用户名: 密码: 验证码:
两主桁四线高速铁路斜拉桥桥面系结构形式和刚度问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本世纪以来,随着高速铁路建设的快速发展,我国已建和在建的特大跨度四线铁路钢桥有十来座。这些桥梁的结构形式多种多样。大部分采用了三主桁(拱)结构;当采用两主桁结构时一般都采取加设中吊杆或边吊杆等措施以减小桥面宽度。正在建造中的BJ桥是一座四线高速铁路专用斜拉桥,孔跨布置为(57.5+109.25+230+109.25+57.5)m。受建桥条件的限制,该桥只能采用两主桁结构,而且桥面上无空间加设中吊杆或边吊杆。斜拉桥总体上是一个柔性结构。两主桁四线高速铁路专用斜拉桥的特点是:结构柔、桥面宽、活载大。为确保高速列车运营的安全性和舒适性,必须对桥梁的整体刚度和桥面系的局部刚度给于足够的重视。
     本文以BJ桥为背景,采用数值分析和模型试验相结合的方法对两主桁四线高速铁路专用斜拉桥的桥面系结构形式及其对桥梁整体刚度的影响、桥面系局部刚度、桥面系结构的优化、桥面系模型试验的模拟方法、钢斜拉桥终张拉目标索力和张拉力的计算方法作了较为系统的研究。主要工作和创新性成果如下:
     1.针对两主桁四线铁路斜拉桥的特点,提出了两种桥面系结构方案:一种是“24m全宽整体桥面系结构方案(A1)”,另一种是“两主桁+边纵梁+水平K撑的减宽桥面系结构方案(A2)”。其中A2是一种创新性的桥面结构,国内外未曾有应用。
     2.研究了A1、A2两种桥面结构方案的特点及其对桥梁整体刚度的影响;提出了桥面系参与主桁共同作用程度的计算方法。结果表明,四线铁路斜拉桥整体桥面对桥梁整体刚度的影响较大。四线最不利活载作用下,A1和A2分别有58%和62%的桥面系(横截面积)参与了主桁共同作用。与无整体桥面的裸桁A0相比,主跨跨中的挠度分别减少了12%和14%,斜拉索的最大索力分别减小了9%和10%。
     3.对最不利活载作用下A1、A2两种正交异性板整体钢桥面系的局部变形作了较为系统的对比研究。提出了同一线两轨3m内相对变形量的物理意义及计算方法,提出和阐述了桥面变形的短波效应和横波效应、绝对位移和相对位移及相互间的转换方法。得出结论:与A1相比,A2节间中心桥面变形的相对位移约小了6.7%-12.6%,短波和横波的最大曲率分别小了49%和9.2%;外线和内线两轨3m内的相对变形量分别小了38%和48%。对BJ桥推荐了A2桥面系方案,并被采纳实施。
     4.提出了一种桥面系多变量、多目标的平行交叉优化方法(MOPOO法),推导了整套计算公式,给出了计算流程;用该法对A2桥面系基于局部刚度作了结构优化,给出了节间中心相对位移wc和外线两轨3m内的相对变形量△1,2的公共较优区域;在用钢量不变的情况下,该区域内wc和△1,2同时达到较优状态。
     5.对BJ桥A2桥面系,设计制作了一个三节间桥面系节段1:6的缩尺模型,提出了一种斜拉索对主桁下弦杆的轴压作用和对主桁节点竖向弹性支撑作用的模拟方法,完成了多种工况的模拟试验;考察了A2桥面系的变形、受力特性和水平K撑的作用。结果表明,A2桥面系由于设置了边纵梁,下弦杆的受力状态简单明了;边纵梁将大部分桥面荷载引向横梁跨边,使横梁几乎处于最佳受力状态,同时也改善了桥面变形和受力状态。模型试验证实了提出A2桥面结构方案的理念。
     6.研究提出了一种求解斜拉桥终张拉目标索力的“协调、平衡、优化”的计算方法和一种求解斜拉索终张拉力的“双结合”(有索、无索单元模型相结合、外力和索内力相结合)的增量形式的有限元模拟方法;给出了整套计算公式和计算流程。施工过程中只要按此法算出的张拉力和相应的张拉顺序经一轮次张拉就可达到目标索力,既减少了施工工作量又确保施工过程中桥梁结构受力的安全性。
     本文的研究成果为BJ桥的设计、施工提供了依据,也为其他桥梁的相关研究、设计和施工提供了参考。
Since the beginning of21th century more than10extra large span four-line high-speed railway steel bridges have been completed or under construction in China with the rapid developing of the construction of high-speed railway. The structure types of these bridges are diverse. Most of these bridges have three main trusses or arches. When only two main trusses are used, middle suspenders or side suspenders are often arranged to decrease the width of the deck system. BJ Bridge which is under construction now is a Four-lines High-speed railway Cable-stayed Bridge (FHCB) with the spans arranged as (57.5+109.25+230+109.25+57.5)m. Restricted by the construction conditions on site, only two main trusses can be arranged, and no space available on the deck to arrange middle suspenders or side suspenders. Cable-stayed bridges are flexible structures. The characteristics of FHCB with two main trusses are flexible, wide deck and large live load. To guarantee the safety and comfort of the service of high-speed trains, the stiffness of the whole bridge and the deck system is the key problem and should be pay more attention.
