.Inoculation of the strain in low salinity soil had a greater increase in available phosphorus and greatly alleviated the negative effects of salt in wheat plants compared to plants cultivated in high saline soil.Combined inoculation of Enterobacter sp EnHy-401 and organic fertilizer application brought about maximum suppression of salt stress to wheat and resulted in the maximum increase of wheat biomass (65.4%) under high salinity condition.
引文
1. Abebe T, Guenzi A, Martin B, et al.. Tolerance of mannitol-accumulating wheat towater stress and salinity[J].Plan Physiol., 2003,131:1748-1755.
    
    2. Acleton-Jansen M, Goosen N, Fayet O, et al.. Cloning, mapping, and sequencing of the gene encoding Escherichia coli quinoprotein glucose dehydrogenase [J], J. Bacteriol. 172 (1990):6308-6315
    
    3. Adjit Varki. Essentials of glycobiology [M] .2002
    
    4. Agnihotri VP. Solubilization of insoluble phosphates by some soil fungi isolated from nursery seed beds [J]. Can J Microbiol, 1970, 877-880
    
    5. Ahmad N and Jha KK. Solubilization of rock phosphate by microorganism isolated from Bihar soil [J]. J. Can. Appl. Microbial. 1968.14, 89-95
    
    6. Alan G, Trevor L, Jacquelyn B. Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases[J]. Biochimica et Biophysica Acta[J], 2003,1647: 266- 271
    
    7. Amal CD, Anjan D, Debatosh M. Effect of the herbicides oxadiazon and oxyfluorfen on phosphates solubilizing microorganisms and their persistence in rice fields[J].Chemosphere .2003,53:217-221
    
    8. Amal CD, Anjan D. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal2003 .Chemosphere xxx (2006) xxx-xxx
    
    9. Appelt H. Effect of oganic compounds on the adsorption of phosphate. Soil Sci. Soc. Am. P roc, 1975, 39(4): 628-630
    
    10. Asea PEA, Kucey RMN, Stewart JWB. Inorganic phosphate solubilization culture and soils by two Penicillium species in solution [J]. Soil Biol. Biochem., 1988,20(4):459-464
    
    11. Babu-Khan S, Yeo TC, Martin W, et al..Cloning of a mineral phosphate solubilizing gene from Pseudomonas cepacia [J], Appl. Environ. Microbiol., 1995,61:972-978
    
    12. Banik S and Dey BK. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solu-bilizing microorganisms [J]. Plant and Soil, 1982, 69: 353-358
    
    13. Barajas M, Brookes pC. ffects of heavy metals from a mine in Gipuzkoa, Spain on soil microbial biomacs and organic matterdvnamics[C] .Trans. 15th world Congr. Soil sci., 1994, V4b: 6o-61A capulco, Mexico.
    14. Batten GD. A review of PhosPhorus effieieney in wheat.Planl and soil,1992,146:163-168
    
