用户名: 密码: 验证码:
基于非培养生物技术的堆肥微生物群落研究及木质纤维素降解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对堆肥化环境微生物的复杂性以及木质纤维素难降解的特性,本文以农业秸秆为主要原料,采用好氧堆肥,从物理化学、酶学以及基于非培养生物技术的微生物群落结构演替等方面较系统地研究了接种黄孢原毛平革菌对堆肥发酵进程和木质纤维素降解的影响;并综合运用多种非培养生物研究方法与数学统计方法系统地研究堆肥化过程中微生物群落演替规律;基于上述规律研究其降解机理与特性并从堆肥化各阶段选育高效优势的降解菌株,为堆肥工艺的优化和接种剂的开发提供依据。
     在稻草固态发酵体系中同时接种土壤微生物和黄孢原毛平革菌,用磷脂脂肪酸(PLFA)谱图分析法研究发酵过程的微生物群落和生物量变化,同时监测木质纤维素降解率的变化。结果表明,复合微生物体系降解木质纤维素的效率明显高于单一菌种的效率。根据标志性脂肪酸的变化,在发酵第6d,革兰氏阳性菌、革兰氏阴性菌、真菌的含量都达到了最高值,其中,革兰氏阳性菌的含量较低;真菌和细菌的脂肪酸含量比值变化范围为0.2~0.5,说明真菌是降解木质纤维素的主要群落。主成分分析结果显示发酵后期以18C不饱和脂肪酸为主,与标志性脂肪酸分析结果一致,同时跟木质纤维素降解率的变化趋势对应,因此PLFA分析法可以较好地反映稻草固态发酵过程中的微生物群落结构和生物量的变化。P. chrysosporium对应单体PLFA与木质纤维素相关性分析显示革兰氏阳性菌和真菌在降解木质素上具有相同的效率,P. chrysosporium是降解木质素的主要真菌。
     用RFLP方法和酶活检测方法研究了在农业废物堆肥一次发酵和二次发酵期间添加黄孢原毛平革菌对微生物多样性和木质纤维素降解酶系的影响。结果表明,在不同发酵期接种P. chrysosporium对堆肥进程的影响不同:(1)三种典型的限制性内切酶Alu I、Hae III和Taq I在分析堆肥细菌微生物多样性的灵敏性上,Hae III效果最好,Alu I次之,Taq I则不是很适用于分析堆肥细菌微生物多样性。添加的P. chrysosporium对堆肥系统中某些微生物更具有一定的选择作用,使其成为优势物种以促进堆肥物质的降解,多样性有所降低,二次接种能够巩固一次接种效果;(2)接种P. chrysosporium能够促进堆肥体系中的木质纤维素降解,实验结果显示接种P. chrysosporium的堆体中木质素降解率要明显高于未接种的堆体。接种P. chrysosporium对木聚糖酶活和CMC酶活的分泌没有明显影响,对Lip和Mnp酶活产生有促进作用,但是对Lac的产生有一定抑制作用。
     组合应用了三类非培养生物技术,即PLFA法、RFLP法、DGGE法,分析农业废物堆肥化中微生物群落和多样性的变化。结果表明三类方法显示的信息并不完全一致:(1)PLFA法检测的样点数据PCA分布比较离散,说明每个样点都具有其特征图谱,样点选取具有代表性。三类方法中以PLFA数据指示的微生物多样性最高,同时PLFA数据可以表征较完整的微生物群落结构变化并较为明确的表征微生物生物量的变化。(2)RFLP法检测的样点和条带信息PCA分布都比较集中,数据还显示在堆肥后期的细菌群落具有不稳定性,RFLP法指示的微生物多样性较低;(3)DGGE方法检测的数据显示堆肥过程中细菌群落结构至少经历了三个阶段的演替,即嗜温细菌群落,高温细菌群落和腐熟期细菌群落。
     根据从农林废物堆肥中筛选得到的木质素降解优势土著微生物枯草芽孢杆菌、铜绿假单孢菌、黑曲霉、简青霉、栗褐链霉菌,依据PLFA-PLS定量分析所得堆肥化二次发酵期有效的木质素降解微生物群落组成比例混合接种至稻草基质发酵瓶中,并通过正交实验L9(34)优化混合比例,以期研究开发一种基于木质素降解的高效堆肥化接种剂。结果表明,混合菌剂具有较强的木质素降解能力,其对木质素降解是木质素过氧化物酶、锰过氧化物酶、漆酶、纤维素酶和半纤维素酶共同作用的结果;当细菌:放线菌:真菌个数比为85:5:10,枯草芽孢杆菌:铜绿假单孢菌为55:25,黑曲霉:简青霉为2:1时,木质素、纤维素、半纤维素降解率最高,分别达到22.13%、48.97%、55.93%。比空白样高出19.16%、38.25%、46.30%。
Since microorganism, and lignocellulose, which is difficult to be degraded, are of great importance of technique improvement and efficiency enhancement during agricultural waste composting. The relationships between the succession of microbial community and degradation of lignocellulose were studied by analyzing in physico-chemical properties, enzymology, microbial community based on culture-independent method during agricultural waste composting. Kinds of culture-independent methods and statistical method were synthetically used for analyzing microbial community. Based on the characteristic and rules in composting, preponderant microorganisms selected in different stage during composting were developed to compound microorganism.
