用户名: 密码: 验证码:
深低温停循环后脑损伤的动物实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分小预充量体外循环在深低温停循环中脑保护效果的动物实验研究
     目的:建立联合兔脑微透析和体外循环(CPB)及深低温停循环(DHCA)动物实验模型,探讨小预充量体外循环在深低温停循环中的脑保护效果。
     方法:成年雄性新西兰白兔19只,随机分配到假手术组(S组,n=5),小预充量CPB组(L组,n=7),大预充量CPB组(H组,n=7),预充量分别为75ml和210ml。首先在兔的脑内海马CA1区定位,埋植微透析针导轨并安装透析针保护罩。埋针36小时后开始微透析,并建立CPB和DHCA模型。CPB降温至16—18℃,停循环60min,复温30min。微透析每30min取样一次,持续到脱离CPB后2小时。整个过程中持续监测心率、动脉血压、肛温,间断血气检查PaCO_2、PaO_2、HCT。CPB术后2小时处死动物,留取脑顶叶皮层和海马CA1区组织,分别作组织病理学、电镜、TUNEL检测;对微透析样品用高效液相色谱法和CMA600分析仪进行葡萄糖、乳酸、丙酮酸和谷氨酸检测。
     结果:为保证在整个实验过程中,L组和H组的血压和酸碱平衡控制在正常生理范围内,H组所用的血管活性药物多巴胺和碳酸氢钠的量明显高于L组(P<0.05)。微透析检测显示,在H组中反映能量代谢状况指标乳酸/丙酮酸和乳酸/葡萄糖比值在脱离CPB后显著高于L组(P<0.05);反映神经兴奋毒性作用的指标谷氨酸水平在两组DHCA后显著升高,脱离CPB后L组谷氨酸逐渐恢复到基础水平,而H组谷氨酸仍维持在高水平。组织病理学、电镜、TUNEL检测显示H组脑组织损伤程度明显重于L组(P<0.05)。
     结论:在应用DHCA情况下,小预充量CPB同大预充量CPB相比有显著的脑保护作用。
     第二部分深低温停循环后脑损伤分子机制的动物实验研究
     目的:探讨深低温停循环(DHCA)后脑损伤的分子机制中是否存有细胞能量障碍、兴奋性神经毒性作用、聚腺苷二磷酸核糖转移酶-1(PARP-1)过度激活及细胞坏死和(或)凋亡这些分子事件。
     方法:成年雄性新西兰白兔22只,随机分配到CPB组(n=11),DHCA组(L组,n=11)。首先在兔的脑内海马CA1区定位,埋植微透析针导轨并安装透析针保护罩。埋针36小时后开始微透析,并建立CPB和DHCA模型。CPB降温至16—18℃,停循环60min,复温30min。微透析每30min取样一次,持续到脱离CPB后2小时。整个过程中持续监测心率、动脉血压、肛温,间断血气检查PaCO_2、PaO_2、HCT。CPB术后2小时处死动物,留取脑顶叶皮层和海马CA1区组织,分别进行HE染色、PARP-1活性和原位细胞凋亡检测和PARP-1的Western Blot检测。对微透析样品用高效液相色谱法和CMA600分析仪进行葡萄糖、乳酸、丙酮酸和谷氨酸检测。
     结果:微透析的结果显示DHCA组的乳酸/丙酮酸和乳酸/葡萄糖比值及谷氨酸浓度较单纯CPB组和术前基础水平显著升高;组织学检测结果提示,DHCA组脑损伤程度、PARP-1激活程度和细胞凋亡发生率较单纯CPB组增高。
     结论:在DHCA后脑损伤的分子机制中存有以下分子事件—细胞能量障碍、兴奋性神经毒性作用、PARP-1过度激活及细胞坏死和(或)凋亡,共同作用导致脑损伤,在DHCA后脑损伤的分子机制中发挥重要作用。
Part One Neuroprotective Effect of Deep Hypothermic Circulatory Arrest with Low Priming Volume:Study in a Rabbit Model
     Objective:The aim of the study was to investigate the possible neuroprotective effects of a low priming volume following deep hypothermic circulatory arrest (DHCA) by setting up a model of cardiopulmonary bypass(CPB) and DHCA associated with cerebral microdialysis in rabbits.
     Method:Rabbits were randomized into three groups:DHCA with low priming volume(Group L,n=7),DHCA with high priming volume(Group H,n=7),and sham-operated goup(Group S,n=5).The priming volume of Groups L and H were 75mi and 210ml,respectively.The rabbits were simultaneously placed on CPB and brain microdialysis,cooled to 16 to 18℃with DHCA for 60 minutes.After weaning from CPB,the animals were monitored and observed up to 2 hours of recovery.The microdialysis was continuous from consciousness to recovery from CPB. Physiological parameters were regularly recorded.The extracellular levels of glutamate,glucose,lactate,and pyruvate in the hippocampus were collected by microdialysis and measured by HPLC and a microdialysis analyzer.The brain tissue sections,in parietal cortex and hippocampus(CA1),for morphological studies were stained with hematoxylin and eosin and TUNEL,simultaneously,examined by electron microscope.Brain damage was evaluated by these three means.Statistical analysis was performed with the SPSS 13.0.All data were expressed as mean+ standard deviation(SD).Different groups were compared by one-way analysis of variance(ANOVA).Repeated measures ANOVA or Kruskal-Willis analysis were used for comparisons between relevant time-points and the baseline in the same group. A p value of less than 0.05 was considered statistically significant.
     Results:In order to keep the mean arterial pressure and acid-base balance within defined physiological ranges,more doses of dopamine and sodium bicarbonate were administered in Group H than in Group L(P<0.05).The ratios of lactate/glucose and lactate/pyruvate in Group H increased significantly compared with those in Group L from the beginning of weaning from CPB(P<0.05).The levels of extracellular glutamate in the two DHCA groups increased significantly(p<0.05).After weaning from CPB,the glutamate values in Group H remained at higher levels compared with those in Group L(P<0.05).The percentage of injured neurons,TUNEL positive staining,and the mitochondria score of the hippocampus CA1 in Group H were significantly higher than in Group L(P<0.05).
     Conclusions:A low priming volume during DHCA could have a neuroprotective effect compared with a high priming volume.
     Part Two Molecular Events in Neuronal Injury after Deep Hypothermic Circulatory Arrest:Study in a Rabbit Model
     Objective:Although deep hypothermic circulatory arrest has been known to induce neuronal injury,the molecular mechanism of this damage has not been identified.We studied the key molecular mediators through cellular energy failure, excitotoxicity,and overactivation of poly(adenosine diphosphate-ribose) polymerase 1(PARP-1) in brain tissues of a rabbit model of deep hypothermic circulatory arrest similar to clinical settings.
     Method:We established 2 models of cardiopulmonary bypass(n=11) and deep hypothermic circulatory arrest(n=11) associated with cerebral microdialysis in rabbits.Deep hypothermic circulatory arrest lasted for 60 minutes.The measurements of glucose,lactate,pyruvate,and glutamate collected by means of microdialysis were quantified by using a microdialysis analyzer and high-performance liquid chromatography.The overactivation of PARP-1 was assessed by detecting immunostaining of poly(adenosine diphosphate-ribose)(PAR).Histologic studies were used to identify neuronal morphologic changes,and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling staining(TUNEL) and PARP-1 Western blotting were used to identify apoptotic cells and early apoptotic signals.
     Results:Deep hypothermic circulatory arrest significantly increased the lactate/pyruvate and lactate/glucose ratios and the glutamate value,whereas cardiopulmonary bypass did not(P<0.05).Deep hypothermic circulatory arrest significantly increased the numbers of PAR-positive and apoptotic neurons compared with cardiopulmonary bypass(P<0.05).The cleavage of PARP-1 was only found in the deep hypothermic circulatory arrest group.More injured neurons were found in the deep hypothermic circulatory arrest group(histologic scores,P<0.05).
     Conclusions:This study demonstrated that deep hypothermic circulatory arrest results in a series of molecular events consisting of cellular energy failure, excitotoxicity,overactivation of PARP-1,and necrosis and/or apoptosis in neuronal injury.
引文
1 Taylor KM. Central nervous system effects of cardiopulmonary bypass. Ann Thorac Surg, 1998, 66(5 Suppl):S20-24; discussion S25-28
    
