用户名: 密码: 验证码:
双线铁路2×90m钢箱梁叠合拱桥施工过程的分析和监控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新建甬台温双线铁路上的雁荡山特大桥主跨为2×90m钢箱梁叠合拱结构,主梁为单箱九室钢箱梁,主拱肋采用等高度箱形截面,两孔主拱间设变截面钢箱辅助拱。该桥的施工主要分四步进行:一、钢箱梁先在胎架上拼装,再顶推就位;二、在主梁上搭临时支架拼装主拱和辅拱,安装吊杆并进行初张拉;三、拆除桥下临时墩,施工桥面系及其附属结构;四、吊杆终张拉并索力调整至目标值,使成桥后的结构受力达到设计要求。本文对该桥的施工全过程进行了精细的分析计算和监控,主要内容如下:
     1.采用空间有限单元法,对各种钢箱梁顶推方案做对比分析计算,并进行优化,确定最终的施工方案,该方案可以将顶推过程中钢箱梁Mises等效应力控制在容许范围内。对整个顶推过程进行应力和线形监测,实测结果与计算值相接近,钢箱梁顺利顶推就位。
     2.对顶推过程中下部结构的受力进行计算和监测,各临时墩和主墩的应力计算值较小,其强度符合要求。各临时墩横盖梁顺桥向和竖向位移的实测值较小,且都小于计算值,刚度满足要求。
     3.对该桥第二步和第三步施工过程中的线形和应力进行计算和监测。主拱肋的合拢精度满足设计要求,钢箱梁和钢箱拱的应力均控制在比较低的水平,线形也与计算值吻合。
     4.桥面二期恒载铺装完成后,根据目标线形来计算吊杆终张拉索力的目标值,再用正装法模拟整个终张拉过程,经过反复迭代算出其张拉值。按照该值进行一次张拉后,实测索力与目标索力比较吻合,全桥的最终线形也接近于设计值。该方法减少了施工的工作量,提高了工作效率,也可以应用于其它拱桥和斜拉桥。
The main span of Yandangshan Grand Bridge is a 2 X 90m overlaying arch bridge on the new double-track railway form Ningbo to Wenzhou. The continuous steel box girder is with a single-box and nine-cell section. The two main arch ribs are with the constant steel box section, on which there are the auxiliary steel box arches with the variable section.The bridge will be built following four construction sequences: First, assemble the steel box on the full scaffolding, and incrementally launch it to the predicted position; Second, erect the temporary trestles to assemble the main and auxiliary arch ribs, then install the hangers and conduct the first tension; Third, remove the temporary piers under the structure, and pave the deck system including its subsidiary structures; Finally, conduct the final tension for the hangers and adjust the force to the target, so that the mechanical behavior of the bridge can meet the design requirements after the works is completed. The whole construction of this bridge was finely calculated and controlled in this paper. The main contents are as follows:
     1.Addressed to varieties of proposed schemes about the steel box girder's incremental launching, a lot of comparative analysis and optimization were done to determine the eventual plan of the launching using the finite element method on space, which could control the Mises equivalent stress of the girder in the permitted range. The alignment and stress of the girder were monitored during the launching. The measured values and the calculated were close and the girder was put in place successfully.
     2.The stress and displacement of the substructures during the incremental launching were calculated and monitored. The stress of the main and the temporary pies were small and the strength met the requirement. For the longitudinal and vertical displacements at the top of the temporary pie caps, the monitored values were less than the calculated, and the stiffness met the requirement as well.
     3.The alignment and the stress of the bridge were calculated and monitored from the second construction sequence to the third. The closing precision of the main arches met the design requirement. The stress of the girder and the main arches were maintained at a relatively low level, and the alignment of the bridge was consistent with the calculated values.