     To investigate the changes of microbial communities and influence of Phanerochaete chrysosporium during solid-state fermentation (SSF) of rice straw, phospholipid fatty acids (PLFA) and lignocellulose components were measured with periodical sampling. The results showed that the lignocellulose degrading ratios in SSF which was inoculated by P. chrysosporium and soil microorganisms were higher than those degraded by culturing a single species. The total amount of PLFAs, as an indicator of microbial biomass, reached the peak on day 6. Principal component analysis (PCA) of the PLFA compositions revealed that P. chrysosporium was well responsible for the succession of microbial community and showed that fungi were the predominant species at the end of the process. The correlation analysis between lignocellulose degrading ratio and PLFA profile in P. chrysosporium suggested that P. chrysosporium promoted lignin degrading as the main fungi with gram-positive bacteria.
     The lignocellulolytic microorganism, P. chrysosporium, was inoculated during different phases of agricultural waste composting and the effects on the diversity of microbial community and the enzyme activities were observed. The results of the present investigation revealed that inoculation during different phases had different effects on these parameters. (1) Three kinds of restriction enzymes, Alu I, Hae III and Taq I were used to analyse the change of microbial community diversity. The results showed that restriction enzyme Hae III was the most sensitive to the change of microbial community, restriction enzyme Alu I the second, and restriction enzyme Taq I the last. Restriction enzyme Taq I was not much suitable for analyzing composting samples. P. chrysosporium inoculated to composting system acted on certain microorganisms selectively and made them be the dominant species in order to promote the degradation of compost materials. However, the diversity of microorganism decreased after the first inoculation, the inoculation in the second fermentation was able to advance the effects of the inoculation in the first fermentation; (2) Inoculating P. Chrysosporium to composting did not induce much apparent changes on xylanase and CMCase activities. Whereas, P. Chrysosporium had significant stimulative effect on the secreting of MnP, LiP and certain prohibitive influence on the secreting of Lac when inoclated during the second fermentation phase.
     Three types of non-cultivate biology techniques, PLFA method, RFLP method and DGGE method were synthetically applicated to analyze changes of microbial community diversity during agricultural waste composting. The results showed that the three types of methods did not reveal the same relative similarities of composting samples based on PCA analysis of the biological characteristics entirely. (1) Data from PLFA profile showed discrete, it suggested each sample had its characteristic pattern, samples selected were representative. Microbial diversity of PLFA data was the highest among three types of methods. And data from PLFA profile was comprehensive to characterization of microbial community structure changes and more specific to characterization of microbial biomass changes. (2) Data from RFLP profile was more concentrated. The data also showed that bacteria community was instable at later stage during composting. And diversity of microbial community shown by RFLP method was lower; (3) Data from DGGE analysis showed that the succession of the microbial community included at least three different stages: mesophilic microbial community, thermophilic microbial community and maturation microbial community. The difference indicated that observing biological characteristics in composting with just one method should not be considered absolute, since the use of another method may lead to another interpretation of the relative composting similarities.
     Five strains of microorganisms were isolated from of agricultural waste composting. They were identified to be Bacillus subtilis, Pseudom onas aeruginosa, Aspergillusniger, Penicillium sim plicissim, and S treptom yces badius. To develop a high-efficient microbial inocula for composting, these strains of different ratios designed by orthogonal test L9 (34) were inoculated to natural rice straw during solid-state fermentation for 30 days. The strain mixture showed ligninolytic ability, which was further proved by enzyme secreting. When the ratio of bacteria:actinomycete:fungus was 85:5:10; B acillussubtilis:Pseudom onas aeruginosa, 55:25; and Aspergillus niger:Penicillium simplicissim, 2:1, the degradation rate of lignin, cellulose and hemicellulose was the highest, being 22.13%, 48.97% and 55.93%, respectively, after 30 day incubation. It was increased 19.16, 38.25 and 46.30 percent points, respectively, compared with the control.
引文
[1]黄士忠.农林牧废弃物资源饲料化的新途径.农业环境保护,1993,2(5):233-235.
    [2]边炳鑫,赵由才.农业固体废物的处理与综合利用.北京:化学工业出版社,2004,6-124.
    [3]陈志宇,苏继影,栾冬梅.畜禽粪便堆肥技术研究进展.当代畜牧,2004,10:41-43.
    [4]鲁聪达,杨继隆,高发兴.畜禽废物的无害化资源化处理技术.浙江工业大学学报,2003,31(2):192-196.
