用户名: 密码: 验证码:
SIRT1通过在α/β珠蛋白基因簇远端调控区(MRE/LCR)特异位点的募集改变组蛋白修饰状态调节珠蛋白基因表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核基因表达是一个复杂而精细的过程,是遗传调控和表观遗传调控综合作用的结果。作为基因表达调控的中心坏节,真核基因的转录调控可以分为三个层次:DNA水平、染色质水平和核水平。染色质水平作为调控真核基因表达的一种独特方式,日益受到人们重视。真核生物染色质的基本单位是核小体,它由146bp DNA和一个核心组蛋白八聚体组成。核心组蛋白的N-端可以发生乙酰化、甲基化、磷酸化和泛素化等多种共价修饰。组蛋白修饰可以独自发挥作用,也可以相互组合形成“组蛋白密码”,共同调节基因表达,而组蛋白乙酰化可能在调节染色体结构和功能上起核心作用。组蛋白乙酰转移酶和组蛋白去乙酰化酶具有相反的活性,它们的作用共同维持着核小体组蛋白上赖氨酸乙酰化水平的动态平衡。目前发现至少有三组蛋白具有组蛋白去乙酰化酶活性。Ⅲ类组蛋白去乙酰化酶不同于Ⅰ类和Ⅱ类组蛋白去乙酰化酶,它们是酵母Sir2(silent information regulator 2)的同系物,是NAD依赖的组蛋白去乙酰化酶,从细菌到人类都具有高度保守性。哺乳动物的SIRT1是Sirtuins家族中与Sir2同源性最高的一个成员,在许多生命过程,如细胞凋亡、细胞周期、DNA损伤修复、重组、长寿和基因沉默中都发挥了重要的作用。最近的研究表明,SIRT1可以与多种的转录因子,如p53,FOXO家族和MyoD相互作用,调节特异基因表达,从而参与凋亡、分化和发育等重要的生命过程。
     珠蛋白基因簇是研究染色质结构和基因表达关系的经典模型,它分为α-和β-两个基因簇。人α-珠蛋白基因簇只有两组功能基因(ζ,α2-α1),在个体发育过程中只有一个基因开关。人β-珠蛋白基因簇有三组功能基因(ε,~Gγ-~Aγ,δ-β),在个体发育过程中存在两个基因开关。此外,由一系列高敏位点(HSs)组成的主调控区(majorregulatory elements,MRE)和基因座控制区(locus control region,LCR)作为最主要的远端调控元件,分别调控α-和β-两类珠蛋白基因的表达。
     本实验中,我们首先用SIRT1干扰和SIRT1HY质粒稳定转染K562细胞,筛选后得到稳定的单克隆细胞株。然后分别在SIRT1干扰及过表达SIRT1HY突变体的K562细胞中,用MTT技术检测细胞增殖的变化;联苯胺染色结合半定量RT-PCR分析血红蛋白生成和珠蛋白基因表达的改变。为了进一步阐述SIRT1调节珠蛋白基因表达的分子机制,我们通过ChIP实验检测了SIRT1在α-和β-珠蛋白基因簇上的募集,并通过ChIP实验分别检测了α-珠蛋白基因簇MRE区(HS40、HS33、HS10),ζ-和α2-,α1-珠蛋白基因启动子区,以及β-珠蛋白基因簇LCR区(HS1-5),ε-、γ-和β-珠蛋白基因启动子区的H3乙酰化、H4乙酰化与H3-K4双甲基化修饰的变化。最后,检测了SIRT1对参与调控珠蛋白基因表达的红系相关转录因子表达的影响,并检测SIRT1对GATA-1乙酰化修饰的影响,通过ChIP实验检测SIRT1对GATA-1和NF-E2/P45在β-珠蛋白基因簇上募集情况的影响。结果显示:(1)在K562细胞中干扰SIRT1表达后抑制细胞增殖。(2)在K562细胞中干扰SIRT1表达促进血红蛋白的生成并伴随着珠蛋白基因mRNA的上调,并且在hemin诱导后仍保持这种上调趋势。(3)在K562细胞中过表达SIRT1HY抑制细胞增殖。(4)在K562细胞中过表达SIRT1HY促进血红蛋白的生成并伴随着珠蛋白基因mRNA的上调,并且在hemin诱导后仍保持这种上调趋势。(5)ChIP实验可检测到SIRT1在α-珠蛋白基因簇MRE区HS40和HS10的募集,以及在β-珠蛋白基因簇LCR区HS4和HS2的募集。(6)在K562细胞中抑制SIRT1表达和过表达SIRT1HY后,α珠蛋白基因簇MRE上的高敏位点HS40和HS10的组蛋白H3和H4乙酰化修饰水平明显增加,ζ-、α2-和α1-珠蛋白基因启动子区的H3和H4乙酰化修饰水平没有明显变化;而H3-K4双甲基化修饰水平在MRE区HS40、HS33和HS10,以及ζ-和α2-珠蛋白基因启动子区均有一定的上调,α1-珠蛋白基因启动子区没有明显变化。(7)在K562细胞中抑制SIRT1表达和过表达SIRT1HY后,β-珠蛋白基因簇LCR上的高敏位点HS5、HS4和HS2的组蛋白H3和H4乙酰化修饰水平明显增加,ε-、γ-和β-珠蛋白基因启动子区的H3和H4乙酰化修饰水平也有增加;而H3-K4双甲基化修饰水平在LCR和ε-、γ-和β-珠蛋白基因启动子区均有一定的上调。(8)在K562细胞中抑制SIRT1表达和过表达SIRT1HY,均未在mRNA水平和蛋白水平影响主要的红系相关转录因子的表达、乙酰化修饰和在珠蛋白基因簇上的募集。
     结果表明:(1)在K562细胞中,SIRT1可以调节珠蛋白基因的表达。(2)SIRT1调节珠蛋白基因的表达是去乙酰化酶活性依赖的。(3)在α-珠蛋白基因簇MRE区的HS40和HS10,以及β-珠蛋白基因簇LCR区的HS4和HS2上均可检测到SIRT1的募集。(4)SIRT1影响α-和β-珠蛋白基因簇的组蛋白修饰水平。(5)SIRT1可能不影响主要的红系相关转录因子的表达、乙酰化修饰以及在珠蛋白基因簇上的募集。综合以上结果,SIRT1可能通过募集到α/β珠蛋白基因簇远端调控区(MRE/LCR)的特定高敏位点,影响组蛋白修饰状态,并最终调节珠蛋白基因表达。
Transcription is a complex process relies on the collective action of genetic and epigenetic regulations.Eukaryotic gene expression can be viewed within a conceptual framework in which regulatory mechanisms are integrated at three hierarchical levels,i.e. the sequence level,the chromatin level and the nuclear level.Recent studies have revealed that chromatin,the organized packing of DNA in the eukaryotic nucleus,plays a pivotal role in the regulation of gene expression.The basic repeating of chromatin,the nucleosome, includes two copies of the four core histones,H2A,H2B,H3 and H4,wrapped by 146 bp of DNA.Numerous studies in the past few years have witnessed that histone posttranslational modifications,including acetylation,methylation,phosphorylation and ubiquitylation,play an important role in eukaryotic gene regulation.It was already proposed that histone acetylation could have a central role in the regulation of chromatin structure and function.Two groups of enzymes,histone acetyltransferases(HATs) and histone deacetylases(HDACs),have been shown to maintain the delicate dynamic equilibrium in the acetylation level of lysine residues in nucleosomal histones.There are at least three classes of proteins with intrinsic HDAC activity.ClassⅢhistone deacetylases are distinct from classⅠandⅡHDACs as homologues of the yeast silent information regulator 2(Sir2).Sir2 is an NAD-dependent deacetylase that is broadly conserved from bacteria to humans.Mammalian SIRT1(Sir2α) is a member of the Sirtuins family which plays important roles in diverse processes,such as cell apoptosis,cell cycle,DNA damage repair,recombination,life span and gene scilencing.Recently,SIRT1 was shown to interact with various transcription factors such as p53,forkhead transcription factor (FOXO) family proteins,and MyoD,and regulating the expression of special genes to participate in stress tolerance,differentiation,and development.
     The globin gene clusters,consisting ofα-andβ-globin gene clusters,is an excellent model for elucidating the relationship between chromatin structure and gene regulation. The humanα-globin gene cluster includes an embryonicζgene and two fetal/adultαgenes lying close to the telomere of the short arm of chromosome 16(tel-ζ-α2-α1-cen).A single switch occurs as development proceeds.The human[β-globin gene cluster is located on the short arm of chromosome 11 and arranged spatially in the order of their expression during ontogeny,5'-ε-~Gγ-~Aγ-δ-β-3'.During development,two switches of globin gene expression occur.Furthermore,theα-globin MRE andβ-globin LCR,both consisting of a series of hypersensitive sites,activate high-levelα- andβ-globin gene expression,respectively.
     In our studies,we first transfected K562 cells with SIRT1 RNAi and SIRT1HY mutation constructs and selected stably transfected single clones for each of them.Next,in the SIRT1 down-regulated or the SIRT1HY over-expressed K562 cells,we detected the change of cellular proliferation with MTT assays.After that,benzidine staining and semi-quantitative RT-PCR were applied for detecting the changes of hemoglobin and globin genes expression respectively.To investigate the molecular mechanism of SIRT1 regulating globin gene expression,we detected SIRT1 recruitment onα/βglobin gene cluster distal regulatory element and globin genes promoter.Additional ChIP analyses were performed to detect the change of active histone modifications,including H3 acetylation, H4 acetylation and H3-K4 dimethylation states,across the human globin gene clusters in the SIRT1 down-regulated and the SIRT1HY over-expressed K562 cells.Finally,we checked the expression of major erythroid related transcription factors by RT-PCR and western blot,the acetylation of GATA-1 by IP(immunoprecipitation),and the recruitment of GATA-1 and NF-E2/P45 onβ-globin gene cluster by ChIP(Chromatin immunoprecipitation) in both kinds of transfected cells to find whether the expression and post-translational modification of those factors have been affected by SIRT1 disturbance.
     Our experiments showed that:(ⅰ) SIRT1 down-regulation in K562 cells inhibits cellular proliferation.(ⅱ) SIRT1 down-regulation in K562 cells promotes hemoglobin and globin genes expression before and after being induced by hemin.(ⅲ) SIRT1HY over-expression in K562 cells inhibits cellular proliferation.(ⅳ) SIRT1HY over-expression in K562 cells promotes hemoglobin and globin genes expression before and after being induced by hemin.(ⅴ) SIRT1 can be recruited to HS40,HS10 ofα-globin MRE and HS4,HS2 ofβ-globin LCR.(ⅵ) Histone H3 and H4 acetylation increased obviously in HS40 and HS10 ofα-globin MRE,with no change been observed forζ-,α2-,andα1-globin promoter;while histone H3-K4 dimethylation increased modestly acrossα-globin cluster except for α1-globin promoter in SIRT1 down-regulated and SIRT1HY over-expressed K562 cells. (ⅶ) Histone H3 and H4 acetylation increased obviously in HS5,HS4 and HS2 ofβ-globin LCR,with no change in HS3 and HS1 ofβ-globin LCR and modest increase observed inε-,γ-,andβ-globin promoter;while histone H3-K4 dimethylation increased modestly across wholeβ-globin cluster in SIRT1 down-regulated and SIRT1HY over-expressed K562 cells. (ⅷ) The expression,acetylation and recruitment toβ-globin gene cluster of major erythroid related transcription factors were unaffected in SIRT1 down-regulated and SIRT1HY over-expressed K562 cells.
     From the results described above,several conclusions can be drawn:(ⅰ) SIRT1 could regulate globin genes expression in K562 cells.(ⅱ) SIRT1 regulates globin genes expression in a deacetylase-dependent manner.(ⅲ) SIRT1 recruitment on hypersensitive site HS40,HS10 ofα-globin MRE and HS4,HS2 ofβ-globin LCR.(ⅳ) SIRT1 influences histone modifications status ofα-/β-globin cluster.(ⅴ) SIRT1 may not affect major transcription factors expression,acetylation and recruitment on globin gene cluster. Therefore,SIRT1 may regulate globin genes expression through recruiting to particular HSs of MRE/LCR and modulating histone modifications status.
引文
Accili, D., and Arden, K. C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421-426.
    
