用户名: 密码: 验证码:
DLC基固体润滑复合薄膜制备及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类金刚石(DLC)薄膜因其诸多独特的性能,包括高硬度、低摩擦系数、高电阻率、高热导率、良好的化学稳定性和突出的抗腐蚀能力等优点,已经在机械、信息技术、航空航天、光学和医学等方面得到了广泛应用。近来,DLC薄膜的复合化与多功能化逐渐成为研究热点。本文结合航空航天需要,旨在探索类金刚石基固体润滑复合薄膜的制备与性能表征。
     采用等离子体增强磁控溅射法成功制备了引入W_xC及WS_2颗粒的类金刚石基固体润滑复合薄膜。通过拉曼光谱仪、X射线衍射仪、X射线光电子能谱仪、原子力显微镜、扫描电镜(能谱仪)、透射电镜、纳米压痕力学测试、膜基结合力测试和摩擦系数测试考察了沉积总气压(Pt)、直流沉积偏压(U_d)、WS_2靶溅射功率(P_(WS2))等工艺参数对薄膜性能的影响。
     结果表明:采用磁控溅射法制备的复合薄膜也具有典型的类金刚石结构肩峰特征,但WE_2和W_xC的引入使薄膜复合化之后引起sp~3键含量一定程度的下降;改变沉积偏压(U_d),可改变沉积速率和沉积粒子的能量,进而控制薄膜中sp~3键,在U_d=-200V时,复合薄膜有最高含量sp~3键。复合薄膜主要以层状方式长大,WS_2和W_xC颗粒尺寸约300nm。元素W主要以WC、单质W和WO_3的形式存在。
     复合薄膜的力学性能随沉积参数变化较大,硬度和弹性模量随沉积总气压以及沉积偏压的绝对值的增大都先增大后减小,随WS_2靶溅射功率先减小后增大再降低,在Pt=0.38Pa,U_d=-200V,P_(WS2)=160W工艺参数下复合薄膜有最高的纳米硬度(约7.5GPa)和弹性模量(约125GPa);Pt=0.38Pa,U_d=-200V下复合薄膜还有最优的膜基结合性能,此时薄膜脱落的临界载荷接近80N。
     WS_2和W_xC的引入使薄膜复合化之后导致薄膜大气下摩擦行为变为不稳摩擦,磨合期显著延长到500秒左右,稳定摩擦系数升高幅度超过70%;稳定摩擦系数随沉积偏压的绝对值的增大先稍微降低,再逐渐增大,随WS_2靶溅射功率的增大变化不大。在U_d=-200V,P_(WS2)=160W下有最低约0.04的大气下稳定阶段摩擦系数且稳定对磨时间超过35min。复合薄膜真空中摩擦系数高于大气下数值且即时值跳跃幅度较大,U_d=-100V,-200V沉积偏压下最低约0.14。真空中稳定摩擦系数随沉积总气压的增大先减小再增大,Pt=0.38Pa及0.21Pa与U_d=-200V工艺参数配合下可获得相对最低,约0.14的稳定摩擦系数。WS_2和W_xC的引入使DLC薄膜复合化后减缓了薄膜的石墨化,表明该复合化手段可初步改善原单一DLC薄膜的热稳定性。
Diamond-like carbon(DLC) films has been applied in many fields,such as mechanics,information technology,aerospace and aviation,optics and iatrology,due to their special properties,including high hardness,low coefficient of friction,high resistance,high thermal conductivity,well chemistry-stability and outstanding performance of erosion resistance.Recently,multifunctional composite films built in DLC matrix have been extensively studied.This work aims at exploring the preparation and characteristic of the DLC-based composite films to meet the potential need of aerospace and aviation.
     The DLC-based composite films were prepared successfully by plasma enhanced magnetron sputtering deposition technology.The characteristics were performed to check the influence of deposition ambience,direct current bias and the power of WS_2 target on the as-deposited films by Raman spectrum,XRD, XPS,AFM,SEM(EDS),TEM,nano-indentation tests,adhesion tests,friction coefficient tests,respectively.