    [5]徐达,周青.农业废物的环境生态效应与资源化利用.中国农学通报,2006,22(6):14-417.
    [6]张承龙.农业废物资源化利用技术现状及其前景.中国资源综合利用,2002,2:14-16.
    [7]柯为.发展堆肥生物技术治理有机废弃物.微生物学通报,2006,33(3):23.
    [8]王连稹,王祯丽,黄华波.白腐菌在秸秆堆肥化中的应用.石河子大学学报(自然科学版),2003,7(2):161-164.
    [9]杨渤京,王洪涛.农业固体废物堆肥生产复混肥的工艺试验研究.环境科学,2006,27(7):1464-1468.
    [10]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制.北京:科学出版社,2006,1-21.
    [11]陈林根,姜雪芳.固体有机废物好氧堆肥发酵工艺概述与展望.环境污染与防治,1997,19(2):35-38.
    [12]黄得扬,陆文静,王洪涛.有机固体废物堆肥化处理的微生物学机理研究.环境污染治理技术与设备.2004,5(1):12-18.
    [13]冯宏,李华兴.菌剂对堆肥的作用及其应用.生态环境.2004,13(3):439-441.
    [14]杨朝晖,曾光明,袁兴中.微生物选育技术在生活垃圾堆肥处理中的应用.环境卫生工程,2003,11(3):115-118.
    [15] Yung C, Hudson H J. The fungi of wheat straw compost I ecological studies. Transactions of the British Mycological Society,1967,50:646-666.
    [16] Buckley D H, Schmidt T M. The structure of microbial communities in soil and the lasting impact of cultivation. FEMS Microbiology Ecology,2001,42: 11-12.
    [17] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. FEMS Microbiology Review, 1995,59(1):143-169.
    [18]王曙光,侯彦林.磷脂脂肪酸方法在土壤微生物分析中的应用.微生物学通报,2004,31(1):114-117.
    [19] Fang J, Findlay R H. The use of a classic lipid extraction method for simultaneous recovery of organic pollutants and microbial lipids from sediments. Journal of Microbiological Method,1996,27(1):63-71.
    [20] Fang J, Barcelona M J, Alvarez P J. A direct comparison between fatty acid and intact phospholipid profiling for microbial identification. Organic Geochemistry,2000,31(9):881-887.
    [21]齐鸿雁,薛凯,张洪勋.磷脂脂肪酸谱图分析方法及其在微生物生态学中的应用.生态学报,2003,23:1576-1582.
    [22]郁红艳.农业废物堆肥化中木质素的降解及其微生物特性研究:[湖南大学博士学位论文].长沙:湖南大学,2007.
    [23] Peter S, Erland B. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biology & Biochemistry,2000,32:909-917.
    [24] Caldero?n F J, Jackson L E, Scow K M, et al. Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biology & Biochemistry,2000,32:1547-1559.
    [25] King M W G. Migration and natural fate of a coal tar creosote plume mass balance and biodegradation indicators. Journal of contaminant Hydrology,1999,39(4):281-307.
    [26] Lei F, J S, Gheynst V. The effect of microbial inoculation and pH on microbialcommunity structure changes during composting. Process Biochemistry,2000,35(9):923-929.
    [27] Gheynst V, J S, Lei F. Microbial community structure dynamics during aerated and mixed composting. Transactions of the ASAE,2003,46: 577-584.
    [28] Morten K, Erland B. Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18: 2ω6, 9. Soil Biology & Biochemistry,2004,36:57-65.
    [29] Steger K, Jarvis A, Sven S, et al. Comparison of signature lipid methods to determine microbial community structure in compost. Journal ofMicrobiological Methods,2003,55(2):371-382.
    [30]张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展,生态学报,2003,23:988-995.
    [31]唐劲瑛,胡洪营.Biolog方法在环境微生物群落研究中的应用.微生物学报,2003,43(1):138-141.
    [32]席劲瑛,胡洪营,姜健,等.生物过滤塔中微生物群落的代谢特性.环境科学,2005,26(4):165-170.
    [33] Yao H Y, Xu J M, Huang C Y. Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal- polluted paddy soils. Geoderma,2003,115(2):139-148.
    [34]杨元根, Paterson E, Campbell C.用微生物对单一碳源利用方法探讨重金属在城市土壤中积累的环境效应.地球化学,2001,30:459-464.
    [35] Buyer J S, Roberts D P, Millner Patricia, et al. Analysis of fungal communities by sole carbon source utilization profiles. Journal of Microbiological Methods,2001,45(1):53-60.
    [36] Minna L M, Heikki H. Microbiol functional activity during composting of chlorophenol-contaminated sawmill soil. Journal of Microbiological Methods,1997,30(1):21-32.
    [37] Atkinson C F , Jones D D, Gauthier J J. Microbial activities during composting of pulp and paper-mill primary solids. World Journal of Microbiology & Biotechnology,1997,13:519-525.