     4.When the pavement of the secondary dead load was accomplished, the target forces on hangers for the final tension could be calculated in terms of the expected alignment of the bridge.And then, with the whole process of the tension simulated, the tensile forces were obtained through iterative calculation adopting the forward-analysis method. After the hangers were tensioned once employing the tensile forces, the measured forces in them were consistent with the target and the alignment of this bridge was close with the design value. This method reduced the amount of work and raised the construction efficiency. Furthermore, it can also be applied to other arch bridges and cable-stayed bridges.
引文
[1]姚玲森.桥梁工程(第二版)[M].北京:人民交通出版社,2008
    [2]陈绍藩,顾强.钢结构(第二版)[M].北京:中国建筑工业出版社,2007
    [3]苏彦江.钢桥构造与设计[M].成都:西南交通大学出版社,2006
    [4]王应良,高宗余.欧美桥梁设计思想[M].北京:中国铁道出版社,2008
    [5]方秦汉.长江上的四座公铁两用桥[J].铁道科学与工程学报,2004,1(1):10-13
    [6]上海市建设和管理委员会科学技术委员会.卢浦大桥工程[M].上海:上海科技出版社,2004
    [7]王福敏,徐伟.重庆朝天门大桥主桥结构体系研究[J].公路交通技术,2005,增刊:23-28
    [8]谢肖礼,白光耀,韩文学等.南宁大桥空间结构分析[J].公路与汽运,2005,(6):109-112
    [9]韩衍群.高速铁路三主桁道碴整体桥面板桁组合桥受力特性及计算理论研究[D]:[博士学位论文].长沙:中南大学,2008
    [10]朱志虎,易伦雄,高宗余.南京大胜关长江大桥三主桁结构受力特性分析与施工控制措施研究[J].桥梁建设,2009,(3):1-4,32
    [11]顾安邦,张永水.桥梁施工监测与控制[M].北京:机械工业出版社,2005
    [12]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001
    [13]刘钊,吕志涛.竖吊杆与斜吊杆系杆结构的桥式研究[J].土木工程学报,2000,33(5):63-67
    [14]徐伟,郭征红,骆艳斌.桥梁施工[M].北京:人民交通出版社,2008
    [15]潘东发,李军堂.南京大胜关长江大桥钢梁安装方案研究[J].桥梁建设,2007,(3):5-8
    [16]徐文平,张宇峰.钢桥拖拉法施工技术的研讨[J].公路,2007,(5):48-52
    [17]吴进明.缆索吊装扣挂法在钢管混凝土拱桥施工中的应用[J].宁夏工程技术,2007,6(1):57-60
    [18]任征,瞿国钊.雁荡山2×90m钢箱叠合拱桥设计研究[J].铁道标准设计,2005,(11):90-92
    [19]Rosigqnoli,Macro. Incremental bridge launching [J].Concrete International,1997,19(2):36-40
    [20]张晓东.桥梁顶推技术[J].公路,2003,(9):45-51
    [21]Rowly, F. N. Incremental launch bridges UK practice and some foreign coMParisons[J].Structural Engineer,1993,71(7):111-116
    [22]M. E. Marchetti.Specific design problems related to bridges built using the incremental launching method [J].engineering structures, 1984,6(3):185-210
    [23]张晔芝,谢晓慧.铁路特大桥钢箱梁顶推过程受力分析及改善方法[J].中国铁道科学,2009,30(3):21-26
    [24]赵博.双线铁路2×90m叠合拱桥钢箱梁顶推方案的研究[D]:[硕士学位论文].长沙:中南大学,2009
    [25]肖晓春,迟世春,林皋.水平地震下土—桩—结构相互作用简化分析方法[J].哈尔滨工业大学学报,2003,35(5):561-564