     Take BJ Bridge as background, the following problems are studied: the structure type of the deck system and their influence to the stiffness of the whole bridge, the stiffness and optimization of the deck system, the simulation method of the model test of deck system, and the calculation method of the final cable forces and the tension cable forces of the final tensioning. Main research work and innovative achievements are listed below.
     1. Aimed at the characteristics of FHCB, two deck system plans are presented. One is24m total wide monolithic deck system (A1), another is wide reduced monolithic deck system with side stringers and horizontal K-shaped braces (A2). A2is a innovative deck system type and has not applied before.
     2. The features of A1, A2and their influence to the stiffness of the whole bridge are studied. A calculation method of the level of deck system working together with the main trusses is proposed. The results show that the influence of the monolithic deck system to the stiffness of the whole FHCB is considerable. Under the action of the four-line worst-case live load,58%and62%of the cross section area of A1and A2work together with main trusses respectively,12%and14%of the deflection of midspan are cut down from that of the bare main truss structures (Ao) respectively,9%and10%of the maximum cable forces are decreased respectively.
     3. The local deformations of A1and A2deck systems under the worst-case live load are studied and compared. The physical significance and calculation method of the relative deformation of two trucks of one line are presented. The short wave and transversal wave of deformation of deck system, the absolute and relative displacements, and the transfer approach between them are also presented and expounded. The following conclusions are obtained. Compared with A1, the relative displacement of the deck system at the center of one panel of A2are decreased about6.7%to12.6%, the maximum curvature of the short wave and transversal wave of A2are decreased49%and9.2%respectively, and the relative deformation between the two trucks of the outer line and inner line within three meters of A2are decreased38%and48%respectively. A2is recommended to BJ Bridge and adopted.
     4. A Multi-variable multi-Objective Parallel Overlay Optimization method (MOPOO) is proposed. The computational formulas are developed and the calculating flow is presented. Using this method, the structure of A2is optimized based on the local stiffness of the deck system. The overlay better area of the relative displacement wc at the center of one panel and the relative deformation Δ1,2of the two trucks of outer line within three meters are obtained. In this area wc and Δ,2are all under better state while the steel consumption remains the same.