    2 Baumgartner WA, Walinsky PL, Salazar JD, et al. Assessing the impact of cerebral injury after cardiac surgery: will determining the mechanism reduce this injury? Ann Thorac Surg, 1999, 67(6):1871-1873; discussion 1891-1874
    
    3 Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med, 1996, 335(25):1857-1863
    
    4 Trittenwein G, Nardi A, Pansi H, et al. Early postoperative prediction of cerebral damage after pediatric cardiac surgery. Ann Thorac Surg, 2003,76(2):576-580
    
    5 Bellinger DC, Wypij D, Kuban KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation, 1999,100(5):526-532
    
    6 Mahle WT, Visconti KJ, Freier MC, et al. Relationship of surgical approach to neurodevelopmental outcomes in hypoplastic left heart syndrome. Pediatrics,2006, 117(1):e90-97
    
    7 Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med, 1993,329(15):1057-1064
    
    8 Ergin MA, Galla JD, Lansman L, et al. Hypothermic circulatory arrest in operations on the thoracic aorta. Determinants of operative mortality and neurologic outcome. J Thorac Cardiovasc Surg, 1994, 107(3):788-797;discussion 797-789
    
    9 Liddicoat JR, Redmond JM, Vassileva CM, et al. Hypothermic circulatory arrest in octogenarians: risk of stroke and mortality. Ann Thorac Surg, 2000,69(4): 1048-1051; discussion 1052
    
    10 Appoo JJ, Augoustides JG, Pochettino A, et al. Perioperative outcome in adults undergoing elective deep hypothermic circulatory arrest with retrograde cerebral perfusion in proximal aortic arch repair: evaluation of protocol-based care. J Cardiothorac Vasc Anesth, 2006, 20(l):3-7
    
    11 Svensson LG, Crawford ES, Hess KR, et al. Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. J Thorac Cardiovasc Surg, 1993, 106(1):19-28; discussion 28-31
    
    12 Gaynor JW, Nicolson SC, Jarvik GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg,2005, 130(5):1278-1286
    
    13 Bical OM, Fromes Y, Gaillard D, et al. Comparison of the inflammatory response between miniaturized and standard CPB circuits in aortic valve surgery. Eur J Cardiothorac Surg, 2006, 29(5):699-702
    
    14 Immer FF, Pirovino C, Gygax E, et al. Minimal versus conventional cardiopulmonary bypass: assessment of intraoperative myocardial damage in coronary bypass surgery. Eur J Cardiothorac Surg, 2005, 28(5):701-704
    15 Karamlou T, Hickey E, Silliman CC, et al. Reducing risk in infant cardiopulmonary bypass: the use of a miniaturized circuit and a crystalloid prime improves cardiopulmonary function and increases cerebral blood flow.Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, 2005, 8(1):3-11
    
    16 Sawyer CH, Everett JW, Green JD. The rabbit diencephalon in stereotaxic coordinates. J Comp Neurol, 1954, 101(3):801-824
    
    17 Labat-Moleur F, Guillermet C, Lorimier P, et al. TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J Histochem Cytochem, 1998, 46(3):327-334
    
    18 Su DS, Wang XR, Zheng YJ, et al. Retrograde cerebral perfusion of oxygenated, compacted red blood cells attenuates brain damage after hypothermia circulation arrest of rat. Acta Anaesthesiol Scand, 2005,49(8): 1172-1181
    
    19 Jungwirth B, Mackensen GB, Blobner M, et al. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats:description of a new model. J Thorac Cardiovasc Surg, 2006, 131 (4):805-812
    
    20 Kim WG, Moon HJ, Won TH, et al. Rabbit model of cardiopulmonary bypass.Perfusion, 1999,14(2): 101-105
    
    21 Bastien O, Piriou V, Aouifi A, et al. Relative importance of flow versus pressure in splanchnic perfusion during cardiopulmonary bypass in rabbits.Anesthesiology, 2000, 92(2):457-464
    
    22 Scremin OU, Sonnenschein RR, Rubinstein EH. Cerebrovascular anatomy and blood flow measurements in the rabbit. J Cereb Blood Flow Metab, 1982,2(1):55-66
    
    23 Orr JA, DeSoignie RC, Wagerle LC, et al. Regional cerebral blood flow during hypercapnia in the anesthetized rabbit. Stroke, 1983, 14(5):802-807
    
    24 Goodman JC, Valadka AB, Gopinath SP, et al. Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis.Crit Care Med, 1999, 27(9): 1965-1973
    
    25 Nilsson OG, Brandt L, Ungerstedt U, et al. Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery, 1999, 45(5): 1176-1184; discussion 1184-1175
    
    26 Tseng EE, Brock MV, Kwon CC, et al. Increased intracerebral excitatory amino acids and nitric oxide after hypothermic circulatory arrest. Ann Thorac Surg, 1999,67(2):371-376
    
    27 Kurth CD, Priestley M, Golden J, et al. Regional patterns of neuronal death after deep hypothermic circulatory arrest in newborn pigs. J Thorac Cardiovasc Surg, 1999, 118(6):1068-1077
    
    28 Ditsworth D, Priestley MA, Loepke AW, et al. Apoptotic neuronal death following deep hypothermic circulatory arrest in piglets. Anesthesiology, 2003,98(5):1119-1127
    