    [38] Insam H, Amor K, Renner M, et al. Changes in functional abilities of the microbial community during composting of manure. Microbial Ecology (Historical Archive),1996,31(1):77-87.
    [39] Claudio M, Heribert I. Community level physiological profiling as a tool to evaluate compost maturity: a kinetic approach. European Journal of Soil Biology,2003,39(2):141-148.
    [40] Fang M, Wong J W C. Changes in Thermophilic Bacteria Population and Diversity during Composting of Coal Fly Ash and Sewage Sludge. Water, Air, and soil Polution,2000,124:333-343.
    [41]郑华,欧阳志云,方治国,等.BIOLOG在土壤微生物群落功能多样性研究中的应用.土壤学报,2004,41:456-461.
    [42] Schloss P D, Hay A G, Wilson D B, et al. Quantifying bacterial population dynamics in compost using 16S rRNA gene probe. Applied Microbiology and Biotechnology,2005,66:457-463.
    [43] Howelera M, Ghiorseb W C, Walker Larry P. A quantitative analysis of DNA extraction and purification from compost. Journal of Microbiological Methods,2003,54(1):37-45.
    [44] LaMontagne M G, Michel Jr F C, P.A. Holden1, et al. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. Journal of Microbiological Methods,2002,49(3):255-264.
    [45] Muthumeenakshi S, Mills P R, Brown A E. et al. Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in the British Isles.Microbiology,1994,140(4):769-777.
    [46]李志岗,杨官品,朱艳红.水环境细菌16S rDNA限制性片断长度多型性及群落结构的分析.水生生物学报,2001,25(2):111-115.
    [47] Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Applied Environmental Microbiology,1993,59(3):695-700.
    [48] Muyzer G, Brinkhoff T, Ulrich N, et al. Molecular Microbial Ecology Manual. Netherlands: Kluwer Academic Publishers Dordrecht,1998:1-27.
    [49] Logemann S, Schand J, Bijvank S, et al. Molecular microbial diversity in nitrifying reactor system without sludge retention. FEMS Microbiology Ecology,1998,27(3):239-249.
    [50]傅以钢,王峰,何培松,等.DGGE污泥堆肥工艺微生物种群结构分析.中国环境科学,2005,25(Suppl):98-101.
    [51] Ishii K, Fukui M, Takii S, et al. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. Journal of Applied Microbiology,2000,89(5):768-777.
    [52] Vita Ratri C, Kazuo M, Susumu A, et al. Succession and phylogenetic profile of eukaryotic communities in the composting process of rice straw estimated by PCR-DGGE analysis. Biology And Fertility Of Soils,2004,40: 334-344.
    [53] Sabine P, Stefanie K, Frank S, et al. Succession of microbial communities during hot composting as detected by PCR-Single-Strand- Conformation polymorphis-based genetic profiles of small-subunit rRNA Genes. Applied and Environment Microbiology,2000,66:930-936.
    [54] Marshall1 M N, Cocolin L, Mills D A, et al. Evaluation of PCR primers fordenaturing gradient gel electrophoresis analysis of fungal communities in compost. Journal of Applied Microbiology,2003,95:934-948.
    [55]呼庆,齐鸿雁,张洪勋.荧光原位杂交技术及其在微生物生态学中的应用.生态学报,2004,24:1048-1054.
    [56]王爱杰,任南琪,冯玉杰,等.环境中的分子生物学诊断技术.北京:化学工业出版社,2004,243-253.
    [57] Simon N, Biegala I C. Kinetics of attachment of potentially toxic to Alexandrium tamarense. Aquatic Microbial Ecology, 2002, 28: 249-256.
    [58] Araya R, Tani K, Takagi T. Bacterial activity and community composition in stream water and biofilm from an urban river determined by flourescent in situ hybridization and DGGE analysi. FEMS Microbiology Ecology,2003,43(1):111-119.
    [59] Liu J, Leff L G. Temporal changes in the baterioplankton of a Northeast Ohio (USA) River. Hydrobiologia,2002,489(2):151-159.
    [60] Felske S, Akkermans A D L, De Vos W M. In situ detection of an uncultured predominant Bacillus in dutch grassland soil. Applied and Environment Microbiology,1998,64:4588-4590.
    [61] Girguis P R, Delong E F. Anaerobic enrichment of methane-oxidizing archaeal/bacterial consortia in deep-sea marine sediments. In: Abstracts of the General Meeting of the American Society for Microbiology. Washington D C,2002,102:327.
    [62] Mcnamara C J, Lemke M J, Leff L G. Culturable and non-culture fractions of baterial population in sediments of a South Carolina stream. Hydrobiologia,2002,482(1):151-159.
    [63] Llbet-Brossa E, Rossello-Mora R, Amann R I. Microbial community composition of Wedden Sea sediment as revealed by fluorescence in situ hybridization. Applied and Environment Microbiology,1998,64:2692-2696.