     The results indicated that the composite films also had the typical structure of DLC films while these particles could result in a fall of relative content of sp~3; with the increase of the DC bias voltage,the relative content of sp~3 increased first and then decreased,having the most sp~3 content while-200V bias was applied;the as-deposited composite films had laminated structure,and W_xC and WS_2 particles were inlaid as islands;the composite films were composed of DLC matrix and particles,while the particles were mostly W_xC(X≈2) and W with an average dimension of about 300nm.
     The mechanical property of the composite films changed evidently with the deposition parameters.The nano-hardness and elastic modulus increased at the beginning and then reduced with the accretion of total pressure and the absolute value of DC bias voltage as well as the power of WS_2 target while it was in the range of 80~210W;The supreme hardness and elastic modulus were obtained with the parameters of Pt=0.38Pa,U_d=-200V and P_(WS2)=160W;the best cohesive property between the films and substrate were also achieved when the parameters were Pt=0.38Pa and U_d=-200V,with a critical load up to 80N.
     The friction behavior in air(T=26℃,RH=34%) became unstable after the introduction of W_xC and WS_2 particles,requiring a longer accommodation stage up to almost 500s,and the coefficient of friction of stable stage climbed remarkably by 70%;the coefficient of friction of stable stage fell a little and then increased with the enhancement of the absolute value of DC bias voltage while change a little with increasing power of WS_2 target;the lowest coefficient of friction of stable stage was about 0.04 and its duration could be as long as 35min when the deposition parameters were fixed at U_d=-200v and P_(WS2)=160W;the friction behavior in vacuum was worse than that in air including higher coefficient of friction of stable stage and more unstable performance;the best result was 0.14 in vacuum,which was obtained when the parameters were Pt=0.21Pa or0.38Pa and U_d=-200V;the transformation to graphite was delayed after the introduction of W_xC and WS_2 particles,that is,the composite films have better thermal stability.
引文
[1]A.A.Voevodin et al.Nanocomposite tribological coatings for aerospace applications[J].Surface and Coating Technology.1999,116-119:36-45P
    [2]翁立军等.空间摩擦学的机遇与挑战[J].摩擦学学报.2005,32:92-95P
    [3]人民网:http://scitech.people.com.cn/GB/5107109.html
    [4]A.A.Voevodin,J.S.Zabins.Super tough wear-resistant coatings with 'chameleon' surface adaptation[J].Thin Solid Films.2000,370:223-231 P
    [5]夏立芳等.PBⅡ固体润滑膜的结构及真空摩擦性能[J].哈尔滨工业大学学报.2001,4:19-22P
    [6]孙克辉等.纳米WS_2润滑晶体的制备与量子尺寸效应[J].中南工业大学学报.2001,1:32-34P
    [7]颜科红等.过渡族金属硫化物纳米管结构研发现状[J].材料导报.2006,20:106-108P
    [8]白秀琴,李健,严新平.DLC薄膜的表面形貌及其摩擦学性能研究[J].润滑与密封.2005,4:19-21P
    [9]A.Nossa,A.Cavaleiro.Mechanical behavior of W-S-N and W-S-C sputtered coatings deposited with a Ti interlayer[J].Surface and Coatings Technology.2003,163-164:552-560P
    [10]欧凤 著.合理润滑技术手册[M].北京:石油工业出版社.1992:15-68P
    [11]石淼森 编著.固体润滑材料[M].北京:化学工业出版社.2000:21-43P
    [12]西村允 著.固体润滑概论[M].北京:石油工业出版社.1987:121-126P