    15. Bolan NS, Hedley MJ, Harrison R, et al. Influence of manufacturing variables on characteristics and the agronomic values of partially acidulated phosphate fertilizers. Fertilizer Research (1990)26: 119-138.
    16. Bolan NS, Hedley MJ, Harrison R, et al. Influence of manufacturing variables on characteristics and the agronomic values of partially acidulated phosphate fertilizers. Fertilizer Research, 1990, 26: 119-138.
    17. Boriel F and Rubio R. Total and organic phosphorus in Chilean volcanic soils fosforo total Y fosforo organic en suelos volcnicos de Chile.GayanaBot, 2003,60(1):69~78
    18. Bowman RA and Cole CV. An exploratory methord for frationation of organic phosphorus from grass land soils.Soil Sci. 1978,125:95-101
    19. Braum SM.Mobilization of phosphorus and other mineral nutrients by citrate in the rhizosphere of Lupinus albus LUniv. of Wisconsin, Madison, 1995
    20. Carlson RW. Rhizobium[C] Broughton. Nitrogen FixationVol.2. Oxford: Clarendon Press, 1982: 199-234
    21. Cerezine PC, Nahas E, Banzatto DA. Soluble phosphate accumulation by Aspergillus niger from species fluorapatite[J]. Appl. Microbol. Biotechnol., 1988, 29: 501-505
    22. Chabot R, Beauchamp CJ, Kloepper JW. Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobia leguminosarum biovarphaseoli [J]. Soil Biol. Biochem,1998,30(12): 1615-1618
    23. Chang IP, Kommedahl T. Biological control of seedling blight of corn by coating kernels with antagonistic microorganisms [J]. Phytopath., 1969, 8:1395-1401
    24. Chhonkar PK, Subbar Rao NS. Phosphate solubilization by fungi associated with legume root nodules [J]. Can. J. Microbiol., 1967,13:749- 753
    25. Cramer G, Alberico G, Schmid T. Salt tolerance Is Not Associated with the sodium accumulation of two maize hybrids [J]. Aust.J.PlantPhysiol.,1994, 21:675-692.
    26. Cunningham JE, Kuiack C, Komendant KE. Viability of Penicillium bilaji and Colletotrichum gloeosporioides conidia from liquid cultures [J]. Can. J. Bot. 1990,68: 2270-2274
    27. Dukee R, Johnson CR, Koch KE. Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero,one or two halves[J].New Phytol.,1986,104:583-590.
    28. Dwairi I M. Renewable, controlled and environmentally safe phosphorus release in soils from mixtures of NH4+-phillipsite tuff and phosphate rocks [J]. Environmental Geology, 1998, 34 (4)
    29. Earl K, Syers J, McLaughlin, RM. Origin of the effect of citrate, tartarate, and acetate on phosphate sorption by soils and synthetic gels[J]. Soil Sci. Soc. Am. J., (1979)43,674-678.
    30. Easterwood GW, Sartain JB. Organic coating on P fertilizers influence on plant growth on a Florida Ultisol.Soil and Crop Sci Soc Fla Proc, 1990,49:1-5
    31. Eberhardt and Wegamnn. Effects of abscisic acid and prune on adapation of culture to salinity and osmotic stock [J]. J Plant Physiol, 1989, 76: 282-288
    32. Edwards U, Rogall T, Blocket H, et al. Isolation and direct complete determination of entire genes [J]. Nucleic Acids Res. 1989,17(19):7843-7853
    33. Elliott JM, Mathre DE, Sands DC. Identification and characterization of rhizosphere-competent bacteria of wheat[J].Appl.Environ.Microbiol.,1987,53:2793-2799
    34. Foyer CH. Feedback inhibition of photosynthesis through source sink requlation in leaves [J]. Plant Physial. Biochem., 1988, 26 (4) :483-492.
    35. Foyer CH. The basis for sauce-s6ik interactiop in leaves [J]. Plant Physid. Biochem., 1987. 25(5):649-657.
    36. Fredeen AL, Raab TK, Rao IM. Effects of phosphorus nutrition on photosynthesis in Ctycine Max L [J]. Merr. Planta., 1990,181: 399-405
    37. Gahoonia TS and NieLsen NE. Variation in acquisition of soil among wheat and barley genotypes [J]. Plant and Soil,1996,178: 223-230
    38. Gerke L. Phosphate, aluminum, and iron in the soil solution of three different soils in relation to varying concentrations of citric acid [J]. Z. Pflanzenernahr. Bodenk, 1992,155:17-22.
    39. Ghani A, Rajan SSS Differential availability of partially sulphuric and phosphoric acidulated phosphate rocks [J] I. Plant response, 2005,3: 251-259
    40. Ghani S, Rajan A, Lee. Ehancement of phosphate rock solubility through biological processes.Soil [J]. Biol.Biochem,1994,26:127-136
    41. Goldstein AH, Liu ST. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola [J]. Bio/Technology, 1987,5: 72-74
    42. Goldstein AH, Stephen PM, Danon A. Phosphate satarvation inducible metabolism in Lycopersiconesculentum, III.Changes in protein secretion under nutrient stress[J]. Plant Physicol, 1989, 91:175-182
    43. Gupta R, Singal R, Shankar A. A modified plate assay for screening phosphate solubilizing microorganisms[J].J Gen Appl Microbiol 1994, 40: 255-260
    44. Haider AK, Chakrabartty PK. Solubilization of inorganic phosphate by Rhizobium[J]. Folia Microbiol 1993, 38: 325-30