    [64]张汉波,段昌群,屈良鹄.非培养方法在土壤微生物生态学研究中的应用.生态学杂志.2003,5:131-136.
    [65] Lynne C B, Kennedy A C, Reganold J P. Use of Phospholipid Fatty Acids and Carbon Source Utilization Patterns To Track Microbial Community Succession in Developing Compost. Applied and Environment Microbiology, 1998,64:4062-4064.
    [66] Ibekwe Abasiofiok M, Kennedy Ann C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structureunder field and greenhouse conditions. FEMS Microbiology Ecology,1998,26(2):151-163.
    [67] Pennanen T, Perki?m?ki J, Kiikkil? O, et al. Prolonged, simulated acid rain and heavy metal deposition:separated and combined effects on forest soil microbial community structure. FEMS Microbiology Ecology, 1998,27(3):291-300.
    [68] Boulter J I, Trevors J T, Boland G J. Microbial studies of compost-bacterial identification, and their potential for turfgrass pathogen suppression. World Journal of Microbiology & Biotechnology,2002,18:661-671.
    [69] Kozdrój J, Van E. Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerptinting and FAME profiling. Applied Soil Ecology,2001,17(1):31-42.
    [70] Widmer F. Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and BiologTM- analyses. Soil Biology & Biochemistry,2001,33:1029-1036.
    [71]田心健,王川.纤维素水解产物的分离研究.四川轻化工学院学报.2001,14(2):63-65.
    [72]邵蔚蓝,薛业敏.以基因重组技术开发木聚糖类半纤维素资源.食品与生物技术.2002,21(1):88-93.
    [73]席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,2002,3(3):19-23
    [74] Sjostrom E. Wood Chemistry, Fundamentals and Applications , 2nd ed. New York/London:Academic Press,1993.
    [75]阮同琦,赵祥颖,刘建军.木聚糖酶及其应用研究进展.山东食品发酵.2008,1:42-45.
    [76]焦平林,苏辉,纤维素酶制剂对肉牛及奶牛生产性能的影响.中国畜牧杂志,1997,33(2):43.
    [77]胡春霞,宋会仪.真菌纤维素酶及其在饲料中的应用.饲料工业.2006,27(16):15-17.
    [78] Reese E T. The Biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. Journal of Bacteirology,1950,59(4):485-497.
    [79]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展.自然科学进展,2003,13(1):21-29.
    [80]徐海娟,梁文芷.白腐菌降解木素酶系及其作用机理.环境污染治理技术与设备,2000,1(3):51-54.
    [81]张建军,罗勤慧.木质素酶及其化学模拟的研究进展.化学通报,2001,8:470-477.
    [82] Kenneth E H. Extracellular free radical biochemistry of ligninolytic fungi. New Journal of Chemistry,1996,20(2):195-198.
    [83]夏炳乐,彭敦耕,刘清亮.过氧化物酶的反应机理和应用的研究进展.国际网上化学学报,2003,5(1):1-3.
    [84] J Pérez J, Muńoz D, Tdela R, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology,2002,5:53-63.
    [85] Eggert C, Temp U, Eriksson K E L. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. Febs Letters,1997,407(1):89-92.
    [86] Varela E, Martinez A T, Martinez M J. Molecular cloning of aryl-alcohol oxidase from the fungus Pleurotus eryngii, an enzyme involved in lignin degradation. Biochemical Journal,1999,341:113-117.
    [87] Strom P F. Identification of thermophilic bacteria in solid waste composting. Applied and Environmental Microbiology,1985,50(4):906-913.
    [88] Crawford J H, Composting of agricultural wastes: a review. Process Biochemistry,1983,18:14-18.
    [89] Godden B, Ball A S, Helvenstein P, et al. Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of General and Applied Microbiology,1992,138:2441-2448.
    [90] Cross T. Thermophilic actionmycetes. Journal of Applied Bacteriology, 1968,31:36-53.
    [91] Kuhad R C, Singh A, Eriksson K E L. Microorganisms and enzymes involved in the degradation of plantfiber cell walls. In: Advances in Biochemical Engineering/Biotechnology. Eriksson, K E L(ED), 1997, 57:46-125.
    [92] Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment: a review. Bioresource Technology,2000,72:169-183.
    [93] Carol A C. Bacterial associations with decaying wood: a review. International Biodetertoration & Biodegradation,1996,37(1):101-107.
    [94] Lokesh K V. (14)C-lignin-lignocellulose biodegradation by bacteria isolated from polluted soil. Indian Journal of Experimental Biology,2001,39(6):584-589
    [95]管筱武,张甲耀,罗宇煊.木质素降解酶及其调控机理研究的进展.上海环境科学,1998,17(11):46-49.
    [96] Kinya K, Shinya K, Masanori S. Degradation of lignin compounds by bacteria from termite guts. Biotechnology Letters,1998,20(5):459-462.