    29 Karamlou T, Schultz JM, Silliman C, et al. Using a miniaturized circuit and an asanguineous prime to reduce neutrophil-mediated organ dysfunction following infant cardiopulmonary bypass. Ann Thorac Surg, 2005, 80(1):6-13;discussion 13-14
    
    30 Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg, 2003, 75(2):S715-720
    
    31 Hickey E, Karamlou T, You J, et al. Effects of circuit miniaturization in reducing inflammatory response to infant cardiopulmonary bypass by elimination of allogeneic blood products.Ann Thorac Surg,2006,81(6):S2367-2372
    32 Westaby S.Organ dysfunction after cardiopulmonary bypass.A systemic inflammatory reaction initiated by the extracorporeal circuit.Intensive Care Med,1987,13(2):89-95
    1 Amir G, Ramamoorthy C, Riemer RK, et al. Neonatal brain protection and deep hypothermic circulatory arrest: pathophysiology of ischemic neuronal injury and protective strategies. Ann Thorac Surg, 2005, 80(5): 1955-1964
    
    2 Johnston MV, Trescher WH, Ishida A, et al. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res, 2001,49(6):735-741
    
    3 Hugon J, Vallat JM, Dumas M. [Role of glutamate and excitotoxicity in neurologic diseases]. Rev Neurol (Paris), 1996, 152(4):239-248
    
    4 Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci, 1990, 13171-182
    
    5 Tseng EE, Brock MV, Kwon CC, et al. Increased intracerebral excitatory amino acids and nitric oxide after hypothermic circulatory arrest. Ann Thorac Surg, 1999,67(2):371-376
    
    6 Kurth CD, Priestley M, Golden J, et al. Regional patterns of neuronal death after deep hypothermic circulatory arrest in newborn pigs. J Thorac Cardiovasc Surg, 1999, 118(6):1068-1077
    
    7 Ditsworth D, Priestley MA, Loepke AW, et al. Apoptotic neuronal death following deep hypothermic circulatory arrest in piglets. Anesthesiology, 2003,98(5):1119-1127
    
    8 Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med, 1994, 330(9):613-622
    
    9 Chiarugi A. Poly(ADP-ribosyl)ation and stroke. Pharmacol Res, 2005,52(1):15-24
    
    10 D'Amours D, Desnoyers S, D'Silva I, et al. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J, 1999, 342 ( Pt 2)249-268
    
    11 Pieper AA, Verma A, Zhang J, et al. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci, 1999, 20(4): 171-181
    
    12 Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev, 2002, 54(3):375-429
    
    13 Besson VC, Zsengeller Z, Plotkine M, et al. Beneficial effects of PJ34 and INO-1001, two novel water-soluble poly(ADP-ribose) polymerase inhibitors,on the consequences of traumatic brain injury in rat. Brain Res, 2005,1041(2):149-156
    
    14 Szabo G, Soos P, Bahrle S, et al. Role of poly(ADP-ribose) polymerase activation in the pathogenesis of cardiopulmonary dysfunction in a canine model of cardiopulmonary bypass. Eur J Cardiothorac Surg, 2004,25(5):825-832
    
    15 Szabo G, Bahrle S, Stumpf N, et al. Poly(ADP-Ribose) polymerase inhibition reduces reperfusion injury after heart transplantation. Circ Res, 2002,90(1):100-106
    
    16 Lazebnik YA, Kaufmann SH, Desnoyers S, et al. Cleavage of poIy(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature,1994, 371(6495):346-347
    
    17 Zhang Y, Zhang X, Park TS, et al. Cerebral endothelial cell apoptosis after ischemia-reperfusion: role of PARP activation and AIF translocation. J Cereb Blood Flow Metab, 2005, 25(7):868-877
    
    18 Goodman JC, Valadka AB, Gopinath SP, et al. Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med, 1999,27(9): 1965-1973
    
    19 Labat-Moleur F, Guillermet C, Lorimier P, et al. TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J Histochem Cytochem, 1998, 46(3):327-334
    
    20 Bellinger DC, Jonas RA, Rappaport LA, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med, 1995, 332(9):549-555
    
    21 Wypij D, Newburger JW, Rappaport LA, et al. The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg,2003,126(5): 1397-1403
    
    22 Gaynor JW, Nicolson SC, Jarvik GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg,2005, 130(5):1278-1286
    
    23 Scremin OU, Sonnenschein RR, Rubinstein EH. Cerebrovascular anatomy and blood flow measurements in the rabbit. J Cereb Blood Flow Metab, 1982,2(1):55-66
    
    24 Orr JA, DeSoignie RC, Wagerle LC, et al. Regional cerebral blood flow during hypercapnia in the anesthetized rabbit. Stroke, 1983, 14(5):802-807
    
    25 Kauppinen TM, Swanson RA. Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol, 2005,174(4):2288-2296
    
    26 Graziani G, Szabo C. Clinical perspectives of PARP inhibitors. Pharmacol Res,2005, 52(1):109-118
    
    27 Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A, 1999,96(24): 13978-13982
    
    28 Yu SW, Wang H, Poitras MF, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science,2002, 297(5579):259-263
    
    29 Yu SW, Andrabi SA, Wang H, et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A, 2006,103(48):18314-18319
    
    30 Harraz MM, Dawson TM, Dawson VL. Advances in neuronal cell death 2007.Stroke, 2008, 39(2):286-288
    
    31 Hamby AM, Suh SW, Kauppinen TM, et al. Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke, 2007, 38(2 Suppl):632-636
    
    32 Chiarugi A, Moskowitz MA. Poly(ADP-ribose) polymerase-1 activity promotes NF-kappaB-driven transcription and microglial activation:implication for neurodegenerative disorders. J Neurochem, 2003,85(2):306-317
    
    33 Ha HC, Hester LD, Snyder SH. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia.Proc Natl Acad Sci U S A, 2002, 99(5):3270-3275
    
    34 Nakajima H, Nagaso H, Kakui N, et al. Critical role of the automodification of poly(ADP-ribose) polymerase-1 in nuclear factor-kappaB-dependent gene expression in primary cultured mouse glial cells. J Biol Chem, 2004,279(41):42774-42786
    1 Menache CC, du Plessis AJ, Wessel DL, et al. Current incidence of acute neurologic complications after open-heart operations in children. Ann Thorac Surg, 2002, 73(6):1752-1758
    
    2 Bellinger DC, Wypij D, duDuplessis AJ, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg, 2003,126(5):1385-1396
    
    3 Dominguez TE, Wernovsky G, Gaynor JW. Cause and prevention of central nervous system injury in neonates undergoing cardiac surgery. Semin Thorac Cardiovasc Surg, 2007, 19(3):269-277
    
    4 Ferry PC. Neurologic sequelae of open-heart surgery in children. An 'irritating question'. Am J Dis Child, 1990,144(3):369-373
    