    [13]A.Erdemir.Review of engineered tribological interfaces for improved boundary lubrication[J].Tribology International.2005,38:249-256P
    [14]L.Rapoport,V.Leshchinsky,Y.Volovik,et al.Modification of contact surfaces by fullerene-like solid lubricant nano-particles[J].Surface and Coating Technology.2003,163-164:405-412P
    [15]颜志光 主编.润滑材料与润滑技术[M].北京:中国石化出版社.2000:16-96P
    [16]S.A.Hark.et al.Nanocomposite coatings with enhangced hardness. 1984,120:465-467P
    [17]王海斗等.硫化亚铁固体润滑层的减摩机理模型[J].金属热处理.2005,30:61-64P
    [18]Y.Catherine.I.LL Horton,JC.Angus,P.Koidl.Diamond and Diamond-like Films and Coatings.NATO ASI Series Vol.266 Plenum.New York:(1991)
    [19]U.Sogli,A.Blatter,S.M.Pimenov,et al.Tribological properties of smooth polycrystalline diamond films[J].Diamond and Related Materials.1995,4:1009-1019P
    [20]Liu Y,A.Erdemir,E.I.Meletis.A study of the wear mechanism of diamondlike carbon films[J].Surface and coating technology.1996,82:48-56P
    [21]Liu Y,A.Erdemir,E.I.Meletis.Influence of environmental parameters on the frictional behavior of DLC coatings[J].Surface and Coating Technology.1997,94-95:463-468P
    [22]H.Mohrbacher,J.P.Celis.Friction mechanisms in hydrogenised amorphous carbon coatings[J].Diamond and Related Materials.1995,4:1267-1276P
    [23]C.Donnet,M.Belin,J.C.Auge,et al.Tribochemistry of DLC coatings in various environments[J].Surf Coat Technol.1994,68-69:626-631P
    [24]C.Donnet,A.Grill.Friction control of diamond-like carbon coatings[J].Surface and Coating Technology.1997,94-95:456-462P
    [25]C.Donnet.Advanced solid lubricant coatings for high vacuum environments[J].Surface and Coating Technology.1996,80:151-156P
    [26]J.J.Cuomo,D.L.Papas,J.Bruley,J.P.Doyle,K.L.Saenger.Vapor Deposition Processes for Amorphous Carbon films with sp~3 Fractions Approaching Diamond[J].Appl.Phys.1991,70:1706-1708P
    [27]C.Weissmantel.Ion Based Growth of Special Films:Techniques and Mechanisms[J].Thin Solid Films.1982,92:55-57P
    [28]Y.Lifshitz,S.R.Kasi,J.W.Rabelais,Molecular-Dynamics of Amorphization by Introduction of Chemical Order in Crystalline NiZr_2[J].Phys Rev B.1990,41:1466-1468P
    [29]D.R.McKenzie,Y.Yin,N.A.Marks,et al.Hydrogen-free amorphous carbon preparation and properties[J].Diamond and Related Materials.1994,3:353-360P
    [30]J.Robertson.Mechanical Properties and Structure of Diamond-like Carbon [J].Diamond Relat Mater.1993,2:980-984P
    [31]C.A.Davis.A Simple Model for Formation of Compressive Stress in Thin Films by Ion Bombardment[J].Thin Solid Films.1993,226:30-34P
    [32]J.Robertson.The deposition Mechanism of Diamond-like a-C and a-C:H[J].Diamond Relat Mater.1994,3:358-361P
    [33]Y.Catherine.I.LL Horton,JC.Angus,P.Koidl.Diamond and Diamond-like Films and Coatings[J].Nato Asi Series.1991,266:172-177P
    [34]A.Von Keudell,W.Moller,R.Hytry.Deposition of Dense Hydrocarbon Films from a Non-Biased Microwave Plasma[J].Appl.Phys.Rev.1993,62:934-937P
    [35]冷永祥,黄楠等.真空弧源沉积类金刚石薄膜及其性能研究[J].功能材料.2003134:229-230P
    [36]B.G.Li,J.Yin,G.F.Yin et al,Effects of carbon phase components on platelets adhesion for DLC[J].Biomed Eng.2004,21:903-905P
    [37]R.Lappalainen,A.Anttila,H.Heinonen.Diamond coated total hip replacements[J].Clin Orthop.1998,352:118-271P