    [97] Jouni J, Jukka P, Mirjasalkinoja S. Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds. Applied Environmental Microbiology,1987,53(11):2642-2649.
    [98] Zacchi L, Burla G, Zuolong D, et al. Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase. Journal of Biotechnology,2000,78(2):185-192.
    [99] Shingo K, Masanori A, Noriko O, et al. Degradation of a non-phenolic L-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole. FEMS Microbiology Letters,1999,170(1):51-57.
    [100]席北斗,刘鸿亮,孟伟,等.垃圾堆肥高效复合微生物菌剂的制备.环境科学研究,2003,16(2):58-64.
    [101] Reddy G V, Babu P R, Komaraiah P, et al. Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajorcaju). Process Biochemistry,2003,38(10):1457-1462.
    [102] Tuomela M, Oivanen1 P, Hatakka A. Degradation of synthetic 14C-lignin by various white-rot fungi in soil. Soil Biology & Biochemistry,2002,34(11): 1613-1620.
    [103]岑沛霖,蔡谨.工业微生物学.北京:化学工业出版社,2000.
    [104]林鹿,陈嘉翔,余家鸾,等.高效产生降解木素酶和降解聚木糖酶的菌种选育.中国造纸学报,1996(增刊),11:61-68.
    [105]谢君,任路,李维,等.白腐菌液体培养产生木质纤维素降解酶的研究.四川大学学报(自然科学版),2000,37:161-166.
    [106] Capelari M, Zadrazil F. Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi. Folia Microbiologica,1997,42(5):481-487.
    [107] Seifert K. Chemical changes in beechwood cell walls by soft rot (Chaetomium globosum). Holzals Rohund Werkstoff,1966,24:185-189.
    [108] Regalado V, Rodríguez A, Perestele F, et al. Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Applied and Eenvironmental Microbiology,1997,63(9):3716-3718.
    [109] Regalado V, Perestelo F, Rodríguez A, et al. Activated oxygen species and two extracellular enzymes: laccase and aryl-alcohol oxidase, novel for the lignin-degrading fungus Fusarium proliferatum. Applied Biochemistry and Microbiology,1999,51:388-390.
    [110] Zeng GM, Yu HY, Huang HL, et al. Laccase activities of a soil fungus Penicillium simplicissimum in relation to lignin degradation. World Journal of Microbiology & Biotechnology,2006,22:317-324.
    [111] Song R, Deng X. Study on biodegradated ability of thirteen fungi to straw. Journal of Forestry Research,2004,15(3):223-226.
    [112] Stepanova E V, Koroleva O V, Vasilchenko L G, et al. Fungal decomposition of oat straw during liquid and solid-state fermentation. Applied Biochemistry and Microbiology,2003,39(1):65-74.
    [113] Martin H, Tamara V, Mika K, et al. Production of manganese peroxides and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid state fermentation of wheat straw with the white rot fungi Nematolama frowardii. Applied Environmental Microbiology,1999,65:1864-1870.
    [114] Mariana M, Teresa S, Juanb F L, Mariaa B. Identification of a Laccase gene family in the new lignin degradation basidiomylete CECT 20197. Applied Environmental Microbiology,1999,63:2637-2646.
    [115] Ganesh Kumar A, Sekaran G, Krishnamoorthy S. Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium. Bioresource Technology,2006,97:1521-1528.
    [116] Rodriguez C S, Rivela I, Munoz M R. Ligninolytic enzyme production and the ability of decolourisation of Poly R-478 in packed-bed bioreactors by Phanerochaete Chrysosporium. Bioprocess Engineering,2000,23:287-293.
    [117] Tang L, Zeng GM, Shen GL, et al. Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Analytica Chimica Acta,2006,579:109-116.
    [118] Zeng GM, Shi JG, Yuan XZh, et al. Effects of tween80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost. Enzyme and Microbial Technology,2006,39:1451-1456.
    [119] Jimenez-Tobon G, Kuratkowski W, Rozbicka B. In situ localization of manganese peroxidase production in mycelial pellets of Phanerochaete Chrysosporium. Microbiology,2003,149:3121-3127.
    [120] Zeng GM, Huang DL, Huang GH, et al. Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresource Technology,2007, 98:320-326.
    [121] Hofrichter M. Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology,2002,30:454-466.
    [122] Medeiros P M, Fernandes M F, Dick R P, et al. Seasonal variations in sugar contents and microbial community in a ryegrass soil. Chemosphere,2006, 65(5):832-839.
    [123] Hackl E, Pfeffer M, Donat C, et al. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biology & Biochemistry,2005,37(4):661-671.
    [124] Puglisi E, Nicelli M, Capri E, et al. A soil alteration index based on phospholipid fatty acid. Chemosphere,2005,6(11):1548-1557.
    [125] Calderón F J, Jackson L E, Scow K M, et al. Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biology & Biochemistry,2000,32(11):1547-1559.