     5. Simulating A2deck system of BJ Bridge, a three panels segment model of deck system with the reduced scale1:6is designed and manufactured. The simulation methods of the axial load of lower chords and the elastic supports of the joints of main trusses from the cables are proposed. The tests of about ten load cases are completed. The deformations, stress states and the effect of horizontal K-shaped braces are investigated. The results show that the stress state of the lower chord is simple and clear because of the arrangeem.at of the side stringers. Most of the loads are transferred to the side area of the crossbeams by the side stringers, thus the crossbeams are under the best state, and the deformation and stress state of the deck system are also improved. The model tests verify the idea of proposal of A2.
     6. A conforming, equilibratory and optimized calculation method to calculate the final cable forces in the final tensioning is proposed. A double-combine incremental finite element simulation method to calculate the tension cable forces in the final tensioning is also proposed. The double-combine means the combination of finite element model with and without cable elements, and the combination of external forces and cable forces. The computational formulas and calculating flow are presented. In the construction the final cable forces can be obtained by only one round tension process using the final tension forces and tension sequence which calculated by this method, and the tension work is reduced and the safety of the bridge during tensioning can be guaranteed.
     The research results have already been used in the design and construction of BJ Bridge, and provide references to the study, design and construction of other bridges.
引文
[1]ZHANG Ye-zhi, ZHANG Min. Structure and behavior of floor system of two super high-speed railway Changjiang composite bridges[J]. Journal of Central South University of Technology,2011,18(2):542-549.
    [2]高宗余.跨长江黄河的高速铁路大跨度桥梁[J].中国工程科学,2009,11(1):17-21.
    [3]侯文崎,叶梅新.南京大胜关长江大桥三主桁钢正交异性板整体桥面结构受力特性的试验研究[J].铁道科学与工程学报,2008,5(3):11-17.
    [4]张晔芝.下承式铁路钢桁结合桥的桥式结构比较[J].铁道学报,2005,27(5):107-110.
    [5]郑健.中国高速铁路桥梁建设关键技术[J].中国工程科学,2008,10(7):18-27.
    [6]辛学忠,张晔芝.我国铁路钢-混凝土结合梁桥技术发展思考[J].桥梁建设,2007,2007(5):12-16.
    [7]王召祜.京沪高速铁路桥梁设计[J].铁道科学与工程学报,2005,2(5):13-16,49.
    [8]乔健,辛学忠.世纪之交铁路桥梁发展的体会[J].铁道标准设计,2004,2004(7):106-110.
    [9]潘际炎.中国钢桥[J].中国工程科学,2007,9(7):18-26.
    [10]方秦汉,高宗余,李加武.中国铁路钢桥的发展历程及展望[J].建筑科学与工程学报,2008,25(4):1-5.
    [11]周德,叶梅新.高速铁路大跨度系杆拱桥结合梁构造形式[J].中南大学学报(自然科学版),2009,40(1):256-262.
    [12]周德,叶梅新,罗如登.高速铁路下承式钢箱系杆拱结合桥的受力分析[J].中南大学学报(自然科学版),2009,40(5):1457-1464.
    [13]Yezhi Zhang, Rudeng Luo. Patch loading and improved measures of incremental launching of steel box girder[J]. Journal of Constructional Steel Research,2012,68(1): 11-19.
    [14]韩衍群,叶梅新.连续钢桁结合梁桥桥面系受力状态及与桥面系刚度的关系[J].中南大学学报(自然科学版),2008,39(2):387-393.
    [15]YAN Bin, DAI Gong-lian, ZHANG Hua-ping. Beam-track interaction of high-speed railway bridge with ballast track[J]. Journal of Central South University of Technology,2012,19(5):1447-1453.
    [16]张晔芝,张敏.高速铁路纵横梁体系结合桥面横梁面外弯曲问题的研究[J]. 铁道学报,2010,32(1):59-64.
    [17]钱竹,戴公连.三主桁连续钢桁拱桥整体节点有限元分析[J].企业技术开发(学术版),2009,28(7):54-57.