    Allfrey, V. G., Faulkner, R., and Mirsky, A. E. (1964). Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U S A 51, 786-794.
    
    Anguita, E., Johnson, C. A., Wood, W. G., Turner, B. M., and Higgs, D. R. (2001). Identification of a conserved erythroid specific domain of histone acetylation across the alpha-globin gene cluster. Proc Natl Acad Sci U S A 98, 12114-12119.
    
    Ayer, D. E. (1999). Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 9, 193-198.
    
    Bender, M A., Bulger, M., Close, J., and Groudine, M. (2000). Beta-globin gene switching and DNase I sensitivity of the endogenous beta-globin locus in mice do not require the locus control region. Mol Cell 5, 387-393.
    
    Bertos, N. R., Wang, A. H., and Yang, X. J. (2001). Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 79, 243-252.
    
    Bieker, J. J. (2001). Kruppel-like factors: three fingers in many pies. J Biol Chem 276, 34355-34358.
    
    Boyes, J., Byfield, P., Nakatani, Y., and Ogryzko, V. (1998). Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594-598.
    
    Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D., and Broach, J. R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7, 592-604.
    
    Brehm, A., Miska, E. A., McCance, D. J., Reid, J. L., Bannister, A. J., and Kouzarides, T. (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597-601.
    
    Brown, K. E. (2003). Chromatin folding and gene expression: new tools to reveal the spatial organization of genes. Chromosome Res 11, 423-433.
    
    Brown, R. C., Pattison, S., van Ree, J., Coghill, E., Perkins, A., Jane, S. M., and Cunningham, J. M. (2002). Distinct domains of erythroid Kruppel-like factor modulate chromatin remodeling and transactivation at the endogenous beta-globin gene promoter. Mol Cell Biol 22, 161-170.
    
    Brunet, A. (2004). [The multiple roles of FOXO transcription factors]. Med Sci (Paris) 20, 856-859.
    
    Brush, M. H., Guardiola, A., Connor, J. H., Yao, T. P., and Shenolikar, S. (2004). Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases. J Biol Chem 279, 7685-7691.
    
    Bulger, M., and Groudine, M. (1999). Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13, 2465-2477.
    
    Bulger, M., and Groudine, M. (2002). TRAPping enhancer function. Nat Genet 32, 555-556.
    
    Cabrero, J. R., Serrador, J. M., Barreiro, O., Mittelbrunn, M., Naranjo-Suarez, S., Martin-Cofreces, N., Vicente-Manzanares, M., Mazitschek, R., Bradner, J. E., Avila, J., et al. (2006). Lymphocyte chemotaxis is regulated by histone deacetylase 6, independently of its deacetylase activity. Mol Biol Cell 17, 3435-3445.
    
    Carmo-Fonseca, M. (2002). The contribution of nuclear compartmentalization to gene regulation. Cell 108,513-521.
    
    Carrozza, M. J., Utley, R. T., Workman, J. L., and Cote, J. (2003). The diverse functions of histone acetyltransferase complexes. Trends Genet 19, 321-329.
    
    Carter, D., Chakalova, L., Osborne, C. S., Dai, Y. F., and Fraser, P. (2002). Long-range chromatin regulatory interactions in vivo. Nat Genet 32, 623-626.
    
    Chambeyron, S., and Bickmore, W. A. (2004). Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18, 1119-1130.
    
    Chen, H. Z., Zhang, Z. Q., Wei, Y. S., and Liu, D. P. (2007). [Research progression of deacetylase (SIRT1)]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 29, 441-447.
    