    45. Hakan Wallander. Uptake of P from apatite by Pinu.c sylvestri,c seedlings colonized by different ectomycorrhizal fungi[J]. Plant and Soil, 2000,218: 249-256
    46. Haque L, Lupwayi N.Z., Sali H. Agronomic evaluation of unacidulated and partially acidulatedMinjingu and Chilembwe phosphate rocks for clover production in Ethiopia[J]. European Journal of Agronomy, 1999,10: 37-47.
    47. Hernandez J, Almansa M. Short-term effects of salt stress on antioxidant system and leaf water relations of pealeaves [J]. Physiologia Plantarum, 2002,115:251-257.
    48. Hideaki U, Kousuke S. Phosphate deficiency in Maize.II.Enzyme activities.Plant Cell Physiol,1991, 32:1313 -1317
    49. Hoffland E. qualitative evaluation of the role of organic acid exudatian in the mobilization of rock phosphate by rape [J]. Plant and Soil. 1992,140: 279-289
    50. Hynes R J. Active ion uptake and maintenance of cationanion balance: a critical examination of their role in regulating rhizospher pH [J]. Plant and Soil, 1990,126: 247-264.
    51. Illmer P, Schinner F. Solubilization of inorganic calcium phosphates solubilization. Mechanisms[J]. Soil. Biol. Biochem.,1995,27(3):257-263
    52. Isberword KF. Fertilizer use and environment. In Proceedings of Symposium: plant nutrition management for sustainable agricultural growth. N.Ahmed et al ed. Pakistan,1998,pp 57-76
    53. Jackson S, Hendricks B and Vasta BM. Phosphorylation by barley root mitochondria & phosphate absorption by barley roots [J]. Plant Physiol. January; 1962,37(1): 8-17
    54. Johnston HW. The solubilization of "insoluble" phosphates: The reaction of some organic acids on iron and aluminium phosphate [J]. New Zealand J. Sci. 1959. 2: 215-218
    55. Kabznelson H, Peterson EA, Rouatt JW. Phosphate-dissolving microorganisms on seed and in the root zone of plants[J].Canandian Journal of Botany,1962,40(9):1181-1186
    56. Kang SC, Ha CG, Lee TG, et al. Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS102 [J]. Curr. Sci. 2002, 82, 439-442
    57. Karakign AL. Growth and mineral acquisition by mycorrhizal tomato grown under salt stress[J].Mycorrhiza,2000,10:51-55
    58. Khasawneh FE and Doll EC. The use of phosphate rock for direct application to soils [J], Advances in Agronomy, 1978, (30): 159-206.
    59. Kim KY, McDonald GA, Jordan D Solubilization of hydroxypatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium [J]. Biol Fertil Soils,1997b,24:347-352
    60. Kpomblekou KA, Tabatabai MA. Effect of organic acids on release of phosphorus from phosphate rock[J].Soil Science, 1994,158(6):442-453
    61.Kucey RMN.Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus solubilizing Penicillium bilaji strain and vesicular arbuscrlar mycorrbizal fungi.Applied[J].Environmental Microbiology,1989,53:2699-2703
    62.LaiTung-ming和Eber1DD(万强译).应用磷灰石和交NH4-斜发沸石的混合物控制和重新释放土壤中的磷.土壤学进展[M],1988,16(6):48-51
    63.Lauer MJ,Pallardy SG,Blevirs DG.Whole leaf carbon exchange characteristics of phosphate deficient soybean[J].Plant Physiol.,1989,91:848-854
    64.Laheurte F.and Berthelin J.Effect of phosphate-solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus[J].Plant and soil,1988.105:11-17
    65.Lei TM,Dennis D.Eberls:Controlled and renewable release of phosphorus in soils from mixtures of phosphate rock and NH4+-exchanged clinoptilolite[M].Zeolites,6(2)1986,129-132
    66.Lin TF,Huang HI,Shen FT.The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174[J].Bioresource Technology,2006,97:957-960
    67.Louw HA,Webley DM.A study of soil bacteria dissolving certain mineral phosphate fertilizers and related compounds[J].J.Appl.Bacteriol,1959,22:227-233
    68.Lyons J B,et al.Spatial and temporal variability of phosphorus retention in a Riparian forest soil[J].JEQ,1998,27:895-903
    69.Magid J.Vegetation effects on phosphorous fractions in set-aside soils[J].Plant and Soil,1993,149:111-119
    70.Mahimairaja S,Bolan NS,Hedley MJ.Dissolution of phosphate rock during the composting of poultry manure:an incubation experiment[J].Fert.Res.1995.40,93-104.
    71.Maver AJ,Umberger EJ,Stubbs JJ.Fermentation of concentrated solutions of glucose to gluconic acid[M].Ind.Eng.Chem.,1940,32:1379-1383
    72.Mba CC.Rock phosphate solubilizing Streptosporangium isolates from casts of tropical earthworms[J].Soil Biol.Biochem.1997.29,381-385.
    73.Mehta S,Nautiyal CS.An efficient method for qualitative screening phosphate of phosphate-solubilizing bacteria[J].Current microbiology,2001,43:51-56
    74.Melvin P et al.Fungal attack on rock;solubilization and altered infrared spectra.Science,1970,169:981-987
    75.Mikanova O,Novakova J.Evaluation of the P-solubilizing activity of soil microorganisms and its sensitivity to soluble phosphate-Rostlinna Vyroba,2002,48(2):397-400
    76.Narsian V,Patel HH.Aspergillus aculeatus as a rock phosphate solubilizer[J].Soil Biol.Biochem. 2000,32,559-565
    