    5 Fallon P, Aparicio JM, Elliott MJ, et al. Incidence of neurological complications of surgery for congenital heart disease. Arch Dis Child, 1995,72(5):418-422
    
    6 McQuillen PS, Barkovi'ch AJ, Hamrick SE, et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke,2007, 38(2 Suppl):736-741
    
    7 Miller G, Tesman JR, Ramer JC, et al. Outcome after open-heart surgery in infants and children. J Child Neurol, 1996,11(1):49-53
    
    8 Mahle WT, Spray TL, Wernovsky G, et al. Survival after reconstructive surgery for hypoplastic left heart syndrome: A 15-year experience from a single institution. Circulation, 2000, 102(19 Suppl 3):III136-141
    
    9 Wernovsky G, Stiles KM, Gauvreau K, et al. Cognitive development after the Fontan operation. Circulation, 2000,102(8):883-889
    
    10 Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med, 1996, 335(25): 1857-1863
    
    11 Kuroda Y, Uchimoto R, Kaieda R, et al. Central nervous system complications after cardiac surgery: a comparison between coronary artery bypass grafting and valve surgery. Anesth Analg, 1993, 76(2):222-227
    
    12 Puskas JD, Winston AD, Wright CE, et al. Stroke after coronary artery operation: incidence, correlates, outcome, and cost. Ann Thorac Surg, 2000,69(4): 1053-1056
    
    13 Salazar JD, Wityk RJ, Grega MA, et al. Stroke after cardiac surgery: short-and long-term outcomes. Ann Thorac Surg, 2001, 72(4): 1195-1201; discussion 1201-1192
    
    14 Kazmierski J, Kowman M, Banach M, et al. Preoperative predictors of delirium after cardiac surgery: a preliminary study. Gen Hosp Psychiatry, 2006,28(6):536-538
    
    15 van der Mast RC, van den Broek WW, Fekkes D, et al. Incidence of and preoperative predictors for delirium after cardiac surgery. J Psychosom Res,1999,46(5):479-483
    
    16 Borowicz LM, Goldsborough MA, Seines OA, et al. Neuropsychologic change after cardiac surgery: a critical review. J Cardiothorac Vasc Anesth, 1996, 10(1):105-111; quiz 111-102
    17 Limperopoulos C, Majnemer A, Shevell MI, et al. Neurodevelopmental status of newborns and infants with congenital heart defects before and after open heart surgery. J Pediatr, 2000, 137(5):638-645
    
    18 Limperopoulos C, Majnemer A, Shevell MI, et al. Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics,1999, 103(2):402-408
    
    19 Wernovsky G. Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiol Young, 2006, 16 Suppl 192-104
    
    20 Donofrio MT, Bremer YA, Schieken RM, et al. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect.Pediatr Cardiol, 2003, 24(5):436-443
    
    21 Clancy RR, McGaurn SA, Goin JE, et al. Allopurinol neurocardiac protection trial in infants undergoing heart surgery using deep hypothermic circulatory arrest. Pediatrics, 2001,108(1):61-70
    
    22 Shillingford AJ, Ittenbach RF, Marino BS, et al. Aortic morphometry and microcephaly in hypoplastic - left heart syndrome. Cardiol Young, 2007,17(2):189-195
    
    23 Mahle WT, Tavani F, Zimmerman RA, et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation, 2002, 106(12 Suppl 1):1109-114
    
    24 Gaynor JW, Gerdes M, Zackai EH, et al. Apolipoprotein E genotype and neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg,2003, 126(6):1736-1745
    
    25 Forbess JM, Visconti KJ, Hancock-Friesen C, et al. Neurodevelopmental outcome after congenital heart surgery: results from an institutional registry.Circulation, 2002,106(12 Suppl 1):I95-102
    
    26 Liesiene R, Uloziene I, Kevalas R, et al. [Evaluation of the functional brain state in comatose children]. Medicina (Kaunas), 2006,42(5):355-361
    
    27 Daniels SR, Bates SR, Kaplan S. EEG monitoring during paroxysmal hyperpnea of tetralogy of Fallot: an epileptic or hypoxic phenomenon? J Child Neurol, 1987, 2(2):98-100
    
    28 Ramamoorthy C, Tabbutt S, Kurth CD, et al. Effects of inspired hypoxic and hypercapnic gas mixtures on cerebral oxygen saturation in neonates with univentricular heart defects. Anesthesiology, 2002, 96(2):283-288
    
    29 McQuillen PS, Hamrick SE, Perez MJ, et al. Balloon atrial septostomy is associated with preoperative stroke in neonates with transposition of the great arteries. Circulation, 2006, 113(2):280-285
    
    30 van der Linden J, Bergman P, Hadjinikolaou L. The topography of aortic atherosclerosis enhances its precision as a predictor of stroke. Ann Thorac Surg, 2007, 83(6):2087-2092
    
    31 Kronzon I, Tunick PA. Aortic atherosclerotic disease and stroke. Circulation,2006, 114(1):63-75
    
    32 Blauth CI, Cosgrove DM, Webb BW, et al. Atheroembolism from the ascending aorta. An emerging problem in cardiac surgery. J Thorac Cardiovasc Surg, 1992, 103(6): 1104-1 111; discussion 1111-1102
    
    33 Ura M, Sakata R, Nakayama Y, et al. Ultrasonographic demonstration of manipulation-related aortic injuries after cardiac surgery. J Am Coll Cardiol,2000, 35(5):1303-1310
    
    34 Davila-Roman VG, Phillips KJ, Daily BB, et al. Intraoperative transesophageal echocardiography and epiaortic ultrasound for assessment of atherosclerosis of the thoracic aorta. J Am Coll Cardiol, 1996,28(4):942-947
    
    35 Gaudino M, Glieca F, Alessandrini F, et al. Individualized surgical strategy for the reduction of stroke risk in patients undergoing coronary artery bypass grafting. Ann Thorac Surg, 1999, 67(5): 1246-1253
    
    36 D'Agostino RS, Svensson LG, Neumann DJ, et al. Screening carotid ultrasonography and risk factors for stroke in coronary artery surgery patients.Ann Thorac Surg, 1996, 62(6): 1714-1723
    
    37 Schwartz LB, Bridgman AH, Kieffer RW, et al. Asymptomatic carotid artery stenosis and stroke in patients undergoing cardiopulmonary bypass. J Vasc Surg, 1995,21(1):146-153
    
    38 Salasidis GC, Latter DA, Steinmetz OK, et al. Carotid artery duplex scanning in preoperative assessment for coronary artery revascularization: the association between peripheral vascular disease, carotid artery stenosis, and stroke. J Vasc Surg, 1995, 21(1): 154-160; discussion 161-152
    
    39 Rizzo RJ, Whittemore AD, Couper GS, et al. Combined carotid and coronary revascularization: the preferred approach to the severe vasculopath. Ann Thorac Surg, 1992, 54(6): 1099-1108; discussion 1108-1099
    