    [126] CórdovaKrelyos A L, Cao Y, Green P G, et al. Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments. Applied Environmental Microbiology,2006,72(5):3357-3366.
    [127] Syakti A D, Mazzella N, Nerini D, et al. Phospholipid fatty acid of a marine sedimentary microbial community in a laboratory microcosm: response to petroleum hydrocarbon contamination. Organic Geochemistry,2006,37(11): 1617-1628.
    [128] White D C, Davis W M, Nickels J S, et al. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia,1979,40:51-62.
    [129]向万胜,吴金水,肖和艾,等.土壤微生物的分离、提取与纯化研究进展.应用生态学报,2003,14(3):453-456.
    [130] Stepanova E V, Koroleva O V, Vasilchenko L G, et al. Fungal decomposition of oat straw during liquid and solid-state fermentation. Applied Biochemistry and Microbiology,2003,39(1):65-74.
    [131] Dosoretz C G, Chen H G, Grethlein H E. Effect of environmental conditions on extracellular protease activity in ligninolytic cultures of PhanerochaeteChrysosporium. Applied Environmental Microbiology, 1990,56(2):395-400.
    [132] Gill P K, Arora D S. Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi. Microbiology and Biotechnology,2003,30(1):28-33.
    [133] Liu J, Yuan X, Zeng G, et al. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochemistry,2006,41(11):2347-2351.
    [134] Hellmann B, Zelles L, Paloj?rvi A, et al. Emission of climate -relevant trace gases and succession of microbial communities during open-window composting. Applied Environmental Microbiology,1997,63(3):1011-1018.
    [135] Zelles L, Bai Q Y, Rackwitz R, et al. Determination of phospholipid- and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structures in soils. Biology and Fertility of Soils,1995, 19(2):115-123.
    [136] Klamer M, B??th E. Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiology Ecology,1998,27(1):9-20.
    [137]黄得扬,陆文静,王洪涛,等.高效纤维素分解菌在蔬菜-花卉秸秆联合好氧堆肥中的应用.环境科学,2004,25(2):145-149.
    [138]许晓英,李季.复合微生物菌剂在污泥高温好氧堆肥中的应用.中国生态农业学报,2006,14(3):64-66.
    [139] Adachi M, Matsubara T, Okamoto R, et al. Inhibition of cyst formation in the toxic dinoflagellate Alexandrium (Dinophyceae) by bacteria from Hiroshima Bay, Japan. Aquatic Microbial Ecology,2001,26(2):223-233.
    [140] Hoti S L, Sridhar A, Das P K. Presence of wolbachia endosymbionts in microfilariae of wuchereria bancrofti (Spirurida: Onchocercidae) from different geographical regions in India. Memórias do Instituto Oswaldo Cruz,2003,98:1017-1019.
    [141] Gillian D C, Speksnijder A G C L, Zwart G, et al. Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca, Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR amplified gene fragment coding for 16S rDNA. Applied and Environmental Microbiology,1998,64(9):3464-3472.
    [142] Murray A E, Hollibaugh J T, Orrego C. Phylogenetic composition of bacterioplankton from two California estuaries compared by denaturinggradient gel eletrophoresis of 16S rDNA fragments. Applied and Environmental Microbiology,1996,62(7):2676-2680.
    [143]吴展才,余旭胜,徐源泰.采用分子生物学技术分析不同施肥土壤细菌多样性.中国农业科学,2005,38(12):2474-2480.
    [144]杨朝晖,肖勇,曾光明,等.用于分子生态学研究的堆肥DNA提取方法.环境科学,2006,2(8):1613-1618.
    [145]陈耀宁,曾光明,喻曼,等.与黄孢原毛平革菌协同降解稻草的混合菌筛选.中国环境科学,2007,27(2):189-193.
    [146] Gilbride K A, Frigon D, Cesnik A, et al. Effect of chemical and physical parameters on a pulp mill biotreatment bacterial community. Water Research,2006,40:775-787.
    [147]喻曼,曾光明,陈耀宁,郁红艳,陈芙蓉.PLFA法研究稻草固态发酵的微生物群落结构变化.环境科学,2007.28(11):2603-2608.
    [148] Beffa T, Blanc M, Lyon P F, et al. Isolation of thermus strains from hot composts 60-80℃. Applied Environmental Microbiology,1996,62:1723- 1727.
    [149]刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究[J].华中科技大学学报,2002,19(2):57-59.
    [150] Yang C H, Crowley D E. Rhizosphere microbial community structure in relation to root location and plant iron status. Applied Environmental Microbiology,2000,66(9):345-351.
    [151] Konstantinov S R, Zhu W Y, Williams B A, et al. Effects of fermentable carbohydrates on piglet facial bacterial communities as revealed by 16S ribosomal DNA. FEMS Microbiology Ecology,2003,43:225 -235.