    Cheng, H. L., Mostoslavsky, R., Saito, S., Manis, J. P., Gu, Y., Patei, P., Branson, R., Appella, E., Alt, F. W., and Chua, K. F. (2003). Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 100, 10794-10799.
    
    Chiani, F., Di Felice, F., and Camilloni, G. (2006). SIR2 modifies histone H4-K.16 acetylation and affects superhelicity in the ARS region of plasmid chromatin in Saccharomyces cerevisiae. Nucleic Acids Res 34, 5426-5437.
    
    Chuang, H. C., Chang, C. W., Chang, G. D., Yao, T. P., and Chen, H. (2006). Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res 34, 1459-1469.
    
    Chubb, J. R., and Bickmore, W. A. (2003). Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 112, 403-406.
    
    Daitoku, H., Hatta, M., Matsuzaki, H., Aratani, S., Ohshima, T., Miyagishi, M., Nakajima, T., and Fukamizu, A. (2004). Silent information regulator 2 potentiates Foxol-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A 101, 10042-10047.
    
    Dannenberg, J. H., David, G., Zhong, S., van der Torre, J., Wong, W. H., and Depinho, R. A. (2005). mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev 19, 1581-1595.
    
    de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., and van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370, 737-749.
    
    Dean, A. (2006). On a chromosome far, far away: LCRs and gene expression. Trends Genet 22, 38-45.
    
    Dekker, J. (2003). A closer look at long-range chromosomal interactions. Trends Biochem Sci 28, 277-280.
    
    Denu, J. M. (2003). Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. Trends Biochem Sci 28, 41-48.
    
    Durst, K. L., Lutterbach, B., Kummalue, T., Friedman, A. D., and Hiebert, S. W. (2003). The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol Cell Biol 23, 607-619.
    
    Engel, J. D., and Tanimoto, K. (2000). Looping, linking, and chromatin activity: new insights into beta-globin locus regulation. Cell 100, 499-502.
    
    Feng, D. X., Liu, D. P., Huang, Y., Wu, L., Li, T. C., Wu, M., Tang, X. B., and Liang, C. C. (2001). The expression of human alpha -like globin genes in transgenic mice mediated by bacterial artificial chromosome. Proc Natl Acad Sci U S A 98, 15073-15077.
    
    Fernandes, I., Bastien, Y., Wai, T., Nygard, K., Lin, R., Cormier, O., Lee, H. S., Eng, F., Bertos, N. R., Pelletier, N., et al. (2003). Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol Cell 11, 139-150.
    
    Foglietti, C., Filocamo, G., Cundari, E., De Rinaldis, E., Lahm, A., Cortese, R., and Steinkuhler, C. (2006). Dissecting the biological functions of Drosophila histone deacetylases by RNA interference and transcriptional profiling. J Biol Chem 281, 17968-17976.
    
    Francastel, C., Magis, W., and Groudine, M. (2001). Nuclear relocation of a transactivator subunit precedes target gene activation. Proc Natl Acad Sci U S A 98, 12120-12125.
    
    Frye, R. A. (1999). Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260, 273-279.
    
    Fulco, M., Schiltz, R. L., lezzi, S., King, M. T., Zhao, P., Kashiwaya, Y., Hoffman, E., Veech, R. L., and Sartorelli, V. (2003). Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12,51-62.
    
    Gandhi, T. K., Zhong, J., Mathivanan, S., Karthick, L., Chandrika, K. N., Mohan, S. S., Sharma, S., Pinkert, S., Nagaraju, S., Periaswamy, B., et al. (2006). Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 55, 285-293.
    
    Gourdon, G., Sharpe, J. A., Wells, D., Wood, W. G., and Higgs, D. R. (1994). Analysis of a 70 kb segment of DNA containing the human zeta and alpha-globin genes linked to their regulatory element (HS-40) in transgenic mice. Nucleic Acids Res 22, 4139-4147.
    
    Gregoretti, I. V., Lee, Y. M., and Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338, 17-31.
    
    Grozinger, C. M., and Schreiber, S. L. (2002). Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9, 3-16.
    
    Halme, A., Bumgarner, S., Styles, C., and Fink, G. R. (2004). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116, 405-415.
    
    Higgs, D. R., Wood, W. G., Jarman, A. P., Sharpe, J., Lida, J., Pretorius, I. M., and Ayyub, H. (1990). A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev 4, 1588-1601.
    
    Hildmann, C., Riester, D., and Schwienhorst, A. (2007). Histone deacetylases-an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75, 487-497.
    
    Hisahara, S., Chiba, S., Matsumoto, H., and Horio, Y. (2005). Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2alpha). J Pharmacol Sci 98, 200-204.
    
    Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X. F., and Yao, T. P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458.
    
    Hung, H. L., Kim, A. Y., Hong, W., Rakowski, C., and Blobel, G. A. (2001). Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation. J Biol Chem 276, 10715-10721.
    
    Imai, S., Armstrong, C. M., Kaeberlein, M., and Guarente, L. (2000a). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800.
    
    Imai, S., Johnson, F. B., Marciniak, R. A., McVey, M., Park, P. U., and Guarente, L. (2000b). Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol 65, 297-302.
    
    Johnson, K. D., Grass, J. A., Park, C., Im, H., Choi, K., and Bresnick, E. H. (2003). Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain. Mol Cell Biol 23, 6484-6493.
    
    Kadam, S., McAlpine, G. S., Phelan, M. L., Kingston, R. E., Jones, K. A., and Emerson, B. M. (2000). Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev 14,2441-2451.
    
    Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570-2580.
    
    Kataoka, H., Bonnefin, P., Vieyra, D., Feng, X., Hara, Y., Miura, Y., Joh, T., Nakabayashi, H., Vaziri, H., Harris, C. C., and Riabowol, K. (2003). ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Res 63, 5785-5792.
    
    Kato, H., Tamamizu-Kato, S., and Shibasaki, F. (2004). Histone deacetylase 7 associates with hypoxia-inducible factor 1 alpha and increases transcriptional activity. J Biol Chem 279, 41966-41974.
    
    Kenyon, C. (2001). A conserved regulatory system for aging. Cell 105, 165-168.
    
    Kobayashi, T., and Ganley, A. R. (2005). Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309, 1581-1584.
    
    Kouzarides, T. (2000). Acetylation: a regulatory modification to rival phosphorylation? Embo J 19, 1176-1179.
    
    Kurdistani, S. K., and Grunstein, M. (2003). Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4, 276-284.
    
    Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., and Sternglanz, R. (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A 97,5807-5811.
    
    Lee, H., Sengupta, N., Villagra, A., Rezai-Zadeh, N., and Seto, E. (2006). Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation. Mol Cell Biol 26, 5259-5269.
    
    Letting, D. L., Chen, Y. Y., Rakowski, C., Reedy, S., and Blobel, G. A. (2004). Context-dependent regulation of GATA-1 by friend of GATA-1. Proc Natl Acad Sci U S A 101, 476-481.
    
    Letting, D. L., Rakowski, C., Weiss, M. J., and Blobel, G. A. (2003). Formation of a tissue-specific histone acetylation pattern by the hematopoietic transcription factor GATA-1. Mol Cell Biol 23, 1334-1340.
    
    Li, Q., Barkess, G., and Qian, H. (2006a). Chromatin looping and the probability of transcription. Trends Genet 22, 197-202.
    
    Li, Y., Kao, G. D., Garcia, B. A., Shabanowitz, J., Hunt, D. F., Qin, J., Phelan, C., and Lazar, M. A. (2006b). A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. Genes Dev 20, 2566-2579.
    
    Lin, S. J., Kaeberlein, M., Andalis, A. A., Sturtz, L. A., Defossez, P. A., Culotta, V. C., Fink, G. R., and Guarente, L. (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344-348.
    
    Liu, Z., and Garrard, W. T. (2005). Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3' boundary sequence spanning 46 kilobases. Mol Cell Biol 25, 3220-3231.
    