    40 Anon. Endarterectomy for moderate symptomatic carotid stenosis: interim results from the MRC European Carotid Surgery Trial. Lancet, 1996,347(9015):1591-1593
    
    41 Akins CW, Moncure AC, Daggett WM, et al. Safety and efficacy of concomitant carotid and coronary artery operations. Ann Thorac Surg, 1995,60(2):311-317; discussion 318
    
    42 Hertzer NR, Loop FD, Beven EG, et al. Surgical staging for simultaneous coronary and carotid disease: a study including prospective randomization. J Vasc Surg, 1989, 9(3):455-463
    
    43 Berens ES, Kouchoukos NT, Murphy SF, et al. Preoperative carotid artery screening in elderly patients undergoing cardiac surgery. J Vasc Surg, 1992,15(2):313-321; discussion 322-313
    
    44 Eagle KA, Guyton RA, Davidoff R, et al. ACC/AHA Guidelines for Coronary Artery Bypass Graft Surgery: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1991 Guidelines for Coronary Artery Bypass Graft Surgery). American College of Cardiology/American Heart Association. J Am Coll Cardiol, 1999, 34(4): 1262-1347
    
    45 Mathew JP, Parks R, Savino JS, et al. Atrial fibrillation following coronary artery bypass graft surgery: predictors, outcomes, and resource utilization.MultiCenter Study of Perioperative Ischemia Research Group. Jama, 1996,276(4):300-306
    
    46 Stanley TO, Mackensen GB, Grocott HP, et al. The impact of postoperative atrial fibrillation on neurocognitive outcome after coronary artery bypass graft surgery. Anesth Analg, 2002, 94(2):290-295, table of contents
    
    47 Cox JL. A perspective of postoperative atrial fibrillation in cardiac operations.Ann Thorac Surg, 1993, 56(3):405-409
    
    48 Keren A, Goldberg S, Gottlieb S, et al. Natural history of left ventricular thrombi: their appearance and resolution in the posthospitalization period of acute myocardial infarction. J Am Coll Cardiol, 1990, 15(4):790-800
    
    49 Tardiff BE, Newman MF, Saunders AM, et al. Preliminary report of a genetic basis for cognitive decline after cardiac operations. The Neurologic Outcome Research Group of the Duke Heart Center. Ann Thorac Surg, 1997,64(3):715-720
    
    50 Steed L, Kong R, Stygall J, et al. The role of apolipoprotein E in cognitive decline after cardiac operation. Ann Thorac Surg, 2001, 71(3):823-826
    
    51 Mathew JP, Rinder CS, Howe JG, et al. Platelet P1A2 polymorphism enhances risk of neurocognitive decline after cardiopulmonary bypass. Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Ann Thorac Surg,2001, 71(2):663-666
    
    52 Shen I, Giacomuzzi C, Ungerleider RM. Current strategies for optimizing the use of cardiopulmonary bypass in neonates and infants. Ann Thorac Surg,2003, 75(2):S729-734
    
    53 Swain JA, McDonald TJ, Jr., Griffith PK, et al. Low-flow hypothermic cardiopulmonary bypass protects the brain. J Thorac Cardiovasc Surg, 1991,102(1):76-83;discussion 83-74
    
    54 Greeley WJ, Kern FH, Ungerleider RM, et al. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. J Thorac Cardiovasc Surg, 1991,101(5):783-794
    
    55 Rossi R, van der Linden J, Ekroth R, et al. No flow or low flow? A study of the ischemic marker creatine kinase BB after deep hypothermic procedures. J Thorac Cardiovasc Surg, 1989, 98(2): 193-199
    
    56 Wells FC, Coghill S, Caplan HL, et al. Duration of circulatory arrest does influence the psychological development of children after cardiac operation in early life. J Thorac Cardiovasc Surg, 1983, 86(6):823-831
    
    57 Wypij D, Newburger JW, Rappaport LA, et al. The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg, 2003, 126(5): 1397-1403
    
    58 Wernovsky G, Wypij D, Jonas RA, et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants.A comparison of low-flow cardiopulmonary bypass and circulatory arrest.Circulation, 1995, 92(8):2226-2235
    
    59 Bellinger DC, Wypij D, Kuban KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation, 1999,100(5):526-532
    
    60 Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med, 1993,329(15):1057-1064
    
    61 Hemphill L, Uccelli P, Winner K, et al. Narrative discourse in young children with histories of early corrective heart surgery. J Speech Lang Hear Res, 2002,45(2):318-331
    
    62 McCullough JN, Zhang N, Reich DL, et al. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg, 1999,67(6):1895-1899; discussion 1919-1821
    
    63 Prasongsukarn K, Borger MA. Reducing cerebral emboli during cardiopulmonary bypass. Semin Cardiothorac Vasc Anesth, 2005,9(2):153-158
    
    64 Stump DA. Embolic factors associated with cardiac surgery. Semin Cardiothorac Vasc Anesth, 2005, 9(2): 151-152
    
    65 Schoenburg M, Kraus B, Muehling A, et al. The dynamic air bubble trap reduces cerebral microembolism during cardiopulmonary bypass. J Thorac Cardiovasc Surg, 2003, 126(5): 1455-1460
    
    66 Svenarud P, Persson M, van der Linden J. Effect of CO2 insufflation on the number and behavior of air microemboli in open-heart surgery: a randomized clinical trial. Circulation, 2004,109(9): 1127-1132
    
    67 Hsia TY, Gruber PJ. Factors influencing neurologic outcome after neonatal cardiopulmonary bypass: what we can and cannot control. Ann Thorac Surg,2006, 81(6):S2381-2388
    
    68 Jaggers JJ, Neal MC, Smith PK, et al. Infant cardiopulmonary bypass: a procoagulant state. Ann Thorac Surg, 1999, 68(2):513-520
    
    69 Codispoti M, Ludlam CA, Simpson D, et al. Individualized heparin and protamine management in infants and children undergoing cardiac operations.Ann Thorac Surg, 2001, 71(3):922-927; discussion 927-928
    
    70 Westaby S, Saatvedt K, White S, et al. Is there a relationship between cognitive dysfunction and systemic inflammatory response after cardiopulmonary bypass? Ann Thorac Surg, 2001, 71(2): 667-672
    
    71 Brix-Christensen V. The systemic inflammatory response after cardiac surgery with cardiopulmonary bypass in children. Acta Anaesthesiol Scand, 2001,45(6):671-679
    
    72 Chew MS, Brix-Christensen V, Ravn HB, et al. Effect of modified ultrafiltration on the inflammatory response in paediatric open-heart surgery: a prospective, randomized study. Perfusion, 2002,17(5):327-333
    