    77. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms [J]. FEMS Microbiol Lett ,1999,170:265-270
    78. Nicholas E. Odongo K. Hyoung-Ho, et al. Romney. Improving rock phosphate availability through feeding, mixing and processing with composting manure [J]. Bioresource Technology, 2007, 98:2911-2918
    79. Nivedita P. Khairnar, Hari S. Misra, et al. Apte.Pyrroloquinoline-quinone synthesized in Escherichia coli by pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization[J].Biochemical and Biophysical Research Communications,2003, 312:303-308
    80. Noordwilk van M, Willigen de P, et al. A simple model f P uptake by crops as a possible basis for P fertilizer recommendation [J]. Neth. J. ARric. Sci,1990,38:317-332
    81. Oberson A, Fardeau JC, Besson JM, Sticher H. Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods[J].Biol. Fertil. Soils, 1993,16:111-117
    82. Ocampo JA, Barea JM, Montoya E. Bacteriostasis and the inoculation of phosphate-solubilizing bacteria in the rhizosphere [J]. Soil Biol. Biochem. 1978,10(5): 439-440
    83. Ozdemir G, Ceyhan N, Manav E. Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions [J]. Bioresource Technology, 2005,96 (13):1677-1682
    84. Patgiri I, Bezbarah B. Strain contributing to phosphorus mobilization in acid soils [J]. Indian J. Agric. Sci., 1990,60(3): 197-200
    85. Paul NB, Sundara WVB. Rao, Phosthate-dissolving bacteria in the rhizosphere of some cultivated hegumes[J].Plant and Soil,1971,35:127-132
    86. Pikovskaya RI. Mobilization of phosphates in soil in connection with the vital activities of some microbial species [J]. Mikrobiologiya, U.S.S.R. 1948,17: 362-370
    87. Pfeiffer, C.M., Bloss, H.E., 1988. Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization [J]. New Phytol 108, 315-321.
    88. Raghothama KG. Phosphate acquisition [J]. Annu. Rev. Plant Physiol.Plant Mol. Biol., 1999, 50:665-693
    89. Rajan SSS. Partially acidulated phosphate rock as fertilizer and acidulation in soil of the residual rock phosphate[J]. New Zealand Journal of Experimental Agriculture, 1987, 15: 177-184.
    90. Rao IM, Abadia J,Terry N.The role of orthophosphate in the regulation of photosynthesis in vivo[M].In Progress in photosynthesis,1987,325 327
    91. Rao IM, Arulanantham AR, Terry N. Leaf phosphate status, photosynthesis and carbon partition in sugar beet. II. Diurnal changes in sugar phosphates, adenylates, and nicotinamide nucleotides [M]. Plant Physiol., 1989,90:820-826
    92. Robin D, Aline C, Victor H, Jean T. The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea [J]. Soil Biology &Biochemistry ,2005,37:1460-1468
    93. Rodriguez D, GoudriaanJ. Phosphorus nutrition and water stress tolerance in wheat plants [J]. J Plant Nutrition, 1996,19(1):29-39.
    94. Rodriguez H q Roberts J K M, Jordan W R, et al. Growth water relation and accumuation of organic and inorganic solutes in roots of maize seedings during salt stress [J]. Plant Physiol, 1997, 113: 881-893
    95. Roos W, Luckner M. Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicilliu cyclopium [J]. Journal of General Microbiology, 1984,13: 1007-1014.
    96. Rosendal CN, Rosendahl S. Influence of vesicular arbuscular mycorrhizalfungi (Glomuss pp.) on response of cucumber(Cuc missativus)to salt stress[J].Environ.Exp.Bor.,1991,31:313-318.
    97. Rubio F, Gassman W, Schroeder J I. Sodium-driven potassium by the plant potassium transporter HKT1 and mutations conferring salt tolerance [J]. Science, 1995, 270:1660-1663.
    98. Ryan J, Hasan HM, Bassina. Availability and transformation of applied phosphorous in calcareousLebanese soils [J]. Soil Sci. Soc. Am. J.,1985,49:1215-1220
    99. Saber MSM, Yousry M, Kabesh MO. Effect of manganese application on the activity of phosphate-dissolving bacteria in a calcareous soil cultivated with pea plants [J]. Plant and Soil, 1977,47(2): 335-339
    100. Sackett WG, Patto AJ, Brown CW. The solvent action of soil bacteria upon the insoluble phosphates of raw bone meal and natural rock phosphate [J]. Zentralbl.Bakteriol, 1908, 28: 668-672
    101. Samia, Aluned FSM. Transfer of phosphaet dissolving ability of B. megatherium var. Phosphaticum to Azotobacter via genetic transformation [J]. Annals of Agricultural Sience (Cario), 1998,43(1): 41-48
    102. Sen A, N.B. Solubilization of phosphates by some soil bacteria [J]. Curr. Sci. 1957.26(7):222-223
    103. Shimon M, Tsipora T , Bernard R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress [J].Plant Physiology and Biochemistry. 2004, 42:565-572
    104. Son HJ, Park GT,Cha MS et al. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere [J]. Bioresource Technology, 2006,97: 204-210
    