    [18]Ye-Zhi Zhang, Ying-Hui Liu. Behavior of Tianxingzhou Yangtze Bridge of wuguang passenger dedicated line[A]. In:Proceeding of the 4th International Symposium on Lifetime Engineering of Civil Infrastructure(ISLECI2009)(C), Changsha,2009:581-586.
    [19]高宗余.武汉天兴洲公铁两用长江大桥总体设计[J].桥梁建设,2007,2007(1):5-9.
    [20]秦顺全,高宗余,潘东发.武汉天兴洲公铁两用长江大桥关键技术研究[J].桥梁建设,2007,2007(1):1-4,20.
    [21]徐伟.武汉天兴洲公铁两用长江大桥主桥钢梁设计[J].桥梁建设,2008,2008(1):4-7,22.
    [22]秦顺全.武汉天兴洲公铁两用长江大桥关键技术研究[J].工程力学,2008,25(增刊2):99-105.
    [23]胡汉舟.武汉天兴洲公铁两用长江大桥主桥上部结构施工方案[J].桥梁建设,2007,2007(3):1-4.
    [24]李明华,高宗余.武汉天兴洲公铁两用长江大桥正桥的设计[J].中国铁路,2006,2006(3):38-41.
    [25]肖海珠,徐伟,高宗余.安庆铁路长江大桥设计[J].桥梁建设,2009,2009(5):6-8,20.
    [26]JIONG Liang, MEIXIN Ye. Behavior of four-line high-speed railway bridge with two main trusses and K-shaped brace[J]. Advanced Materials Research,2011, 2011(163-167):148-152.
    [27]张敏,叶梅新,张晔芝.密布横梁正交异性板整体桥面受力行为[J].中国铁道科学,2010,31(3):28-34.
    [28]Liang Jiong, Ye Meixin. Influence of side stringer to deck deformation of four-lines high-speed railway cable-stayed bridge with double cable planes[J]. Applied Mechanics and Materials,2012,2012(178-189):2462-2467.
    [29]ZHANG Yezhi, CHEN Liang. Theoretical analysis of SSCC floor system of through truss high-speed railway bridges[J]. Advanced Materials Research,2011, 2011(250-253):1728-1733.
    [30]Wenshuo Liu, Gonglian Dai. Dongping Channel Bridge:Long-Span Steel Arch Bridge in High-Speed Railway, China[J]. Structural Engineering International,2011, 21(4):492-496.
    [31]张敏,叶梅新,靳飞.京沪高速南京长江大桥结点受力性能分析[J].铁道科学与工程学报,2007,4(3):21-26.
    [32]朱志虎,易伦雄,高宗余.南京大胜关长江大桥三主桁结构受力特性分析与施工控制措施研究[J].桥梁建设,2009,2009(3):1_4,32.
    [33]易伦雄.南京大胜关长江大桥大跨度钢桁拱桥设计研究[J].桥梁建设,2009,2009(5):1-5.
    [34]高磊.南京大胜关长江大桥钢梁安装设计与计算[J].高速铁路技术,2010,1(5):63-66.
    [35]肖海珠,易伦雄.南京大胜关长江大桥主桥上部结构设计[J].桥梁建设,2010,2010(1):1-4.
    [36]韩衍群,叶梅新.高速铁路三主桁道砟整体桥面板桁组合桥受力特性及计算理论研究[J].中国铁道科学,2009,30(5):135-137.
    [37]叶梅新,张敏,韩衍群.高速铁路三主桁连续钢桁拱-梁桥受力特性[J].华中科技大学学报(自然科学版),2010,38(3):96-99.
    [38]易伦雄.大胜关长江大桥工程特点与关键技术[J].钢结构,2007,22(4):78-80.
    [39]韩衍群,史召锋,叶梅新.多横梁整体桥面结构桥面荷载传递途径及计算方法[J].中南大学学报(自然科学版),2010,41(5):1993-1997.
    [40]Zongyu Gao, Lunxiong Yi, Hai Zhu Xiao. Dashengguan Bridge-The Largest Span Steel Arch Bridge for High-Speed Railway[[J]. Structural Engineering International,2010,20(3):299-302.