    73 Myung RJ, Kirshbom PM, Petko M, et al. Modified ultrafiltration may not improve neurologic outcome following deep hypothermic circulatory arrest.Eur J Cardiothorac Surg, 2003, 24(2):243-248
    
    74 Mongero LB, Beck JR, Manspeizer HE, et al. Cardiac surgical patients exposed to heparin-bonded circuits develop less postoperative cerebral dysfunction than patients exposed to non-heparin-bonded circuits. Perfusion,2001, 16(2):107-111
    
    75 Bronicki RA, Backer CL, Baden HP, et al. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg, 2000, 69(5): 1490-1495
    
    76 Michenfelder JD, Theye RA. Cerebral protection by thiopental during hypoxia.Anesthesiology, 1973, 39(5):510-517
    
    77 Stecker MM, Cheung AT, Pochettino A, et al. Deep hypothermic circulatory arrest: I. Effects of cooling on electroencephalogram and evoked potentials.Ann Thorac Surg, 2001, 71(1): 14-21
    
    78 Kern FH, Ungerleider RM, Reves JG, et al. Effect of altering pump flow rate on cerebral blood flow and metabolism in infants and children. Ann Thorac Surg, 1993, 56(6):1366-1372
    
    79 Gillinov AM, Redmond JM, Zehr KJ, et al. Superior cerebral protection with profound hypothermia during circulatory arrest. Ann Thorac Surg, 1993,55(6):1432-1439
    
    80 Jaggers J, Ungerleider RM. Cardiopulmonary bypass in infants and children. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, 2000, 382-109
    
    81 Amir G, Ramamoorthy C, Riemer RK, et al. Neonatal brain protection and deep hypothermic circulatory arrest: pathophysiology of ischemic neuronal injury and protective strategies. Ann Thorac Surg, 2005, 80(5): 1955-1964
    82 Nicolas F, Daniel JP, Bruniaux J, et al. Conventional cardiopulmonary bypass in neonates. A physiological approach—10 years of experience at Marie-Lannelongue Hospital. Perfusion, 1994, 9(1):41-48
    
    83 Duebener LF, Sakamoto T, Hatsuoka S, et al. Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass.Circulation, 2001, 104(12 Suppl 1):I260-264
    
    84 Shin'oka T, Shum-Tim D, Jonas RA, et al. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg, 1996, 112(6): 1610-1620; discussion 1620-1611
    
    85 Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg, 2003,126(6):1765-1774
    
    86 Kurth CD, O'Rourke MM, O'Hara IB, et al. Brain cooling efficiency with pH-stat and alpha-stat cardiopulmonary bypass in newborn pigs. Circulation,1997, 96(9 Suppl):II-358-363
    
    87 Plochl W, Cook DJ. Quantification and distribution of cerebral emboli during cardiopulmonary bypass in the swine: the impact of PaCO2. Anesthesiology,1999, 90(1):183-190
    
    88 Kirshbom PM, Skaryak LR, DiBernardo LR, et al. pH-stat cooling improves cerebral metabolic recovery after circulatory arrest in a piglet model of aortopulmonary collaterals. J Thorac Cardiovasc Surg, 1996, 111(1): 147-155;discussion 156-157
    
    89 du Plessis AJ, Jonas RA, Wypij D, et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg, 1997, 114(6):991-1000; discussion 1000-1001
    
    90 Bellinger DC, Wypij D, du Plessis AJ, et al. Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg, 2001,121(2):374-383
    
    91 Priestley MA, Golden JA, O'Hara IB, et al. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs. J Thorac Cardiovasc Surg, 2001,121(2):336-343
    
    92 Wong PC, Barlow CF, Hickey PR, et al. Factors associated with choreoathetosis after cardiopulmonary bypass in children with congenital heart disease. Circulation, 1992, 86(5 Suppl):II118-126
    
    93 Kirshbom PM, Skaryak LA, DiBernardo LR, et al. Effects of aortopulmonary collaterals on cerebral cooling and cerebral metabolic recovery after circulatory arrest. Circulation, 1995, 92(9 Suppl):II490-494
    
    94 Kimura T, Muraoka R, Chiba Y, et al. Effect of intermittent deep hypothermic circulatory arrest on brain metabolism. J Thorac Cardiovasc Surg, 1994,108(4):658-663
    
    95 Langley SM, Chai PJ, Miller SE, et al. Intermittent perfusion protects the brain during deep hypothermic circulatory arrest. Ann Thorac Surg, 1999,68(1):4-12;discussion 12-13
    
    96 Asou T, Kado H, Imoto Y, et al. Selective cerebral perfusion technique during aortic arch repair in neonates. Ann Thorac Surg, 1996, 61(5): 1546-1548
    
    97 Pigula FA, Nemoto EM, Griffith BP, et al. Regional low-flow perfusion provides cerebral circulatory support during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg, 2000, 119(2):331-339
    
    98 Imoto Y, Kado H, Shiokawa Y, et al. Norwood procedure without circulatory arrest. Ann Thorac Surg, 1999, 68(2):559-561
    
    99 Myung RJ, Petko M, Judkins AR, et al. Regional low-flow perfusion improves neurologic outcome compared with deep hypothermic circulatory arrest in neonatal piglets. J Thorac Cardiovasc Surg, 2004, 127(4): 1051-1056;discussion 1056-1057
    
    100 Tanaka J, Shiki K, Asou T, et al. Cerebral autoregulation during deep hypothermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs. J Thorac Cardiovasc Surg, 1988, 95(1): 124-132
    
    101 Riggs HE, Rupp C. Variation in form of circle of Willis. The relation of the variations to collateral circulation: anatomic analysis. Arch Neurol, 1963,88-14
    
    102 Ye J, Dai G, Ryner LN, et al. Unilateral antegrade cerebral perfusion through the right axillary artery provides uniform flow distribution to both hemispheres of the brain: A magnetic resonance and histopathological study in pigs. Circulation, 1999, 100(19 Suppl):II309-315
    
    103 Imoto Y, Kado H, Shiokawa Y, et al. Experience with the Norwood procedure without circulatory arrest. J Thorac Cardiovasc Surg, 2001, 122(5):879-882
    
    104 Bradley SM, McCall MM, Sistino JJ, et al. Aortopulmonary collateral flow in the Fontan patient: does it matter? Ann Thorac Surg, 2001, 72(2):408-415
    
    105 Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg, 2006,131(1): 190-197
    
    106 Galli KK, Zimmerman RA, Jarvik GP, et al. Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg, 2004,127(3):692-704
    
    107 Ungerleider RM, Shen I, Yeh T, et al. Routine mechanical ventricular assist following the Norwood procedure—improved neurologic outcome and excellent hospital survival. Ann Thorac Surg, 2004, 77(1):18-22
    