    105. Stalstrom VA. Boitrag Zur kennturs der Ein-wisking steriler and in Garung bofindlicher organischer stroffe auf dilloslichkeit der phosphorsen destricalcium phosphate [J]. Zel. Bakt.1903,11:724-732.
    
    106. Steven J, Crafts-Brander ME, Salvucci JL. Phosphorus nutrion influence on plant growth and nonstructural carbohydrate accumulation in Tobacco [J].Crop Sci.,1990, 30:604-609
    
    107. Suh JS, Song YS, Kim KS.. Distribution of phosphate fractions in greenhouse soils located on southwest region in Korea [J]. J. Kor. Soc. Soil Sci. Ferti. 1995,23:270-277
    108. Sundara Rao WVB,Sinha MK. Phosphate dissolving microorgamisms in the rhizosphere and soil[J].India J.Agric.Sci., 1963,33 (4):272-278
    109. Tarafadar JC, Jungk A. Phosphmase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus[J].Biol.Fert.Soil, 1987, 3:199-204
    110. Thompson LM. Soils and Soil Fertility [M].Second Edition.New York: McGraw-Hill Book Company. 1957.242-264
    111. Van Straaten P. Rocks for crops: agrominerals of sub-Saharan Africa [J]. ICRAF, Nairobi, Kenya, 2002, pp338.
    112. Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J]. New Phyto J., 2003, 57: 423-447
    113. Varsha Narsian HH, Patel. Aspergillus aculeatus as a rock phosphate solubilizer[J]. Soil Biology & Biochemistry ,2000,32:559±565
    114. Vassilev N, Baca M T, Vassileva M. Rock phosphate solubilization by Aspergillus niger grown on sugal beet Waste medium[J]. Appl Mic;robiol Biotech, 1995, 44:546-549
    115. Vassilev NM, Fenice, Federici F. Rock phosphate solubilization with gluconic acid produced by immobilized Peniccilium variable P16 [J]. Biotechnology Techniques, 1996,10(8): 585-588
    116. Vora MS, Shelat HN. Impact of addition of different carbon and nitrogen sources on solubization of rock phosphate by phosphate-solubilizing micro-organisms[J].Indian J Agric. Sci., 1997.68(6): 292-294
    117. Wei J, Zhou EX, Jiang Ch, Yao YR. The Preliminary Study on Using Natural Zeolites as Activator of Phosphate Rocks in Limy Soils [J]. Journal of Agricultural U niversity of Hebei. 1999, 22(3):25-27
    118. Whitelaw MA, Hardena TJ, Helyar KR. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum [J]. Soil Biology and Biochemistry .1999, 31:655-665
    119. Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction[J].J Clin Microbiol,1990,28:1942-1946
    120.Wilson RF.Progress is the Selection for Altered Fatty Acid Composition in Soy-beans[J].Crop Sci.,981,21:788-791
    121.鲍士旦.土壤农化分析[M].北京:中国农业出版社,1999.10
    122.边武英,何振立,黄昌勇.高效解磷菌对矿物专性吸附磷的转化及生物有效性的影响[J].浙江大学学报(农业与生命科学版),2000,26(4):431-464
    123.蔡妙珍,林咸永,罗安程等.磷对水稻高Fez十胁迫的缓解作用.中国水稻科学[J],2002,16(3):247-251