    Lopez, R. A., Schoetz, S., DeAngelis, K., O'Neill, D., and Bank, A. (2002). Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc Natl Acad Sci U S A 99, 602-607.
    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389,251-260.
    
    Luo, J., Nikolaev. A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148.
    
    Mahajan, M. C., and Weissman, S. M. (2002). DNA-dependent adenosine triphosphatase (helicaselike transcription factor) activates beta-globin transcription in K562 cells. Blood 99, 348-356.
    
    Motta, M. C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M., and Guarente, L. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563.
    
    Munoz-Alonso, M. J., Acosta, J. C., Richard, C., Delgado, M. D., Sedivy, J., and Leon, J. (2005). p21Cip1 and p27Kip1 induce distinct cell cycle effects and differentiation programs in myeloid leukemia cells. J Biol Chem 280, 18120-18129.
    
    Muth, V., Nadaud, S., Grummt, I., and Voit, R. (2001). Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. Embo J 20, 1353-1362.
    
    Narlikar, G. J., Fan, H. Y., and Kingston, R. E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475-487.
    
    Nawrocki, S. T., Carew, J. S., Pino, M. S., Highshaw, R. A., Andtbacka, R. H., Dunner, K., Jr., Pal, A., Bornmann, W. G., Chiao, P. J., Huang, P., et al. (2006). Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66, 3773-3781.
    
    Nusinzon, I., and Horvath, C. M. (2006). Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol Cell Biol 26, 3106-3113.
    
    Palstra, R. J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003). The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35, 190-194.
    
    Peart, M. J., Smyth, G. K., van Laar, R. K., Bowtell, D. D., Richon, V. M., Marks, P. A., Holloway, A. J., and Johnstone, R. W. (2005). Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102, 3697-3702.
    
    Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M. W., and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429,771-776.
    
    Ragoczy, T., Telling, A., Sawado, T., Groudine, M., and Kosak, S. T. (2003). A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res 11, 513-525.
    
    Ren, S., Luo, X. N., and Atweh, G. F. (1993). The major regulatory element upstream of the alpha-globin gene has classical and inducible enhancer activity. Blood 81, 1058-1066.
    
    Rosenberg, M. I., and Parkhurst, S. M. (2002). Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell 109, 447-458.
    
    Roth, S. Y., Denu, J. M., and Allis, C. D. (2001). Histone acetyltransferases. Annu Rev Biochem 70, 81-120.
    
    Sawado, T., Igarashi, K., and Groudine, M. (2001). Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter. Proc Natl Acad Sci U S A 98, 10226-10231.
    
    Schubeler, D., Francastel, C., Cimbora, D. M., Reik, A., Martin, D. I., and Groudine, M. (2000). Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev 14, 940-950.
    
    Senawong, T., Peterson, V. J., Avram, D., Shepherd, D. M, Frye, R. A., Minucci, S., and Leid, M. (2003). Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J Biol Chem 278,43041-43050.
    
    Sims, R. J., 3rd, and Reinberg, D. (2006). Histone H3 Lys 4 methylation: caught in a bind? Genes Dev 20, 2779-2786.
    
    Sinclair, D. A., and Guarente, L. (1997). Extrachromosomal rDNA circles-a cause of aging in yeast. Cell 91, 1033-1042.
    
    Spilianakis, C. G., and Flavell, R. A. (2004). Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 5, 1017-1027.
    
    Stein, G. S., Zaidi, S. K., Braastad, C. D., Montecino, M., van Wijnen, A. J., Choi, J. Y., Stein, J. L., Lian, J. B., and Javed, A. (2003). Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol 13, 584-592.
    
    Sterner, D. E., and Berger, S. L. (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435-459.
    
    Takami, Y., and Nakayama, T. (2000). N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J Biol Chem 275, 16191-16201.
    
    Takata, T., and Ishikawa, F. (2003). Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun 301, 250-257.
    
    Tang, X. B., Feng, D. X., Di, L. J., Huang, Y., Fu, X. H., Liu, G., Tang, Y., Liu, D. P., and Liang, C. C. (2007). HS-48 alone has no enhancement role on the expression of human alpha-globin gene cluster. Blood Cells Mol Dis 38, 32-36.
    
    Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., and Horio, Y. (2006). Nucleo-cytoplasmic shuttling of NAD+-dependent histone deacetylase SIRT1. J Biol Chem.
    
    Tissenbaum, H. A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230.
    
    Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F., and de Laat, W. (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10, 1453-1465.
    
    Torrano, V., Chernukhin, I., Docquier, F., D'Arcy, V., Leon, J., Klenova, E., and Delgado, M. D. (2005). CTCF regulates growth and erythroid differentiation of human myeloid leukemia cells. J Biol Chem 280, 28152-28161.
    
    Tsang, A. W., and Escalante-Semerena, J. C. (1998). CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J Biol Chem 273, 31788-31794.
    
    Underhill, C., Qutob, M. S., Yee, S. P., and Torchia, J. (2000). A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 275, 40463-40470.
    van der Horst, A., Tertoolen, L. G., de Vries-Smits, L. M., Frye, R. A., Medema, R. H., and Burgering, B. M. (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279, 28873-28879.
    
    Vaquero, A., Scher, M., Lee, D., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. (2004). Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16, 93-105.
    
    Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L., and Weinberg, R. A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159.
    
    Volpi, E. V., Chevret, E., Jones, T., Vatcheva, R., Williamson, J., Beck, S., Campbell, R. D., Goldsworthy, M., Powis, S. H., Ragoussis, J., et al. (2000). Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113 (Pt 9), 1565-1576.
    
    Wade, P. A. (2001). Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet 10,693-698.
    
    Waltregny, D., De Leval, L., Glenisson, W, Ly Tran, S., North, B. J., Bellahcene, A., Weidle, U., Verdin, E., and Castronovo, V. (2004). Expression of histone deacetylase 8, a class I histone deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues. Am J Pathol 765, 553-564.
    
    Wang, J., Shiels, C., Sasieni, P., Wu, P. J., Islam, S. A., Freemont, P. S., and Sheer, D. (2004). Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164,515-526.
    
    Wang, Z., and Liebhaber, S. A. (1999). A 3'-flanking NF-kappaB site mediates developmental silencing of the human zeta-globin gene. Embo J 15, 2218-2228.
    
    Watamoto, K., Towatari, M., Ozawa, Y., Miyata, Y., Okamoto, M., Abe, A., Naoe, T., and Saito, H. (2003). Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22, 9176-9184.
    
    Wen, J., Huang, S., Rogers, H., Dickinson, L. A., Kohwi-Shigematsu, T., and Noguchi, C. T. (2005). SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression. Blood 105, 3330-3339.
    
    Xu, W., Edmondson, D. G., Evrard, Y. A., Wakamiya, M., Behringer, R. R., and Roth, S. Y. (2000). Loss of Gcn512 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet 26, 229-232.
    
    Yamauchi, T., Yamauchi, J., Kuwata, T., Tamura, T., Yamashita, T., Bae, N., Westphal, H., Ozato, K., and Nakatani, Y. (2000). Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc Natl Acad Sci U S A 97, 11303-11306.
    
    Yang, X. J., and Gregoire, S. (2005). Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 25, 2873-2884.
    
    Yao, T. P., Oh, S. P., Fuchs, M., Zhou, N. D., Ch'ng, L. E., Newsome, D., Bronson, R. T., Li, E., Livingston, D. M., and Eckner, R. (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361-372.
    
    Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., and Mayo, M. W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the S1RT1 deacetylase. Embo J 23, 2369-2380.
    
    You, A., Tong, J. K., Grozinger, C. M., and Schreiber, S. L. (2001). CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc Natl Acad Sci U S A 95, 1454-1458.
    
    Zhou, G. L., Xin, L., Song, W., Di, L. J., Liu, G., Wu, X. S., Liu, D. P., and Liang, C. C. (2006). Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol 26, 5096-5105.
    Accili, D., and Arden, K. C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421-426.
    
    Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A., Galle, R. F., et al. (2000). The genome sequence of Drosophila melanogaster. Science 257,2185-2195.
    