    [41]叶梅新,胡文军,陈佳.南京大胜关长江大桥桁拱部分节段模型试验研究[J].铁道标准设计,2008,2008(3):73-77.
    [42]杨克鉴,刘凯.哈齐客运专线松花江特大桥桥式方案的选择[J].铁道勘察,2008,2008(6):101-103.
    [43]赵剑锋,罗丽华.法国钢桥设计与施工新趋势[J].世界桥梁,2009,2009(1):4-7.
    [44]刘春彦.法国地中海线高速铁路桥梁的技术特点及建议[J].铁道标准设计,2005,2005(5):38-43.
    [45]Rosignoli, M. Industrialized Construction of Large-Scale High Speed Railway Projects:The Modena Bridges in Italy[J]. Structural Engineering International,2011, 21(4):392-398.
    [46]Vincent, Richard B., Kennedy, D. J. Laurie. Composite Floor Trusses, Design Considerations and Practice[A]; In:Proceedings of the Conference:Composite Construction in Steel and Concrete Ⅳ[C], Banff, Alta. Canada,2000:286-297.
    [47]Jacques Brozzetti. Design Development of Steel-Concrete Composite Bridges in France[J]. Journal of Constructional Steel Research,2000,55(1):229-243.
    [48]Chang-Su Shim, Pil-Goo Lee, Sung-Pil Chang. Design of Shear Connection in Composite Steel and Concrete Bridges with Precast Decks [J]. Journal of Constructional Steel Research,2001,57(3):203-219.
    [49]陈开利.杜塞尔多夫来因河铁路桥[J].国外桥梁,1996,1996(1):18,14.
    [50]张强.京沪高速铁路济南黄河大桥主桥设计[J].桥梁建设,2006,2006年增刊2:94-96.
    [51]TB10021-2009,高速铁路设计规范(试行)[S].北京:中国铁道出版社,2010.
    [52]崔鑫,潘际炎,张玉玲.武汉天兴洲公铁两用大桥疲劳四线系数的研究[J].中国铁道科学,2006,27(3):13-17.
    [53]田越,崔鑫.大跨度铁路桥梁疲劳设计6线系数研究[J].钢结构,2007,22(5):10-14.
    [54]张丛,徐利平.大跨度斜拉桥竖向整体刚度敏感性分析[J].佳木斯大学学报(自然科学版),2012,30(2):193-196,200.
    [55]杨兴旺,赵雷.高速铁路大跨度斜拉桥稳定性分析[J].铁道建筑,2005,2005(6):16-19.
    [56]廖祖江.四线高速铁路钢桁斜拉桥承载能力研究[J].武汉理工大学学报(交通科学与工程版),2012,36(2):429432.
    [57]叶国毅,董亚东,胡若邻.北江特大桥锚固区水平承载力研究[J].中国城市经济,2011,2011(23):233-236.
    [58]程宝辉,贾应春.天兴洲大桥斜拉桥铁路结合桥面系模型试验研究[J].桥梁建设,2009,2009(增刊2):50-54.
    [59]荣振环,张玉玲,刘晓光,陶晓燕.大跨度斜拉桥正交异性板疲劳试验研究[J].钢结构,2009,24(5):13-16.
    [60]荣振环,张玉玲,刘晓光.天兴洲桥正交异性板焊接部位疲劳性能研究[J].中国铁道科学,2008,29(2):48-52.
    [61]韩衍群,叶梅新.整体桥面钢桁梁桥桥面荷载传递途径的研究[J].铁道学报,2008,30(1):65-69.
    [62]罗如登,叶梅新.高速铁路钢桁梁桥正交异性整体钢桥面板有效宽度的计算原则[J].钢结构,2009,24(5):3841.
    [63]叶梅新,韩衍群,张敏.基于ANSYS平台的斜拉桥调索方法研究[J].铁道 学报,2006,28(4):128-131.