    124.柴世伟;温琰茂;韦献革;珠江三角洲主要城市郊区农业土壤的重金属含量特征[J].中山大学学报(自然科学版),2004,4:90-94
    125.曹宁,陈新平,张福锁等.从土壤肥力变化预测中国未来磷肥需求[J].土壤学报,2007,44(3):536-542
    126.曹先军,杨小芹,何漪.我国磷资源合理开发利用的分析与建议[J].化工矿物与加工,2005,6:1-4
    127.陈国潮.土壤固定态磷的微生物转化和利用研究[J].土壤通报,2001,32(2):80-83
    128.池汝安,肖春桥,高洪等.几种微生物溶解磷矿粉的动态研究[J].化学矿物与加工,2005,7:4-6(转11)
    129.陈廷伟,陈华癸.钾细菌的形态生理及其对磷钾矿物的分解能力[J].微生物,1960,2:104-112
    130.崔正忠,韩芳,单德鑫.土壤磷素活化剂对黑土无机磷形态转化及其量变规律的影响.农业系统科学与综合研究[J],2001,17(1):60-62
    131.党廷辉,郝明德,郭胜利.石灰性土壤磷素的化学活化途径探讨[J].水土保持学报,2005,2:100-101
    132.丁洪,郭庆元,李志玉等.磷对大豆不同品种产量和品质的影响[J].中国油料作物学报,1998,20(2):66-70
    133.范丙全,金继运,葛诚.溶磷草酸青霉菌筛选及其溶磷效果的初步研究[J].中国农业科学,2002,35(5):525-530
    134.冯固,李晓林,张福锁,李生秀.盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J].应用生态学报,2000b,11(4):595-598
    135.冯兆滨,张夫道,刘秀梅等.活化磷矿粉的生物学效果研究初报[J],土壤肥料,2006.(2):38-41.
    136.关连珠等.天然沸石增产效果及对氮磷养分和某些肥力性控机制的研究[J].土壤 通报,1992,23(5):205-208
    137.郭荣发,廖宗文,陈爱珠.活化磷矿粉在砖红壤上的施用效果[J].湖南农业大学学报,2004,30(3):233-235.
    138.郭荣发,廖宗文,陈爱珠.活化磷矿粉在砖红壤上的施用效果[J],湖南农业大学学报,2004,30(3):233-235
    139.郭再华,贺立源,黄魏等.耐低磷水稻筛选与鉴定[J].植物营养与肥料学报,2006,12(5):642-648
    140.郭智芬,涂书新,李晓华等.石灰性土壤不同形态无机磷对作物磷营养的贡献[J].中国农业科学,1997,30(1):26-32
    141.郝晋琅,李维炯.盐演土肥力特征及其调控.土墩肥力研究进展[M].北京:中国科学技术出版社,1991.105-112
    142.郝晋氓,魏小静,牛灵安.盐渍土利用过程中土壤磷素的累积与利用[J].中国农业大学学报,1997,2<3):69-72
    143.胡明祥等.我国大豆脂肪酸组成的初步分析[J].吉林农业科学,1986.12-17
    144.黄敏,吴金水,黄巧云等.土壤磷素微生物作用的研究进展[J].生态环境,2003,12(3):366-370
    145.金相灿等.中国湖泊富营养化[M].北京:中国环境科学出版社,1990
    146.黄庆海,赖涛,吴强等.长期施肥对红壤性水稻土有机磷组分的影响[J].植物营养与肥料学报,2003,9(1):63-66
    147.蒋柏藩.南方水稻土中磷酸铁对水稻磷素营养的意义[J].土壤学报.1963,11(4):361-369
    148.蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J].中国农业学,1989,22(3):58-66
    149.蒋柏藩.石灰性土壤无机磷有效性的研究[J].土壤,1992,24(1):61-65
    150.蒋柏蕃,鲁如坤,李庆逵.我国磷矿粉的农业特性和施用条件[J].化肥工业,1983,2:26
    151.孔令旗,李振声,李继云.植物磷营养效率的基因型差异及其遗传控制遗传[J],1996.18(增刊):6-10
    152.乐学义.造纸黑液木素在肥料中的应用[[J).再生资源研究,2000(3):38-40.
    153.李春喜,姬生拣,陈天房.磷肥对小麦籽粒产量和品质的影响[J].河南职技师院学报,1989,17(3-4):85-89
    154.李华,陈万仁;陈欣.磷细菌突变株的诱变选育[J].土壤,2002,6:344-347
    155.李华兴,李长洪,张新明等.天然沸石对土壤保肥性能的影响研究[J].应用生态学报,2001,12(2):237-240
    156.李继云等.有效利用土壤营养元素的作物育种新技术研究[J].中国科学B辑.1995,25(1):41-48.
    157.李家康等.对我国化肥使用前景的剖析[J].磷肥和复肥.2001,16(2):1-5
    158.李林,傅庭治,曹幼琴.植酸钠对黑曲霉柠檬酸发酵产酸的促进效应[J].微生物学通报,1994,21(4):220-223
    159.李录久等.沸石交换体释磷能力的初步研究[J].安徽农业科学,1990,(3):247-250
    160.李敏,辛华,郭缁霞,孙太娟等.AM真菌对盐渍土壤中番茄、辣椒生长和矿质养分吸收的影响 [J].莱阳农学院学报,2005,22(1):38-41
    161.李庆速,蒋柏藩,鲁如坤冲国磷矿的农业利用[M].南京:江苏科学技术出版社,1992
    162.李学敏,张劲苗.河北潮土磷素状态的研究[J].土壤通报,1994,25(6):259-260
    163.廖红,严小龙,高级植物营养学[M].科学出版社,2003,8:140-155
    164.林乐等.我国复肥行业面临的形势与对策[J].磷肥与复肥.2001,16(5):1-6
    165.林启美,赵海英,赵小蓉.4株溶磷细菌和真菌溶解磷矿粉的特性[J].微生物通报,2002,6:24-27