    [152] Tiedje J M, Asuming B S, Nüsslein K, et al. Opening the black box of soilmicrobial diversity. Applied Soil Ecology,1999,13(1):109-112.
    [153] Heilmann J C, Boddy L. Inhibition and stimulation effects in communities of wood decay fungi: exudates from colonized wood influence growth by other species. FEMS Microbiology Ecology,2005,49(3):399-406.
    [154] Tien M, Kirk T K. Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proceedings of the National Academy of Sciences of the United States of AME,1984,81,2280-2284.
    [155] Rogalski J, Szczodrak J, Janusz G. Manganese peroxidase production in submerged cultures by free and immobilized mycelia of Nematolomafrowardii. Bioresource Technology,2006,97:469-476.
    [156] Giorgi S, Vladimir E, Solomon P W, et al. Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme and Microbial Technology,2007,41:57-61.
    [157] Saha B C, Iten B L, Cotta M A, et al. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry,2005,40:693-700.
    [158] Ghose T K. Measurement of cellulase activities. Pure and Applied Chemistry,1987,59:257-268.
    [159]程永前,黄民生,张国莹,等.白腐真菌对染料脱色及降解过程机理和影响因素.环境污染治理技术与设备,2000,1(6):25-34.
    [160] Sethuraman A, Akin D E, Eriksson K E L. Production of ligninolytic enzymes and synthetic lignin mineralization by the bird’snest fungus Cyathus stercoreus. Applied Microbiology and Biotechnology,1999,52:689 -697.
    [161]浦跃武,甄浩铭,冯书亭,等.白腐菌产锰过氧化物酶条件的研究.菌物系统,1998,17(3):251-255.
    [162]赵守仁.用生物技术开发秸秆资源.饲料工业,1997,18(2):34-36.
    [163] Komilis D P, Ham R K. The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management,2003,23:419-423.
    [164] Baca M T, Forsanier F, De Nobili M. Mineralization and humification pathways in two composting processes applied to cotton wastes. Journal of Fermen Bioengineer,1992,74:179-184.
    [165] Tseng D Y, Chalmers J J, Tuovinen O H. ATP measurement in compost. Compost Science & Utilization,1996,4:6-17.
    [166] Lynch J M. Substrate availability in the production of composts. In: Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects. Ohio United States, 1993,24-35.
    [167] Vargas-García M C, Suárez-Estrella F F, López M J, et al. Effect of inoculation in composting process: modifications in lignocellulosic fraction. Waste Management,2007,27:1099-1107.
    [168] Shi J G, Zeng G M, Yuan X Zh, et al. The Stimulative Effects of Surfactants on Composting of Waste Rich in Cellulose. World Journal of Microbiology & Biotechnology,2006,22:1121-1127.
    [169] Poincelot R P, Day P R. Rates of cellulose decomposition during thecomposting of leaves combined with several municipal and industrial wastes and other additives. Compost Science,1973,14:23-25.
    [170] Goyal S, Dhull S K, Kapoor K K. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology,2005,96:1584-1591.
    [171] Schoemaker H E, Leisola M S A. Degradation of lignin by Phanerochaete chrysosporium. Journal of Biotechnology,1990,13:101-109.
    [172] Raut M P, Prince W, S P M, et al. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-A compost maturity analysis perspective. Bioresource Technology,2008,99:6512-6519.
    [173] Brown J A, Glenn J K, Gold M H. Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. Journal of Bacteriology,1990,172(6):3125-3130.
    [174] Bonnarme P, Jeffries T W. Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi. Applied and Environmental Microbiology,1990,56(1):210- 217.
    [175] Higuchi T. Lignin biochemistry: biosynthesis and biodegradation. Wood Science and Technology,1990,24:23-63.
    [176] Elorrieta M A, López M J, Suárez-Estrella F F, et al. Composting of different horticultural wastes: effect of fungal inoculation. In: Microbiology of composting. Berlin,2002,119-132.
    [177] Faure D, Deschamps A M. The effect of bacterial inoculation on the initiation of composting of grape pulps. Bioresource Technology,1991,37: 235-238.
    [178] Gaind S, Pandey A K, Lata. Biodegradation study of crop residues as affected by exogenous inorganic nitrogen and fungal inoculants. Journal of Basic Microbiology,2005,4,301-311.
    [179] Phil K, Dan C. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal genetics and biology,2007,44,77-87.
    [180] Srinivasan C, Dsouza T M, Boominathan K, et al. Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Applied and Environmental Microbiology,1995,61(12):4274-4277.
    [181]钞亚鹏,叶军,钱世钧.担子菌组成型漆酶产生特性的研究.微生物学报,2000,40(6):628-632.
    [182]卢雪梅,马登波.关于木素生物降解酶类活力测定问题的讨论.纤维素科学与技术,1994,2(3):24-31.
    [183] Lewis O, Robert B. Assessment of 30 white rotbasidiomycetes for selective lignin degradation. Holzforschung,1987,41(6):343-347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700