    Akiyama, T., Takasawa, S., Nata, K., Kobayashi, S., Abe, M., Shervani, N. J., Ikeda, T., Nakagawa, K., Unno, M., Matsuno, S., and Okamoto, H. (2001). Activation of Reg gene, a gene for insulin-producing beta -cell regeneration: poly(ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation. Proc Natl Acad Sci U S A 98,48-53.
    
    Allfrey, V. G., Faulkner, R., and Mirsky, A. E. (1964). Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U S A 51, 786-794.
    
    Althaus, F. R. (2005). Poly(ADP-ribose): a co-regulator of DNA methylation? Oncogene 24, 11-12.
    
    Ame, J. C., Spenlehauer, C., and de Murcia, G. (2004). The PARP superfamily. Bioessays 26, 882-893.
    
    Anderson, M. G., Scoggin, K. E., Simbulan-Rosenthal, C. M., and Steadman, J. A. (2000). Identification of poly(ADP-ribose) polymerase as a transcriptional coactivator of the human T-cell leukemia virus type 1 Tax protein. J Virol 74,2169-2177.
    
    Anguita, E., Johnson, C. A., Wood, W. G., Turner, B. M., and Higgs, D. R. (2001). Identification of a conserved erythroid specific domain of histone acetylation across the alpha-globin gene cluster. Proc Natl Acad Sci U S A 98, 12114-12119.
    
    Ayer, D. E. (1999). Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 9, 193-198.
    
    Bender, M A., Bulger, M., Close, J., and Groudine, M. (2000). Beta-globin gene switching and DNase I sensitivity of the endogenous beta-globin locus in mice do not require the locus control region. Mol Cell 5, 387-393.
    Berger, S. L. (2002). Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12, 142-148.
    
    Bertos, N. R., Wang, A. H., and Yang, X. J. (2001). Class II histone deacetylases: structure. function, and regulation. Biochem Cell Biol 79, 243-252.
    
    Bi, X., Yu, Q., Sandmeier, J. J., and Elizondo, S. (2004). Regulation of transcriptional silencing in yeast by growth temperature. J Mol Biol 344, 893-905.
    
    Bieker, J. J. (2001). Kruppel-like factors: three fingers in many pies. J Biol Chem 276, 34355-34358.
    
    Boyes, J., Byfield, P., Nakatani, Y., and Ogryzko, V. (1998). Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594-598.
    
    Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D., and Broach, J. R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7, 592-604.
    
    Brehm, A., Miska, E. A., McCance, D. J., Reid, J. L., Bannister, A. J., and Kouzarides, T. (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597-601.
    
    Brown, K. E. (2003). Chromatin folding and gene expression: new tools to reveal the spatial organization of genes. Chromosome Res 11, 423-433.
    
    Brown, R. C., Pattison, S., van Ree, J., Coghill, E., Perkins, A., Jane, S. M., and Cunningham, J. M. (2002). Distinct domains of erythroid Kruppel-like factor modulate chromatin remodeling and transactivation at the endogenous beta-globin gene promoter. Mol Cell Biol 22, 161-170.
    
    Brunet, A. (2004). [The multiple roles of FOXO transcription factors]. Med Sci (Paris) 20, 856-859.
    
    Brush, M. H., Guardiola, A., Connor, J. H., Yao, T. P., and Shenolikar, S. (2004). Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases. J Biol Chem 279, 7685-7691.
    
    Bulger, M, and Groudine, M. (1999). Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13, 2465-2477.
    
    Bulger, M., and Groudine, M. (2002). TRAPping enhancer function. Nat Genet 32, 555-556.
    
    Butler, A. J., and Ordahl, C. P. (1999). Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol Cell Biol 19, 296-306.
    
    Cabrera, J. R., Serrador, J. M., Barreiro, O., Mittelbrunn, M., Naranjo-Suarez, S., Martin-Cofreces, N., Vicente-Manzanares, M., Mazitschek, R., Bradner, J. E., Avila, J., el al. (2006). Lymphocyte chemotaxis is regulated by histone deacetylase 6, independently of its deacetylase activity. Mol Biol Cell 17, 3435-3445.
    
    Carmo-Fonseca, M. (2002). The contribution of nuclear compartmentalization to gene regulation. Cell 108, 513-521.
    
    Carrozza, M. J., Utley, R. T., Workman, J. L., and Cote, J. (2003). The diverse functions of histone acetyltransferase complexes. Trends Genet 19, 321-329.
    
    Carter, D., Chakalova, L., Osborne, C. S., Dai, Y. F., and Fraser, P. (2002). Long-range chromatin regulatory interactions in vivo. Nat Genet 32, 623-626.
    
    Cervellera, M. N., and Sala, A. (2000). Poly(ADP-ribose) polymerase is a B-MYB coactivator. J Biol Chem 275, 10692-10696.
    
    Chambeyron, S., and Bickmore, W. A. (2004). Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18, 1119-1130.
    
    Chen, H. Z., Zhang, Z. Q., Wei, Y. S., and Liu, D. P. (2007). [Research progression of deacetylase (SIRT1)]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 29, 441-447.
    
    Cheng, H. L., Mostoslavsky, R., Saito, S., Manis, J. P., Gu, Y., Patel, P., Bronson, R., Appella, E., Alt, F. W., and Chua, K. F. (2003). Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 100, 10794-10799.
    
    Chiani. F., Di Felice, F., and Camilloni, G. (2006). SIR2 modifies histone H4-K16 acetylation and affects superhelicity in the ARS region of plasmid chromatin in Saccharomyces cerevisiae. Nucleic Acids Res 34, 5426-5437.
    
    Chuang. H. C., Chang, C. W., Chang, G. D., Yao, T. P., and Chen, H. (2006). Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res 34, 1459-1469.
    
    Chubb, J. R., and Bickmore, W. A. (2003). Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 112, 403-406.
    
    D'Amours, D., Desnoyers, S., D'Silva, I., and Poirier, G. G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342 ( Pt 2), 249-268.
    
    Daitoku, H., Hatta, M., Matsuzaki, H., Aratani, S., Ohshima, T., Miyagishi, M., Nakajima, T., and Fukamizu, A. (2004). Silent information regulator 2 potentiates Foxol-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A 101, 10042-10047.
    
    Dannenberg, J. H., David, G., Zhong, S., van der Torre, J., Wong, W. H., and Depinho, R. A. (2005). mSin3 A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev 19, 1581-1595.
    
    de Capoa, A., Febbo, F. R., Giovannelli, F., Niveleau, A., Zardo, G., Marenzi, S., and Caiafa, P. (1999). Reduced levels of poly(ADP-ribosyl)ation result in chromatin compaction and hypermethylation as shown by cell-by-cell computer-assisted quantitative analysis. Faseb J 13, 89-93.
    
    de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., and van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370,737-749.
    
    Dean, A. (2006). On a chromosome far, far away: LCRs and gene expression. Trends Genet 22, 38-45.
    
    Dekker, J. (2003). A closer look at long-range chromosomal interactions. Trends Biochem Sci 28, 277-280.
    
    Denu, J. M. (2003). Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. Trends Biochem Sci 28, 41-48.
    
    Durst, K. L., Lutterbach, B., Kummalue, T., Friedman, A. D., and Hiebert, S. W. (2003). The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol Cell Biol 23, 607-619.
    
    Engel, J. D., and Tanimoto, K. (2000). Looping, linking, and chromatin activity: new insights into beta-globin locus regulation. Cell 100, 499-502.
    
    Feng, D. X., Liu, D. P., Huang, Y., Wu, L., Li, T. C., Wu, M., Tang, X. B., and Liang, C. C. (2001). The expression of human alpha -like globin genes in transgenic mice mediated by bacterial artificial chromosome. Proc Natl Acad Sci U S A 98, 15073-15077.
    
    Fernandes, I., Bastien, Y., Wai, T., Nygard, K., Lin, R., Cormier, O., Lee, H. S., Eng, F., Bertos, N. R., Pelletier, N., et al. (2003). Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol Cell 11, 139-150.
    