    166.林启美,赵小蓉,孙焱鑫等.四种不同生态环境土壤中解磷细菌的数量及种群分布[J].土壤与环境,2000,9(1):34-37
    167.刘爱民.耐镉细菌筛选和对镉的吸附以及在铜尾矿区治理中的应用[D].南京农业大学,2005
    168.刘建玲,张福锁,杨奋翮.北方耕地和蔬菜保护地土壤磷素状况研究[J].植物营养与肥料学报,2000,6(2):179-186
    169.刘建中.利用植物自身潜力提高土壤中磷的生物有效性[J].生态农业研究,1994,2:16-23
    170.刘可星,王德汉,廖宗文.造纸黑液及木素对磷矿粉活化的研究初报[J]广东造纸,1998,3:14-15
    171.刘伟宏,刘飞虎,Schachtman D等.植物根部细胞钾离子转运机制及其分子基础[J].江西农业大学学报[J],1999(4):451-455
    172.刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[M].见:余叔文,汤章城主编.植物生理与分子生物学.第二版,北京:科学出版社,1998,752-7981
    173.刘芷宇.土壤[M],1992,24(2):97 101
    174.鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥,2003,1:4-8
    175.鲁如坤,时正元,顾益初.土壤积累态磷研究.Ⅱ磷肥的表观积累利用率[J].土壤,1995,6:286-289
    176.鲁如坤.土壤农业化学常规分析方法[M].北京:科学出版社,2000
    177.鲁如坤.土壤—植物营养学原理和施肥[M].化学工业出版社,1998a
    178.鲁如坤.我国磷肥生产与使用中的问题与对策[M],见:李庆逮,朱兆良,于天仁主编,中国农业持续发展中的肥料问题,南昌:江西科学技术出版社,1998b,52-68
    179.鲁玉坤.土壤磷素水平和水体环境保护[J].磷肥与复肥,2003,1:4-8
    180.陆海明,盛海君,毛健.有机酸根阴离子对土壤无机磷生物有效性的影响[J].扬州大学学报(农业与生命科学版),2003,2:49-53
    181.陆景陵.植物营养学[M].北京:北京农业大学出版社,1994:3233
    182.吕金岭,董永.盐逆境胁迫下施钾对降低小麦盐害的生理效应研究[J].江酉农业学报,2007,19(3):39-40
    183.吕金顺.植物多糖的凹形结构与生物活性关系[J].天然产物研究与开发。4:79-82
    184.吕景良,邵荣春,吴百灵等.东北地区大豆品种资源脂肪酸组成的分析研究[J].作物学报,1990,16(4):349-356
    185.吕学斌,孙亚凯,张毅民.几株高效溶磷菌株对不同磷源溶磷活力的比较[J].农业工程学报,2007,5:
    186.罗明,文启凯,慕玉俊等.不同施肥措施对棉田土壤磷细菌及磷转化强度的影响[J].土壤与环境,2001,10(4):316-318
    187.闵九康等译.土壤生物化学[M].北京:中国农业出版社,1984:119-142
    188.莫慧明,王兴火,朱祖祥.天然沸石作为离子交换肥料的研究.n斜发沸石对磷矿石的落解及对土壤有效磷的影响[J].浙江农业大学学报,1990,16(3):229-233
    189.裴海昆,朱志红,乔有明等.不同草甸植被类型下土壤腐殖质及有机磷类型探讨[J].草业学报,2001,(4):18-23
    190.区沃恒,焦志勇,傅显华,小麦的磷素营养[J].中国农业科学1978,3:49-54
    191.曲东,王保莉.渗透胁迫下磷对玉米叶片有机渗调物质的影响[J].干旱地区农业研究,1996,14(2):72-77
    192.邵宗臣,赵美芝.土壤中积累态磷活化动力学的研究.有机质的影响[J].土壤学报,2002,39(3):318-325.
    193.邵宗臣,赵美芝.土壤中积累态磷活化动力学的研究Ⅱ沸石的影响[J].土壤通报,2002,33(2):121-123
    194.沈善敏.农业生态系统中主要营养元素循环及农田上壤养分收支平衡[M].沈善敏.中国上壤肥力,MI.北京:中国农业出版,1998.80-83
    195.盛海君,夏小燕,杨丽琴凳.施磷对土壤速效磷含量及径流磷组成的影响[J]生态学报,2004,(12)
    196.盛下放,黄为一.硅酸盐细菌NBT菌株解钾机理初探[J],土壤学报,2002,39(6):863-871
    197.时正元.我国不同类型磷矿粉直接施用的后效[J].土壤,1981,13(5):177-182.
    198.孙国荣,阎秀峰,李景信等.磷素营养对星星草幼苗抗碱性的影响[J].草业科学,1995,2:17-19
    199.谭宏伟,周柳强,谢如林等.中国南方五省不同耕作制度中土壤磷素状况及磷肥效应[C].中国磷肥应用研究现状与展望学术研讨会论文集,中国农业出版社,2005,177-181
    200.王凤婷,艾希珍,刘金亮,徐坤范.钾对日光温室黄瓜糖、维生素C、硝酸盐及其相关酶活性的影响[J].植物营养与肥料学报,2005,11(5):682-687
    201.王光华,周德瑞,杨谦等.可溶性磷含量对溶磷真菌培养滤液溶解磷矿粉的影响[J].农业系统科学与综合研究,2005.4:276-279
    202.王守刚,沈阿林,王永岐等.利用细胞电融合技术选育的融合子的解磷解钾性能[J].河南农业 科学,2004,4:52-53
    203.魏建民,徐忠文,韩润林等.利用低品位磷矿粉生产腐植酸复合肥的研究[J].内蒙古农业大学学报(自然科学版),1996 40(3):95-98
    204.魏建民,徐忠文,韩润林,李立民,武挨厚利用低品位磷矿粉生产腐植酸复合肥的研究[J].内蒙古农业大学学报(自然科学版),1996 40(3):95-98.
    205.魏静,周恩湘,张桂银.不同活化剂对磷矿粉的活化作用[J].河北农业大学学报,2001,24(1):13-16.