    [64]段宝萍.混凝土斜拉桥二次调索顺序优化设计[J].广东交通职业技术学院学报,2011,10(2):36-39.
    [65]杨兴,张敏,周水兴.影响矩阵法在斜拉桥二次调索中的应用[J].重庆交通大学学报(自然科学版),2009,28(3):508-511.
    [66]吴红林,黄侨,金秀辉.斜拉桥施工控制调索方法研究及应用[J].公路交通科技(应用技术版),2007,2007(4):142-144,155.
    [67]李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报,2002,9(5):229-235.
    [68]董立立,赵益萍,梁林泉,等.机械优化设计理论方法研究综述[J].机床与液压,2010,38(15):114-119.
    [69]郭中泽,张卫红,陈裕泽.结构拓扑优化设计综述[J].机械设计,2007,24(8):1-5.
    [70]Pardalos PanosM, Romeijin H Edwin, Tuy Hoang. Recent developments and trends in global optimization[J]. Journal of Computational and Applied Mathematics, 2000,124:209-228.
    [71]尹世平,鹿晓阳,李洪福.桥梁结构优化设计的发展概况[J].山东建筑工程学院学报,2004,19(4):65-68,76.
    [72]蔡新,李洪煊,武颖利,等.工程结构优化设计研究进展[J].工程结构优化设计研究进展,河海大学学报(自然科学版),2011,39(3):269-276.
    [73]顾元宪,程耿东.有限元-优化-GAD集成一体的微机软件系统MCADS[J].计算结构力学及其应用,1990,7(1):71-81.
    [74]顾元宪,程耿东.结构形状优化设计数值方法的研究和应用[J].计算结构力学及其应用,1993,10(3):321-335.
    [75]GATES A A, ACCORSI M L. Automatic shape optimization of three-dimensional shell structures with large shape changes[J]. Computers & Structures,1993,49(1):167-78.
    [76]KOET SU Yamazaki, JIRO Sakamoto, MASAM I Kitano. Three-dimensional shape optimization using the boundary element method[J]. AIAA Journal,1994,32(6): 1296-1301.
    [77]朱伯芳,饶斌,贾金生.在静力与动力荷载作用下拱坝的体形优化[J].计算结构力学及其应用,1992,9(2):180-186.
    [78]宋天霞,郭建生,李巍.板壳结构选型优化设计[J].计算力学学报,1999,16(2):187-195.
    [79]RAMANA Grandhi. Structural optimization with frequency constraints-a review[J]. AIAA Journal,1993,31(12):2296-2303.
    [80]BART HELEMY J F M. Approximation concepts for optimum structural design-a review[J]. Structural and Multidisciplinary Optimization,1993,5(3): 129-144.
    [81]ARORA J S, HUANG M W. Methods for optimization of nonlinear problems with discrete variables:a review[J]. Structural and Multidisciplinary Optimization 1994,8(2):69-85.
    [82]A.P. Seyraniant, E. Lund and N. Olhoff. Multiple eigenvalues in structural optimization problems[J]. Structural and Multidisciplinary Optimization,1994,8(4): 207-227.
    [83]XIE Y M, STEVEN G P. A simple approach to structural frequency optimization[J]. Computers & Structures,1994,53(6):1487-1491.
    [84]张海南,刘国华.混合线型拱坝的优化设计[J].水利水电技术,1999,30(1):8-12.
    [85]Tyler E. Bruns, Daniel A. Tortorelli. Topology optimization of non-linear elastic structures and compliant mechanisms[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(26):3443-3459.
    [86]罗志军,乔新.基于遗传算法的雷达天线罩优化设计[J].计算力学学报,1997,14(3):361-365.
    [87]薛玺成,杨万斌.地下洞室断面形状的优化计算方法[J].岩土工程学报,1999,21(2):144-147.