    Foglietti, C., Filocamo, G., Cundari, E., De Rinaldis, E., Lahm, A., Cortese, R., and Steinkuhler, C. (2006). Dissecting the biological functions of Drosophila histone deacetylases by RNA interference and transcriptional profiling. J Biol Chem 281, 17968-17976.
    
    Francastel, C., Magis, W., and Groudine, M. (2001). Nuclear relocation of a transactivator subunit precedes target gene activation. Proc Natl Acad Sci U S A 98, 12120-12125.
    
    Frye, R. A. (1999). Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260, 273-279.
    
    Fulco, M., Schiltz, R. L., Iezzi, S., King, M. T., Zhao, P., Kashiwaya, Y., Hoffman, E., Veech, R. L., and Sartorelli, V. (2003). Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12. 51-62.
    
    Galande, S., and Kohwi-Shigematsu, T. (1999). Poly(ADP-ribose) polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences. J Biol Chem 274, 20521-20528.
    
    Galande, S., and Kohwi-Shigematsu, T. (2000). Caught in the act: binding of Ku and PARP to M ARs reveals novel aspects of their functional interaction. Crit Rev Eukaryot Gene Expr 10, 63-72.
    
    Gandhi, T. K., Zhong, J., Mathivanan, S., Karthick, L., Chandrika, K. N., Mohan, S. S., Sharma, S., Pinkert, S., Nagaraju, S., Periaswamy, B., et al. (2006). Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38, 285-293.
    
    Geiman, T. M., and Robertson, K. D. (2002). Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J Cell Biochem 87, 117-125.
    
    Gourdon, G., Sharpe, J. A., Wells, D., Wood, W. G., and Higgs, D. R. (1994). Analysis of a 70 kb segment of DNA containing the human zeta and alpha-globin genes linked to their regulatory element (HS-40) in transgenic mice. Nucleic Acids Res 22, 4139-4147.
    
    Gregoretti, I. V., Lee, Y. M., and Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338, 17-31.
    
    Grozinger, C. M., and Schreiber, S. L. (2002). Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9, 3-16.
    
    Ha, H. C. (2004). Defective transcription factor activation for proinflammatory gene expression in poly(ADP-ribose) polymerase 1-deficient glia. Proc Natl Acad Sci U S A 101, 5087-5092.
    
    Halme, A., Bumgarner, S., Styles, C., and Fink, G. R. (2004). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116, 405-415.
    
    Hanai, S., Uchida, M., Kobayashi, S., Miwa, M., and Uchida, K. (1998). Genomic organization of Drosophila poly(ADP-ribose) polymerase and distribution of its mRNA during development. J Biol Chem 273, 11881-11886.
    
    Hassa, P. O., Covic, M., Hasan, S., Imhof, R., and Hottiger, M. O. (2001). The enzymatic and DNA binding activity of PARP-1 are not required forNF-kappa B coactivator function. J Biol Chem 276, 45588-45597.
    
    Hassa, P. O., and Hottiger, M. O. (2002). The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci 59, 1534-1553.
    
    Higgs, D. R., Wood, W. G., Jarman, A. P., Sharpe, J., Lida, J., Pretorius, I. M., and Ayyub, H. (1990). A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev 4, 1588-1601.
    
    Hildmann, C., Riester, D., and Schwienhorst, A. (2007). Histone deacetylases-an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75, 487-497.
    
    Hisahara, S., Chiba, S., Matsumoto, H., and Horio, Y. (2005). Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2alpha). J Pharmacol Sci 98, 200-204.
    
    Homburg, S., Visochek, L., Moran, N., Dantzer, F., Priel, E., Asculai, E., Schwartz, D., Rotter, V., Dekel, N., and Cohen-Armon, M. (2000). A fast signal-induced activation of Poly(ADP-ribose) polymerase: a novel downstream target of phospholipase c. J Cell Biol 150, 293-307.
    
    Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X. F., and Yao, T. P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458.
    
    Hung, H. L., Kim. A. Y., Hong, W., Rakowski, C., and Blobel, G. A. (2001). Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation. J Biol Chem 276, 10715-10721.
    
    Imai, S., Armstrong, C. M., Kaeberlein, M., and Guarente, L. (2000a). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800.
    
    Imai, S., Johnson, F. B., Marciniak, R. A., McVey, M., Park, P. U., and Guarente, L. (2000b). Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol 65, 297-302.
    
    Jenuwein, T., and Allis, C. D. (2001). Translating the histone code. Science 293, 1074-1080.
    
    Johnson, K. D., Grass, J. A., Park, C., Im, H., Choi, K., and Bresnick, E. H. (2003). Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain. Mol Cell Biol 23, 6484-6493.
    
    Jones, P. A., and Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415-428.
    
    Ju, B. G., Solum, D., Song, E. J., Lee, K. J., Rose, D. W., Glass, C. K, and Rosenfeld, M. G. (2004). Activating the PARP-1 sensor component of the groucho/ TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. Cell 119, 815-829.
    
    Kadam, S., McAlpine, G. S., Phelan, M. L., Kingston, R. E., Jones, K. A., and Emerson, B. M. (2000). Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev 14, 2441-2451.
    
    Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570-2580.
    
    Kameoka, M., Ota, K., Tetsuka, T., Tanaka, Y., Itaya, A., Okamoto, T., and Yoshihara, K. (2000). Evidence for regulation of NF-kappaB by poly(ADP-ribose) polymerase. Biochem J 346 Pt 3, 641-649.
    
    Kannan, P., Yu, Y., Wankhade, S., and Tainsky, M. A. (1999). PolyADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation. Nucleic Acids Res 27, 866-874.
    
    Kataoka, H., Bonnefin, P., Vieyra, D., Feng, X., Hara, Y., Miura, Y., Joh, T., Nakabayashi, H., Vaziri, H., Harris, C. C., and Riabowol, K. (2003). ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Res 63, 5785-5792.
    
    Kato, H., Tamamizu-Kato, S., and Shibasaki, F. (2004). Histone deacetylase 7 associates with hypoxia-inducible factor 1 alpha and increases transcriptional activity. J Biol Chem 279, 41966-41974.
    
    Kenyon, C. (2001). A conserved regulatory system for aging. Cell 105, 165-168.
    
    Kim, M. M., Yoon, S. O., Cho, Y. S., and Chung, A. S. (2004). Histone deacetylases, HDAC1 and HSIR2, act as a negative regulator of ageing through p53 in human gingival fibroblast. Mech Ageing Dev 125, 351-357.
    
    Kim, M Y., Woo, E. M., Chong, Y. T., Homenko, D. R., and Kraus, W. L. (2006). Acetylation of Estrogen Receptor Alpha by p300 at Lysines 266 and 268 Enhances the DNA Binding and Transactivation Activities of the Receptor. Mol Endocrinol.
    
    Kobayashi, T., and Ganley, A. R. (2005). Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309, 1581-1584.
    
    Kouzarides, T. (2000). Acetylation: a regulatory modification to rival phosphorylation? Embo J 19, 1176-1179.
    Kurdistani, S. K., and Grunstein, M. (2003). Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4, 276-284.
    
    Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus. L., and Sternglanz, R. (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A 97,5807-5811.
    
    Le Page, C., Sanceau, J., Drapier, J. C., and Wietzerbin, J. (1998). Inhibitors of ADP-ribosylation impair inducible nitric oxide synthase gene transcription through inhibition of NF kappa B activation. Biochem Biophys Res Commun 243, 451-457.
    
    Lee, H., Sengupta, N., Villagra, A., Rezai-Zadeh, N., and Seto, E. (2006). Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation. Mol Cell Biol 26, 5259-5269.
    
    Letting, D. L., Chen, Y. Y., Rakowski, C., Reedy, S., and Blobel, G. A. (2004). Context-dependent regulation of GATA-1 by friend of GATA-1. Proc Natl Acad Sci U S A 101, 476-481.
    