    [38]Annett Dorner Reisel,Christian Schurer,et al.Nano-and microstructure of diamond-like carbon films modified by Ca-O incorporation[J].Diamond and Related Materials.2003,12:1030-1033P
    [39]J.Y.Chen,L.P.Wang,K.Y.Fu et al.Blood compatibility and sp~3/sp~2 contents of diamond-like carbon(DLC) synthesized by plasma immersion ion implantation-deposition[J].Surface and Coatings Technology.2002,156:289-294P
    [40]天日章浩.类金刚石薄膜和金刚石薄膜的最新制备技术与各种特征[J].珠宝科技.2004,16:23-28P
    [41]Shuzo Fujimura,Keisuke Shinagawa,Moritaka Nakamura and Hiroshi Yano.Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing[J]. Jpn.J.Appl.Phys.1990,29:2165-2170P
    [42]徐滨士,刘世参编著.表面工程技术[M].北京:国防工业出版社.2002:54-61P
    [43]杨武保,范松华等.脉冲高能量密度等离子体法类金刚石薄膜的制备及分析fJ].物理学报.2003,52:140-144P
    [44]杨武保,范松华,张谷令等.非平衡磁控溅射法类金刚石薄膜的制备及分析[J].物理学报.2005,54:4944-4948P
    [45]Robertson et al.Selected Polymorphs Of Caco3 Through Epitaxy With Inorganic Substrates Aligned With An Electric Field[J].Advanced Materials.2003,15:706-710P
    [46]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社.2003:33-52P
    [47]袁镇海,邓其森,罗广南,谢致薇,郑健红.类金刚石碳膜的制备、性能和应用[J].材料科学与工程.1994,12(4):32-38P
    [48]杜开瑛,石瑞英等.直接光CVD类金刚石碳膜的初期成膜结构[J].半导体光电.1999,20:405-408P
    [49]石瑞英,杜开瑛,谢茂浓,张敏,廖伟.衬底材料对直接光化学气相沉积类金刚石碳膜成膜初期的影响fJ].四川大学学报.1999,36:61-66P
    [50]Li Geyang,Han Zenghu,Tian Jiawan,Xu Junhua,Gu Mingyuan.Alternating stress field and superhardness effect in TiN/NbN superlattiee films[J].J.Vac.Sci.Technol.2002,A20:674-678P
    [51]S.Veprek,A.Niederfoher,K.Moto et al.Composition,nanostructure and origin of the ultra-hardness in nc-TiN/a-Si3N4 a-and nc-TiSi2 nano composites with HV=80 to≥105 GPa[J].Surf Coat Technol.2000,133-134:152-159P
    [52]J.R.Conrad,J.L.Radtke,R.A.Dodd,F.J.Worzala.Plasma Source Ion Implantation Technique for Surface Modification of Materials[J].Appl.Phys.1987,62:4587-4591P
    [53]刘喜亮.NiTi合金等离子体表面改性技术制备生物医用薄膜研究[D].哈尔滨工程大学硕士学位论文.2007
    [54]M.Ikeyama,S.Nakao,S.Nakao,Y.Miyagawa,S.Miyagawa.Effect of Si content in DLC films on their friction and wear properties[J].Surface and Coatings Technology.2005,191:38-42P
    [55]马国佳等.等离子体源离子注入法制备类金刚石薄膜[J].材料保护.2003,5:48-50P
    [56]李红轩等.直流负偏压对类金刚石薄膜结构和性能的影响[J].材料科学与工程学报.2003,21:802-805P
    [57]李红轩等.射频功率对类金刚石薄膜结构和性能的影响[J].物理学报.2005,54:61-64P
    [58]S.L.Goodman,T.G.Grasel,S.L.Cooper,R.M.Albrecht.Platelet shape change and cytoskeletal reorganization on polyurethaneureas[J].Biomed.Mater.Res.1989,23:105-123P
    [59]J.Robertson,Mechanical Properties and Strucure of Diamond-like Carbon[J].Diamond Relat Mater.1993,71:981-984P
    [60]牛孝昊 等.含钨类金刚石薄膜的制备与性能研究[J].真空.2007,44:36-39P
    [61]J.-H.Wu et al.sliding behavior of multifunctional composite coatings based on diamond-like carbon[J].Wear.2003,255:859-868P
    [62]夏立芳等.类金刚石碳膜的稳定性[J].材料科学与工艺.2000,4:19-21P
    [63]J.J.Cuomo,D.L.Papas,J.Bruley,J.P.Doyle,K.L.Saenger.Vapor Deposition Processes for Amorphous Carbon Films with sp~3 Fractions Approaching Diamond[J].Appl.Phys.1991,70:1704-1706P
    [64]刘正堂等.类金刚石碳膜热稳定性的研究[J].西北工业大学学报.1993,4:26-29P
    [65]R.S.Lilllad,P.B.Uttd,T.N.Taylor.The breakdown mechanism of diamondlike carbon coated nickel in chloride solution[J].Corros Sci.1997,39:1605-1610P
    [66]程德刚等.磁控溅射类金刚石薄膜的热稳定性[J].薄膜科学与技术.1994,7:16-19P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700