    [88]杨万斌,薛玺成.地下洞室的间距和断面优化计算方法[J].岩土工程学报,2001,23(1):61-63.
    [89]叶少有,尹国.基于线性规划的结构设计优化[J].合肥工业大学学报,2006,29(1):91-93.
    [90]陈建军,车建文,崔明涛,等.结构动力优化设计述评与展望[J].力学进展,2001,31(2):181-191.
    [91]Seungjae Min, Shinji Nishiwaki, Noboru Kikuchi. Unified topology design of static and vibrating structures using multiobjective optimization[J]. Computers & Structures,2000,75(1):93-116.
    [92]J. Sienz, E. Hinton. Reliable structural optimization with error estimation, adaptivity and robust sensitivity analysis[J]. Computers & Structures,1997,64(1): 31-63.
    [93]Y XIE, G STEVEN. A simple evolutionary procedure for structural optimization[J]. Computers & Structures,1993,49(5):885-896.
    [94]K. Suzuki, N. Kikuchi. A homogenization method for shape and topology optimization[J]. Computer Methods in Applied Mechanics and Engineering,1991, 93(3):291-318.
    [95]江敏,陈一民.贝叶斯优化算法的发展综述[J].计算机工程与设计,2010,31(14):3254-3259.
    [96]Querin O M, Young V, Steven G P. Computational efficiency and validation of bi-directional evolutionary structural optimization[J]. Computer Methods in Applied Mechanics and Engineering,2000,189(2):559-573.
    [97]R YANG, C CHUANG. Optimal topology design using linear programming[J]. Computers & Structures,1994,52(2):265-275.
    [98]Shinji Nishiwaki, Mary I. Frecker, Seungjae Min, Noboru Kikuchi. Topology optimization of compliant mechanisms using the homogenization method[J]. International Journal for Numerical Methods in Engineering,1998,42(3):535-559.
    [99]Lars A. Krog, Niels Olhoff. Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigen frequency[J]. Computers & Structures,1999,72(4):535-563.
    [100]S. Min, N. Kikuchi, Y. C. Park, S. Kim, S. Chang. Optimal topology design of structures under dynamic loads[J]. Structural and Multidisciplinary Optimization, 1999,17(2):208-218.
    [101]Ruben Ansola, Javier Canales, Jose A. Tdrrago. An efficient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads[J]. Finite Elements in Analysis and Design, 2006,42(14):1220-1230.
    [102]D. Fujii, N. Kikuchi. Improvement of numerical instabilities in topology optimization using the SLP method[J]. Structural and Multidisciplinary Optimization, 2000,19(2):113-121.
    [103]张莉,周克民.基于类桁架连续体的结构拓扑优化方法与应用[J].应用力学学报,2007,24(3):412-415.
    [104]Grant Steven, Osvaldo Querin, Mike Xie. Evolutionary structural optimization (ESO) for combined topology and size optimization of discrete structures against buckling[J]. Computer Methods in Applied Mechanics and Engineering,2000,188(4): 743-754.
    [105]H. Kim, O. M. Querin, G. P. Steven, Y. M. Xie. A method for varying the number of cavities in an optimized topology using Evolutionary Structural Optimization[J]. Structural and Multidisciplinary Optimization,2000,19(2):140-147.
    [106]李杰,李娜.基于模糊数学的桥梁结构优化设计[J].长江大学学报(自然科学版),2008,5(3):272-275.
    [107]肖汝诚,陈红,魏乐永.桥梁结构体系的研究、优化与创新[J].土木工程学报,2008,41(6):69-74.
    [108]徐勋倩,吴国庆.正交异性钢桥面系的多目标离散优化设计[J].计算力学学报,2009,26(5):739-744.
    [109]易云煜,李添润,瞿尔仁.桥梁结构的优化设计[J].工程建设与档案,2005,19(4):248-250.
    [110]詹森,杨彦军.大跨度桥梁结构优化设计综述[J].山西建筑,2009,35(7):348-349.