    Letting, D. L., Rakowski, C., Weiss, M. J., and Blobel, G. A. (2003). Formation of a tissue-specific histone acetylation pattern by the hematopoietic transcription factor GATA-1. Mol Cell Biol 23, 1334-1340.
    
    Li, M., Naidu, P., Yu, Y., Berger, N. A., and Kannan, P. (2004). Dual regulation of AP-2alpha transcriptional activation by poly(ADP-ribose) polymerase-1. Biochem J 382, 323-329.
    
    Li, Q., Barkess, G., and Qian, H. (2006a). Chromatin looping and the probability of transcription. Trends Genet 22, 197-202.
    
    Li, Y., Kao, G. D., Garcia, B. A, Shabanowitz, J., Hunt, D. F., Qin, J., Phelan, C., and Lazar, M. A. (2006b). A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. Genes Dev 20, 2566-2579.
    
    Lin, S. J., Kaeberlein, M., Andalis, A. A., Sturtz, L. A., Defossez, P. A., Culotta, V. C., Fink, G. R., and Guarente, L. (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344-348.
    
    Liu, Z., and Garrard, W. T. (2005). Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3' boundary sequence spanning 46 kilobases. Mol Cell Biol 25, 3220-3231.
    
    Lopez, R. A., Schoetz, S., DeAngelis, K., O'Neill, D., and Bank, A. (2002). Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc Natl Acad Sci U S A 99, 602-607.
    
    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260.
    
    Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148.
    
    Mahajan, M. C., and Weissman, S. M. (2002). DNA-dependent adenosine triphosphatase (helicaselike transcription factor) activates beta-globin transcription in K562 cells. Blood 99, 348-356.
    
    Meder, V. S., Boeglin, M., de Murcia, G., and Schreiber, V. (2005). PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci 118, 211-222.
    
    Mendoza-Alvarez, H., and Alvarez-Gonzalez, R. (2001). Regulation of p53 sequence-specific DNA-binding by covalent poly(ADP-ribosyl)ation. J Biol Chem 276, 36425-36430.
    
    Miyamoto, T., Kakizawa, T., and Hashizume, K. (1999). Inhibition of nuclear receptor signalling by poly(ADP-ribose) polymerase. Mol Cell Biol 19, 2644-2649.
    
    Motta, M. C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M., and
    Guarente, L. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563.
    
    Munoz-Alonso, M. J., Acosta, J. C., Richard, C., Delgado. M. D., Sedivy, J., and Leon, J. (2005). p21Cip1 and p27Kip1 induce distinct cell cycle effects and differentiation programs in myeloid leukemia cells. J Biol Chem 280, 18120-18129.
    
    Muth, V., Nadaud, S., Grummt, I., and Voit, R. (2001). Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. Embo J 20, 1353-1362.
    
    Narlikar, G. J., Fan, H. Y., and Kingston, R. E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475-487.
    
    Nawrocki, S. T., Carew, J. S., Pino, M S., Highshaw, R. A., Andtbacka, R. H., Dunner, K., Jr., Pal, A., Bornmann, W. G., Chiao, P. J., Huang, P., et al. (2006). Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66, 3773-3781.
    
    Nie, J., Sakamoto, S., Song, D., Qu, Z., Ota, K., and Taniguchi, T. (1998). Interaction of Oct-1 and automodification domain of poly(ADP-ribose) synthetase. FEBS Lett 424, 27-32.
    
    Nirodi, C., NagDas, S., Gygi, S. P., Olson, G., Aebersold, R., and Richmond, A. (2001). A role for poly(ADP-ribose) polymerase in the transcriptional regulation of the melanoma growth stimulatory activity (CXCL1) gene expression. J Biol Chem 276, 9366-9374.
    
    Nusinzon, I., and Horvath, C. M. (2006). Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol Cell Biol 26, 3106-3113.
    
    Oei, S. L., Griesenbeck, J., Schweiger, M, and Ziegler, M. (1998a). Regulation of RNA polymerase II-dependent transcription by poly(ADP-ribosyl)ation of transcription factors. J Biol Chem 273, 31644-31647.
    
    Oei, S. L., Griesenbeck, J., Ziegler, M, and Schweiger, M. (1998b). A novel function of poly(ADP-ribosyl)ation: silencing of RNA polymerase II-dependent transcription. Biochemistry 37, 1465-1469.
    
    Oei, S. L., and Shi, Y. (2001). Poly(ADP-ribosyl)ation of transcription factor Yin Yang 1 under conditions of DNA damage. Biochem Biophys Res Commun 285, 27-31.
    
    Palstra, R. J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003). The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 55, 190-194.
    
    Parent, M., Yung, T. M., Rancourt, A., Ho, E. L., Vispe, S., Suzuki-Matsuda, F., Uehara, A., Wada, T., Handa, H., and Satoh, M. S. (2005). PoIy(ADP-ribose) polymerase-1 is a negative regulator of HIV-1 transcription through competitive binding to TAR RNA with Tat.positive transcription elongation factor b (p-TEFb) complex. J Biol Chem 280, 448-457.
    
    Pavri, R., Lewis, B., Kim, T. K., Dilworth, F. J., Erdjument-Bromage, H., Tempst, P., de Murcia, G., Evans, R., Chambon, P., and Reinberg, D. (2005). PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 18, 83-96.
    
    Peart, M. J., Smyth, G. K., van Laar, R. K., Bowtell, D. D., Richon, V. M., Marks, P. A., Holloway, A. J., and Johnstone, R. W. (2005). Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102, 3697-3702.
    
    Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M. W., and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771-776.
    
    Pirrotta, V. (2003). Transcription. Puffing with PARP. Science 299, 528-529.
    Plaza, S., Aumercier, M., Bailly, M., Dozier, C., and Saule, S. (1999). Involvement of poly (ADP-ribose)-polymerase in the Pax-6 gene regulation in neuroretina. Oncogene 18, 1041-1051.
    
    Ragoczy, T., Telling, A., Sawado, T., Groudine, M., and Kosak, S. T. (2003). A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res 11, 513-525.
    
    Reale, A., Matteis, G. D., Galleazzi, G., Zampieri, M., and Caiafa, P. (2005). Modulation of DNMT1 activity by ADP-ribose polymers. Oncogene 24, 13-19.
    
    Ren, S., Luo, X. N., and Atweh, G. F. (1993). The major regulatory element upstream of the alpha-globin gene has classical and inducible enhancer activity. Blood 81, 1058-1066.
    
    Rosenberg, M. I., and Parkhurst, S. M. (2002). Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell 109, 447-458.
    
    Roth, S. Y., Denu, J. M., and Allis, C. D. (2001). Histone acetyltransferases. Annu Rev Biochem 70, 81-120.
    
    Rouleau, M., Aubin, R. A., and Poirier, G. G. (2004). Poly(ADP-ribosyI)ated chromatin domains: access granted. J Cell Sci 117, 815-825.
    
    Sawado, T., Igarashi, K., and Groudine, M. (2001). Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter. Proc Natl Acad Sci U S A 98, 10226-10231.
    
    Schubeler, D., Francastel, C., Cimbora, D. M, Reik, A., Martin, D. I., and Groudine, M. (2000). Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev 14, 940-950.
    
    Senawong, T., Peterson, V. J., Avram, D., Shepherd, D. M., Frye, R. A., Minucci, S., and Leid, M. (2003). Involvement of the histone deacetylase SIRTl in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J Biol Chem 278, 43041-43050.
    
    Shankaranarayana, G. D., Motamedi, M. R., Moazed, D., and Grewal, S. I. (2003). Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr Biol 13, 1240-1246.
    
    Simbulan-Rosenthal, C. M., Rosenthal, D. S., Luo, R., Samara, R., Espinoza, L. A., Hassa, P. O., Hottiger, M. O., and Smulson, M. E. (2003). PARP-1 binds E2F-1 independently of its DNA binding and catalytic domains, and acts as a novel coactivator of E2F-1-mediated transcription during re-entry of quiescent cells into S phase. Oncogene 22, 8460-8471.
    