    108 Hoffman GM, Stuth EA, Jaquiss RD, et al. Changes in cerebral and somatic oxygenation during stage 1 palliation of hypoplastic left heart syndrome using continuous regional cerebral perfusion. J Thorac Cardiovasc Surg, 2004,127(1):223-233
    
    109 Mezrow CK, Sadeghi AM, Gandsas A, et al. Cerebral effects of low-flow cardiopulmonary bypass and hypothermic circulatory arrest. Ann Thorac Surg,1994, 57(3):532-539; discussion 539
    
    110 Bassan H, Gauvreau K, Newburger JW, et al. Identification of pressure passive cerebral perfusion and its mediators after infant cardiac surgery. Pediatr Res,2005, 57(1):35-41
    
    111 Hickey RW, Kochanek PM, Ferimer H, et al. Hypothermia and hyperthermia in children after resuscitation from cardiac arrest. Pediatrics, 2000, 106(1 Pt 1):118-122
    
    112 Ghanayem NS, Mitchell ME, Tweddell JS, et al. Monitoring the brain before,during, and after cardiac surgery to improve long-term neurodevelopmental outcomes. Cardiol Young, 2006, 16 Suppl 3103-109
    
    113 Shum-Tim D, Nagashima M, Shinoka T, et al. Postischemic hyperthermia exacerbates neurologic injury after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg, 1998, 116(5):780-792
    
    114 Bissonnette B, Holtby HM, Davis AJ, et al. Cerebral hyperthermia in children after cardiopulmonary bypass. Anesthesiology, 2000, 93(3):611-618
    
    115 Cottrell SM, Morris KP, Davies P, et al. Early postoperative body temperature and developmental outcome after open heart surgery in infants. Ann Thorac Surg, 2004, 77(1):66-71; discussion 71
    
    116 Tabbutt S, Ittenbach RF, Nicolson SC, et al. Intracardiac temperature monitoring in infants after cardiac surgery. J Thorac Cardiovasc Surg, 2006,131(3):614-620
    
    117 Gaynor JW, Jarvik GP, Bernbaum J, et al. The relationship of postoperative electrographic seizures to neurodevelopmental outcome at 1 year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg, 2006,131(1):181-189
    
    118 Gaynor JW, Nicolson SC, Jarvik GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg,2005,130(5):1278-1286
    
    119 Rappaport LA, Wypij D, Bellinger DC, et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Boston Circulatory Arrest Study Group. Circulation, 1998, 97(8):773-779
    
    120 Faustino EV, Apkon M. Persistent hyperglycemia in critically ill children. J Pediatr, 2005, 146(1):30-34
    
    121 de Ferranti S, Gauvreau K, Hickey PR, et al. Intraoperative hyperglycemia during infant cardiac surgery is not associated with adverse neurodevelopmental outcomes at 1, 4, and 8 years. Anesthesiology, 2004,100(6):1345-1352
    
    122 Yates AR, Dyke PC, 2nd, Taeed R, et al. Hyperglycemia is a marker for poor outcome in the postoperative pediatric cardiac patient. Pediatr Crit Care Med,2006,7(4):351-355
    
    123 Ballweg JA, Wernovsky G, Ittenbach RF, et al. Hyperglycemia after infant cardiac surgery does not adversely impact neurodevelopmental outcome. Ann Thorac Surg, 2007, 84(6):2052-2058
    
    124 Schurr A, West CA, Reid KH, et al. Increased glucose improves recovery of neuronal function after cerebral hypoxia in vitro. Brain Res, 1987,421(1-2):135-139
    
    125 Mahle WT, Visconti KJ, Freier MC, et al. Relationship of surgical approach to neurodevelopmental outcomes in hypoplastic left heart syndrome. Pediatrics,2006, 117(1):e90-97
    
    126 Newburger JW, Wypij D, Bellinger DC, et al. Length of stay after infant heart surgery is related to cognitive outcome at age 8 years. J Pediatr, 2003.143(l):67-73
    
    127 Murdoch J, Hall R. Brain protection: physiological and pharmacological considerations. Part I: The physiology of brain injury. Can J Anaesth, 1990,37(6):663-671
    
    128 Thompson CB. Apoptosis in the pathogenesis and treatment of disease.Science, 1995, 267(5203): 1456-1462
    
    129 Liebermann DA. Normal development, oncogenesis and programmed cell death. Oncogene, 1998, 17(10): 1189-1194
    
    130 Ditsworth D, Priestley MA, Loepke AW, et al. Apoptotic neuronal death following deep hypothermic circulatory arrest in piglets. Anesthesiology, 2003,98(5):1119-1127
    
    131 Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci, 1990, 13171-182
    
    132 Johnston MV, Trescher WH, Ishida A, et al. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res, 2001,49(6):735-741
    
    133 Baumgartner WA, Walinsky PL, Salazar JD, et al. Assessing the impact of cerebral injury after cardiac surgery: will determining the mechanism reduce this injury? Ann Thorac Surg, 1999, 67(6):1871-1873; discussion 1891-1874
    
    134 Redmond JM, Gillinov AM, Zehr KJ, et al. Glutamate excitotoxicity: a mechanism of neurologic injury associated with hypothermic circulatory arrest.J Thorac Cardiovasc Surg, 1994, 107(3):776-786; discussion 786-787
    
    135 Tseng EE, Brock MV, Lange MS, et al. Neuronal nitric oxide synthase inhibition reduces neuronal apoptosis after hypothermic circulatory arrest. Ann Thorac Surg, 1997, 64(6): 1639-1647
    
    136 Tseng EE, Brock MV, Kwon CC, et al. Increased intracerebral excitatory amino acids and nitric oxide after hypothermic circulatory arrest. Ann Thorac Surg, 1999, 67(2):371-376
    
    137 Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med, 1994, 330(9):613-622
    
    138 Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev, 2002, 54(3):375-429
    
    139 Chiarugi A. Poly(ADP-ribosyl)ation and stroke. Pharmacol Res, 2005,52(1): 15-24
    
    140 Harraz MM, Dawson TM, Dawson VL. Advances in neuronal cell death 2007. Stroke, 2008, 39(2):286-288
    
    141 Kauppinen TM, Swanson RA. Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol, 2005,174(4):2288-2296
    
    142 Yu SW, Wang H, Poitras MF, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science,2002, 297(5579):259-263
    
    143 Yu SW, Andrabi SA, Wang H, et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A, 2006, 103(48):18314-18319
    
    144 Zhang Y, Zhang X, Park TS, et al. Cerebral endothelial cell apoptosis after ischemia-reperfusion: role of PARP activation and AIF translocation. J Cereb Blood Flow Metab, 2005, 25(7):868-877
    
    145 Hamby AM, Suh SW, Kauppinen TM, et al. Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke, 2007, 38(2 Suppl):632-636
    
    146 Chiarugi A, Moskowitz MA. Poly(ADP-ribose) polymerase-1 activity promotes NF-kappaB-driven transcription and microglial activation:implication for neurodegenerative disorders. J Neurochem, 2003,85(2):306-317
    