    [111]郑一峰,黄侨,孙永明.部分斜拉桥合理成桥状态的研究[J].公路交通科技,2006,23(11):60-63.
    [112]王秀艳,杨江国,杨冬云,张滔,刘高俊.某145m矮塔斜拉桥的优化设计[J].城市道桥与防洪,2012,2012(2):38-43.
    [113]王文华,刘义河,李丽华,赵文丁.松原龙华松花江特大桥桥型方案优化设计研究[J].长春工程学院学报(自然科学版),2010,11(2):8-11.
    [114]姚捷,舒开欧,刘怡,韩奇峰.用ANSYS对连续刚构桥进行优化研究[J].建筑技术开发,2008,35(7):9-11.
    [115]Mohammad Hossein Abolbashari, Shadi Keshavarzmanesh. On various aspects of application of the evolutionary structural optimization method for 2D and 3D continuum structures[J]. Finite Elements in Analysis and Design,2006,42(6): 478-491.
    [116]D. Manickarajah, Y. M. Xie, G. P. Steven. Optimization of columns and frames against buckling[J]. Computers & Structures,2000,75(1):45-54.
    [117]J. H. Rong, Y. M. Xie, X. Y. Yang. An improved method for evolutionary structural optimisation against buckling[J]. Computers & Structures,2001(3),79: 253-263.
    [118]R. Das, R. Jones, S. Chandra. Damage tolerance based shape design of a stringer cutout using evolutionary structural optimisation[J]. Engineering Failure Analysis,2007,14(1):118-137.
    [119]程进,江见鲸,肖汝诚,项海帆.ANSYS二次开发技术及在确定斜拉桥成 桥初始恒载索力中的应用[J].公路交通科技,2002,19(3):50-52.
    [120]Knowles JD, Come DW. Approximating the non-dominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation,2000,8(2): 149-172.
    [121]谢能刚,孙林松,王德信.拱坝体型的多目标模糊优化设计[J].计算力学学报,2002,19(2):192-194.
    [122]Zhen Luo, Jingzhou Yang, Li-Ping Chen, Yun-Qing Zhang, Karim Abdel-Malek. A new hybrid fuzzy-goal programming scheme for multi-objective topological optimization of static and dynamic structures under multiple loading conditions[J]. Structural and Multidisciplinary Optimization,2006,31(1):26-39.
    [123]Knowles J D, Come D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation,2000,8(2): 149-172.
    [124]Srinivas N, Deb K. Muhiobjective function optimization use nondominated genetic algorithms[J]. Evolutionary Computation,1994,2(3):221-38.
    [125]Zitzler E, Thiele L. Multiobjective evolutionary algorithms:a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    [126]Deb K, Agrawal S, Pratap A et al. A fast and elitist multiobjective genetic algorithms:NSGA Ⅱ[J]. IEEE Transactions on Evolutionary Computation,2002,6(2): 182-197.
    [127]翟雨生,程志红,陈光柱,等.基于Pareto的多目标优化免疫算法[J].计算机工程与应用,2006(2):27-29,38.
    [128]李丽荣,郑金华.基于Pareto Front的多目标遗传算法[J].湘潭大学自然科学学报,2004,26(1):39-41,48.
    [129]吴斌暄,肖汝诚,颜繁强,等.基于多目标最优钢桁架拱桥体系的结构优化设计[J].沈阳建筑大学学报(自然科学版),2007,23(6):886-890.
    [130]林国雄,秦顺全,朱华民,等.宁波招宝山大桥加固重建工程设计[J].桥梁建设,2001,2001(3):18-21.
    [131]秦顺全.斜拉桥安装无应力状态控制法[J].桥梁建设,2003,2003(2):31-34.
    [132]秦顺全.无应力状态控制法-斜拉桥安装计算的应用[J].桥梁建设,2008,2008(2):13-16,30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700