    Simbulan-Rosenthal, C. M., Rosenthal, D. S., Luo, R., and Smulson, M. E. (1999). Poly(ADP-ribose) polymerase upregulates E2F-1 promoter activity and DNA pol alpha expression during early S phase. Oncogene 18,5015-5023.
    
    Simbulan-Rosenthal, C. M., Rosenthal, D. S., Luo, R. B., Samara, R., Jung, M., Dritschilo, A., Spoonde, A., and Smulson, M. E. (2001). Poly(ADP-ribosyl)ation of p53 in vitro and in vivo modulates binding to its DNA consensus sequence. Neoplasia 3, 179-188.
    
    Sims, R. J., 3rd, and Reinberg, D. (2006). Histone H3 Lys 4 methylation: caught in a bind? Genes Dev 20, 2779-2786.
    
    Sinclair, D. A., and Guarente, L. (1997). Extrachromosomal rDNAcircles-a cause of aging in yeast. Cell 91, 1033-1042.
    
    Spilianakis, C. G., and Flavell, R. A. (2004). Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 5, 1017-1027.
    
    Stein, G. S., Zaidi, S. K.., Braastad, C. D., Montecino, M., van Wijnen, A. J., Choi, J. Y., Stein, J. L., Lian, J. B., and Javed, A. (2003). Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol 13, 584-592.
    
    Sterner, D. E., and Berger, S. L. (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435-459.
    
    Takami, Y., and Nakayama, T. (2000). N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J Biol Chem 275, 16191-16201.
    
    Takata, T., and Ishikawa, F. (2003). Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun 301, 250-257.
    
    Tang, X. B., Feng, D. X., Di, L. J., Huang, Y., Fu, X. H., Liu, G., Tang, Y., Liu, D. P., and Liang, C. C. (2007). HS-48 alone has no enhancement role on the expression of human alpha-globin gene cluster. Blood Cells Mol Dis 38, 32-36.
    
    Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., and Horio, Y. (2006). Nucleo-cytoplasmic shuttling of NAD+-dependent histone deacetylase SIRT1. J Biol Chem.
    
    Tissenbaum, H. A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230.
    
    Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F., and de Laat, W. (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10, 1453-1465.
    
    Torrano, V., Chernukhin, I., Docquier, F., D'Arcy, V., Leon, J., Klenova, E., and Delgado, M. D. (2005). CTCF regulates growth and erythroid differentiation of human myeloid leukemia cells. J Biol Chem 280, 28152-28161.
    
    Tsang, A. W., and Escalante-Semerena, J. C. (1998). CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J Biol Chem 273, 31788-31794.
    
    Tulin, A., Naumova, N. M., Menon, A. K., and Spradling, A. C. (2005). Drosophila poly(ADP-ribose) glycohydrolase (Parg) mediates chromatin structure and Sir2-dependent silencing. Genetics.
    
    Underhill, C., Qutob, M. S., Yee, S. P., and Torchia, J. (2000). A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 275, 40463-40470.
    
    van der Horst, A., Tertoolen, L. G, de Vries-Smits, L. M., Frye, R. A., Medema, R. H., and Burgering, B. M. (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279, 28873-28879.
    
    Vaquero, A., Scher, M., Lee, D., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. (2004). Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16, 93-105.
    
    Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L., and Weinberg, R. A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159.
    
    Vidakovic, M., Grdovic, N., Quesada, P., Bode, J., and Poznanovic, G. (2004). Poly(ADP-ribose) polymerase-1: association with nuclear lamins in rodent liver cells. J Cell Biochem 93, 1155-1168.
    
    Vispe, S., Yung, T. M., Ritchot, J., Serizawa, H., and Satoh, M. S. (2000). A cellular defense pathway regulating transcription through poly(ADP-ribosyl)ation in response to DNA damage. Proc Natl Acad Sci U S A 97,9886-9891.
    Volpi, E. V., Chevret, E., Jones, T., Vatcheva, R., Williamson, J., Beck. S., Campbell. R. D., Goldsworthy, M., Powis, S. H., Ragoussis, J., et al. (2000). Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113 (Pt 9), 1565-1576.
    
    Wade, P. A. (2001). Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet 10, 693-698.
    
    Waltregny, D., De Leval, L., Glenisson, W., Ly Tran, S., North, B. J., Bellahcene, A., Weidle, U., Verdin, E., and Castronovo, V. (2004). Expression of histone deacetylase 8, a class 1 histone deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues. Am J Pathol 165, 553-564.
    
    Wang, J., Shiels, C., Sasieni, P., Wu, P. J., Islam, S. A., Freemont, P. S., and Sheer, D. (2004). Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164, 515-526.
    
    Wang, Z., and Liebhaber, S. A. (1999). A 3'-flanking NF-kappaB site mediates developmental silencing of the human zeta-globin gene. Embo J 18, 2218-2228.
    
    Watamoto, K., Towatari, M., Ozawa, Y., Miyata, Y., Okamoto, M., Abe, A., Naoe, T., and Saito, H. (2003). Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22, 9176-9184.
    
    Wen, J., Huang, S., Rogers, H., Dickinson, L. A., Kohwi-Shigematsu, T., and Noguchi, C. T. (2005). SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression. Blood 105, 3330-3339.
    
    Whitacre, C. M., Hashimoto, H., Tsai, M. L., Chatterjee, S., Berger, S. J., and Berger, N. A. (1995). Involvement of NAD-poly(ADP-ribose) metabolism in p53 regulation and its consequences. Cancer Res 55, 3697-3701.
    
    Xu, W., Edmondson, D. G., Evrard, Y. A., Wakamiya, M., Behringer, R. R., and Roth, S. Y. (2000). Loss of Gcn512 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet 26, 229-232.
    
    Yamauchi, T., Yamauchi, J., Kuwata, T., Tamura, T., Yamashita, T., Bae, N., Westphal, H., Ozato, K., and Nakatani, Y. (2000). Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc Natl Acad Sci U S A 97, 11303-11306.
    
    Yang, X. J., and Gregoire, S. (2005). Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 25, 2873-2884.
    
    Yao, T. P., Oh, S. P., Fuchs, M., Zhou, N. D., Ch'ng, L. E., Newsome, D., Bronson, R. T., Li, E., Livingston, D. M., and Eckner, R. (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361-372.
    
    Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., and Mayo, M. W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. Embo J 23, 2369-2380.
    
    You, A., Tong, J. K., Grozinger, C. M., and Schreiber, S. L. (2001). CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc Natl Acad Sci U S A 98, 1454-1458.
    
    Yung, T. M., and Satoh, M. S. (2001). Functional competition between poly(ADP-ribose) polymerase and its 24-kDa apoptotic fragment in DNA repair and transcription. J Biol Chem 276, 11279-11286.
    
    Zardo, G., and Caiafa, P. (1998). The unmethylated state of CpG islands in mouse fibroblasts depends on the poly(ADP-ribosyl)ation process. J Biol Chem 273, 16517-16520.
    
    Zardo, G., D'Erme, M., Reale, A., Strom, R., Perilli, M., and Caiafa, P. (1997). Does poly(ADP-ribosyl)ation regulate the DNA methylation pattern? Biochemistry 36, 7937-7943.
    
    Zhang, J. (2003). Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? Bioessays 25, 808-814.
    
    Zhang, Z., Hildebrandt, E. F., Simbulan-Rosenthal, C. M., and Anderson, M. G. (2002). Sequence-specific binding of poly(ADP-ribose) polymerase-1 to the human T cell leukemia virus type-I tax responsive element. Virology 296, 107-116.
    
    Zhou, G. L., Xin, L., Song, W., Di, L. J., Liu, G., Wu, X. S., Liu, D. P., and Liang, C. C. (2006). Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol 26, 5096-5105.
    
    Ziegler, M., and Oei, S. L. (2001). A cellular survival switch: poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. Bioessays 23, 543-548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700