    147 Ha HC, Hester LD, Snyder SH. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci U S A, 2002, 99(5):3270-3275
    
    148 Nakajima H, Nagaso H, Kakui N, et al. Critical role of the automodification of poly(ADP-ribose) polymerase-1 in nuclear factor-kappaB-dependent gene expression in primary cultured mouse glial cells. J Biol Chem, 2004,279(41):42774-42786
    149 Pan XD, Sun LZ, Ma WG, et al. Overactivation of poly(adenosine phosphate-ribose) polymerase 1 and molecular events in neuronal injury after deep hypothermic circulatory arrest: study in a rabbit model. J Thorac Cardiovasc Surg, 2007, 134(5): 1227-1233
    
    150 Rivkin MJ. Hypoxic-ischemic brain injury in the term newborn. Neuropathology, clinical aspects, and neuroimaging. Clin Perinatol, 1997,24(3):607-625
    
    151 Jonas RA. Neurological protection during cardiopulmonary bypass/deep hypothermia. Pediatr Cardiol, 1998,19(4):321-330
    
    152 Kurth CD, Priestley M, Golden J, et al. Regional patterns of neuronal death after deep hypothermic circulatory arrest in newborn pigs. J Thorac Cardiovasc Surg, 1999, 118(6): 1068-1077
    
    153 Blennow M, Ingvar M, Lagercrantz H, et al. Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr, 1995,84(11):1289-1295
    
    154 Kramer RS, Sanders AP, Lesage AM, et al. The effect profound hypothermia on preservation of cerebral ATP content during circulatory arrest. J Thorac Cardiovasc Surg, 1968, 56(5):699-709
    
    155 Swain JA, McDonald TJ, Jr., Robbins RC, et al. Relationship of cerebral and myocardial intracellular pH to blood pH during hypothermia. Am J Physiol,1991, 260(5 Pt2):H1640-1644
    
    156 Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part II:Mechanisms of damage and treatment. J Neurosurg, 1992, 77(3):337-354
    
    157 Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke, 1998,29(3):705-718
    
    158 Weiss SJ. Tissue destruction by neutrophils. N Engl J Med, 1989,320(6):365-376
    
    159 Busto R, Globus MY, Dietrich WD, et al. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain.Stroke, 1989,20(7):904-910
    
    160 Illievich UM, Zornow MH, Choi KT, et al. Effects of hypothermic metabolic suppression on hippocampal glutamate concentrations after transient global cerebral ischemia. Anesth Analg, 1994, 78(5):905-911
    
    161 Greeley WJ, Kern FH, Meliones JN, et al. Effect of deep hypothermia and circulatory arrest on cerebral blood flow and metabolism. Ann Thorac Surg,1993, 56(6):1464-1466
    
    162 Rodriguez RA, Austin EH, 3rd, Audenaert SM. Postbypass effects of delayed rewarming on cerebral blood flow velocities in infants after total circulatory arrest. J Thorac Cardiovasc Surg, 1995, 110(6):1686-1690; discussion 1690-1681
    
    163 Stier GR, Verde EW. The postoperative care of adult patients exposed to deep hypothermic circulatory arrest. Semin Cardiothorac Vasc Anesth, 2007,11(1):77-85
    
    164 Andropoulos DB, Stayer SA, Diaz LK, et al. Neurological monitoring for congenital heart surgery. Anesth Analg, 2004, 99(5):1365-1375; table of contents
    
    165 Sakamoto T, Zurakowski D, Duebener LF, et al. Interaction of temperature with hematocrit level and pH determines safe duration of hypothermic circulatory arrest. J Thorac Cardiovasc Surg, 2004, 128(2):220-232
    166 Sakamoto T, Duebener LF, Laussen PC, et al. Cerebral ischemia caused by obstructed superior vena cava cannula is detected by near-infrared spectroscopy. J Cardiothorac Vasc Anesth, 2004, 18(3):293-303
    
    167 Kurth CD, Steven JL, Montenegro LM, et al. Cerebral oxygen saturation before congenital heart surgery. Ann Thorac Surg, 2001, 72(1): 187-192
    
    168 Fenton KN, Freeman K, Glogowski K, et al. The significance of baseline cerebral oxygen saturation in children undergoing congenital heart surgery. Am J Surg, 2005, 190(2):260-263
    
    169 Scallan MJ. Brain injury in children with congenital heart disease. Paediatr Anaesth, 2003, 13(4):284-293
    
    170 Andropoulos DB, Diaz LK, Fraser CD, Jr., et al. Is bilateral monitoring of cerebral oxygen saturation necessary during neonatal aortic arch reconstruction? Anesth Analg, 2004, 98(5):1267-1272, table of contents
    
    171 Kussman BD, Wypij D, DiNardo JA, et al. An evaluation of bilateral monitoring of cerebral oxygen saturation during pediatric cardiac surgery.Anesth Analg, 2005, 101(5): 1294-1300
    
    172 O'Hare B, Bissonnette B, Bohn D, et al. Persistent low cerebral blood flow velocity following profound hypothermic circulatory arrest in infants. Can J Anaesth, 1995, 42(11):964-971
    
    173 Zimmerman AA, Burrows FA, Jonas RA, et al. The limits of detectable cerebral perfusion by transcranial Doppler sonography in neonates undergoing deep hypothermic low-flow cardiopulmonary bypass. J Thorac Cardiovasc Surg, 1997, 114(4):594-600
    
    174 Van Haaren NJ, Bennink GB, de Vries JW. Pitfalls in neonatal cardiac surgery using antegrade cerebral perfusion. J Thorac Cardiovasc Surg, 2001,121(1):184-186
    
    175 Bruhn J, Bouillon TW, Radulescu L, et al. Correlation of approximate entropy,bispectral index, and spectral edge frequency 95 (SEF95) with clinical signs of "anesthetic depth" during coadministration of propofol and remifentanil.Anesthesiology, 2003, 98(3):621-627
    
    176 Honan D, Doherty D, Frizelle H. A comparison of the effects on bispectral index of mild vs. moderate hypothermia during cardiopulmonary bypass. Eur J Anaesthesiol, 2006,23(5):385-390
    
    177 Lundell JC, Scuderi PE, Butterworth JFt. Less isoflurane is required after than before cardiopulmonary bypass to maintain a constant bispectral index value. J Cardiothorac Vasc Anesth, 2001, 15(5):551-554
    
    178 Vretzakis G, Ferdi E, Argiriadou H, et al. Influence of bispectral index monitoring on decision making during cardiac anesthesia. J Clin Anesth, 2005,17(7):509-516
    
    179 Austin EH, 3rd, Edmonds HL, Jr., Auden SM, et al. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg, 1997, 114(5):707-715, 717; discussion 715-706

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700