    206.吴初国.我国磷矿资源形势与可持续供应的对策建议[J].化肥工业,2004,4:3-5
    207.吴明才,肖昌珍,郑普英.大豆磷素营养研究[J].中国农业科学.1999,32(3).59-65
    208.吴平,印莉平,张立平等.植物营养分子生理学[M].北京:中国科学出版社,2001:200-205
    209.吴平霄,廖宗文,毛小云.改性磷肥的结构特征及其增效机理的研究[J],植物营养与肥料学报,2000.6(3):287-292.
    210.夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72-76
    211.向万胜,黄敏,李学垣.土壤磷素的化学组成和生物有效性[J].植物营养与肥料学报,2004,10(6):663-670
    212.谢如林,谭宏伟.我国农业生产对磷肥的需求现状和展望[J].磷肥与复肥,2001,16(2):6-9
    213.徐豹,庄炳昌,路琴华,胡传璞.中国大豆主要生产品种蛋白质、脂肪及其组份的相关分析[J].大豆科学,1988,7(3):175-184
    214.徐根洪.天然沸石改良土壤的作用机理[J].矿产保护与利用,2003,5:18-20
    215.徐佑贤.硫酸按、碳酸氢按活化磷矿粉的研究[J],土壤肥料1984(2)
    216.许雯,孙梅好,朱亚芳,苏维埃.甘氨酸甜菜碱增强青菜抗盐的作用[J].植物学报,2001,43(8):809-814
    217.严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997:8-197
    218.杨俐苹,金继运,自由路等.土壤养分综合评价法和平衡施肥技术及其产业化[J].磷肥与复肥,2001,16(4):61-63
    219.杨元根,Paterson E和Campbell C.重金属Cu的土壤微生物毒性研究[J].土壤通报,2002,2:137-141
    220.杨志敏,郑绍建,胡霭堂等.镉磷在小麦细胞内的积累和分布特性及其交互作用[J].南京农业大学学报,1998,21(2):54-58
    221.尹汉文,郭世荣,刘伟,陈海丽.枯草芽孢杆菌对黄瓜耐盐性的影响[J].南京农业大学学报,2006,29(3):18-22
    222.尹瑞龄.我国早地土壤的溶磷微生物[J].土壤,1988,20(5):243-246
    223.袁可能.植物营养元素的土壤化学[M].北京:北京科学出版社,1983.88-98,125-129
    224.曾光华,曾光秀.尿素对难溶性磷酸盐作用的分析[J].青海师范大学学报(自然科学版),1994,2:58-61
    225.翟风林,曹鸣庆等.植物的耐盐性及其改良[M].农业出版社,1989
    226.张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,35(1):104-111
    227.张福锁,林翠兰.植物磷营养基因型差异的机理.土壤与植物营养研究新动态(第一卷[M]),北京农业大学出版社,1991.23
    228.张福锁.植物营养生态生理学和遗传学[M].北京农业大学出版社,1993a,3-58.
    229.张士功,高吉寅,宋景芝,翁跃进.硝酸钙对小麦幼苗生长过程中盐害的缓解作用[J].麦类作物,1998b,18(5):60-64
    230.张岁岐,山仑,薛青武.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,2000,6(2):147-151
    231.张岁岐,山仑.磷素营养对春小麦抗旱性的影响[J].应用与环境生物学报,1998,4(2):115-119
    232.张秀英.草坪草耐盐性研究进展[J].草原与草坪,2000(2):8-11
    233.周亿敏.中国北方土壤磷素状况及磷肥的增产作用[C].中国磷肥应用研究现状与展望学术研讨会论文集,中国农业出版社,2005,113-122
    234.赵小蓉 林启美 赵紫鹃 等.一株曲霉Aspergollus2TCiF2溶解磷矿粉的动态[J].中国农业大学学报,2003,8(3):43-4
    235.赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系[J].微生物学杂志,2003.3:5-7
    236.赵小蓉,林启美等.玉米根际与非根际解磷细菌的分布[J].生态学杂志.
    237.赵小蓉,林启美,李保国.溶磷菌对4种难溶性磷酸盐溶解能力的初步研究[J].微生物学报,2002,2:236-241
    238.赵小蓉,林启美.细菌解磷能力测定方法的研究[J].微生物通报,2001,28(1):1-4
    239.赵晓齐,鲁如坤.有机肥对土壤磷素吸附的影响[J].土壤学报,1991,28(1):7-13
    240.郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响[J].植物生理学报,2001,27(4):325-330
    241.郑延海,宁堂原,贾爱君 等.钾营养对不同基因型小麦幼苗NaCI胁迫的缓解作用[J].植物营养与肥料学报,2007,13(3):381-386
    242.钟传青.解磷微生物溶解磷矿粉和土壤难溶磷的特性及其溶磷方式研究[D]南京农业大学,2004
    243.中国绿色食品发展中心编.绿色食品产地环境质量现状评价纲要(试行).1994.
    244.周秀艳,秦智伟.东北三省大豆品种资源蛋白质、脂肪含量比较[J].中国种业,2004,1:39-40
    245.朱荫湄,鲁如坤,顾益初等.磷肥在土壤中的形态转化[J].土壤,1981,13(4):130-133
    246.朱奇宏,黄道友,樊睿等.环洞庭湖区典型蔬菜基地土壤重金属污染状况研究[J].农业环境科学学报2007,26(增刊):22-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700