    [26]肖昭然,王磊,王军.双排桩等代刚度法的有限元分析[J].河南工业大学学报(自然科学版),2007,28(2):82-84
    [27]俞波,黄平.柱式墩盖梁计算探讨[J].中南公路工程,2000,25(3):60-62
    [28]王春,王宏东.桩—土作用模型在桥梁设计中的研究与应用[J].工程与建设,2007,21(5):770-772
    [29]铁道部第三勘察设计院.TB1002.5-2005.铁路桥涵地基和基础设计规范[S].北京:中国铁道出版社,2005.06.14
    [30]王凤棉,朱伟.桥梁支座的性能及其应用[J].一重技术,2002,94(4):85-86
    [31]中铁工程设计咨询集团有限公司.TB10002.3-2005.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].北京:中国铁道出版社,2005.06.14
    [32]中华人民共和国建设部.GB50010-2002.混凝土结构设计规范[S].北京:中华人民共和国建设部、国家质量监督检验检疫总局联合发布,2002.04.01
    [33]孟杰.系杆拱桥结构体系研究[D]:[硕士学位论文].长沙:湖南大学,2002
    [34]杨俊.基于影响矩阵的大跨桥梁合理成桥状态与施工控制研究[D]:[博士学位论文].武汉:武汉理工大学,2008
    [35]冯楚桥.高速铁路无砟轨道112m尼尔森体系提篮系杆拱桥设计[J].铁道工程学报,2007,(增刊):232-235,239
    [36]李新平,钟健聪.空间系杆拱桥吊杆张拉控制分析[J].华南理工大学学报(自然科学版),2004,32(7):89-92.
    [37]肖汝城,郭文复.结果关心截面内力、位移混合调整计算的影响矩阵法[J].计算结构力学及其应用,1992,9(1):91-99
    [38]孙九春.影响矩阵法在吊杆张拉计算中的应用[J].中南市政工程,2009,142(5):19-21
    [39]Ho-Kyung Kim, Myeong-Jae Lee, Sung-Pil Chang. Determination of hanger installation procedure for a self-anchored suspension bridge [J].Enineering steuctures,2006,28:959-976
    [40]虞建成,邵容光.系杆拱桥吊杆初始张拉力及施工控制[J].东南大学学报,1998,28(3):112-116
    [41]王福敏,张锋,杜逢彬.基于倒拆法对重庆朝天门长江大桥进行力学分析[J].公路交通技术,2007,(6):43-47
    [42]黄桥,吴洪林,李志波.确定斜拉桥施工索力的正装计算法[J].哈尔滨工业大学学报,2004,36(12):1702-1704
    [43]叶梅新,许润锋,谢晓慧.确定系杆拱桥吊杆索力张拉值的方法[J].交通科学与工程,2010,26(1):44-48
    [44]秦顺全.斜拉桥安装的无应力状态法[C].见:中国土木工程学会,编.第十六届全国桥梁学术会议论文集(上册).北京:人民交通出版社.2004:56-60
    [45]白泰礼,郑铁六,谢军等.振弦式传感器的精确数学模型及其应用[J].岩石力学与工程学报,2005,24(增2):5965-5969
    [46]Byeong Hwa Kim, Taehyo Park. Estimation of cable tension force using the frequency-based system identification method[J].Journal of Sound and Vibration,2007,304:660-676
    [47]方志,汪建群,颜江平.基于频率法的拉索及吊杆张力测试[J].振动与冲击,2007,26(9):78-82
    [48]陈鲁,宋杰,张其林.EM测量索张力的理论与工程实践研究[J].施工技术,2008,37(5):144-148,153
    [49]You-He Zhou, Kenzo Miya. Mechanical behaviours of magnetoelastic interaction for superconducting helical magnets [J].Fusion Engineering and Design,1998,38:283-293
    [50][美]Roy R.Craig. Jr,著.常岭,李振邦,译.结构动力学[M].北京:人民交通出版社,1996
    [51]王元明.数学物理方程与特殊函数(第三版)[M].北京:高等教育出版社,2005
    [52]张相庭,王志培,黄本才等.结构振动力学[M].上海:同济大学出版社,2005
    [53]朱卫国,申永刚,项贻强等.梁拱组合体系桥柔性吊杆索力测试[J].中南公路工程,2004,29(1):21-23,36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700