用户名: 密码: 验证码:
基于互联网技术的电力系统广域保护通信系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电力工业正从全国联网、西电东送、超高压、大机组的发展阶段向特高压、智能电网、绿色发电的发展新阶段转变。我国电网在供电可靠性提高的同时,其运行控制难度也在增大。互联电网中一旦出现能够引发电网大面积停电的严重故障,将会对国民经济造成巨大的损失,给社会带来严重的负面影响。高速、准确动作的继电保护和可靠、及时的紧急控制可减小互联电网大停电事故的影响范围,降低由于停电造成的社会经济损失。但国内外多次大面积停电事故的经验教训表明传统继电保护存在的问题有可能威胁到互联电网的安全稳定运行。
     广域保护系统的提出为保证互联电网的安全稳定运行提供了重要控制手段。实时可靠的通信是实现广域保护系统的关键环节之一。由于广域保护系统具有系统结构多样、覆盖地域广、布点多、通信过程复杂等特点,电力系统中传统点对点或专线通信方式已不能适应广域保护系统的通信需要。在智能电网快速发展的趋势下,为满足电力系统各种控制信息及其他运行信息运行于同一电力信息专用网络平台的需要,基于互联网标准的电力系统企业内联网将会得到广泛的应用。基于互联网协议的通信技术将为实现广域保护系统通信提供新的技术手段。研究网络通信模式下满足电网保护和控制系统信息传输实时性和可靠性需求的通信技术,对广域保护系统的实现具有重要的理论和现实意义。论文以互联网技术及其在电力系统广域保护系统信息传输中的应用为主要研究内容,重点研究了互联网服务质量保证技术和网络传输层流控传输协议在保证广域保护系统信息传输实时性和可靠性方面存在的问题,以及在EPOCHS平台上构建基于电网标准测试系统的广域保护系统仿真模型的方法。论文的研究成果对互联网通信技术应用于电力系统运行与控制信息的传输以及广域保护系统投入实际应用具有重要意义。
     论文首先介绍了广域保护定义和系统结构,分析了广域保护通信需求,并分别对互联网技术在电力系统中的应用研究现状和广域保护通信研究现状进行了介绍,说明了本文所做的主要工作。
     为保证电力系统信息综合传输中各种信息业务的服务质量,提出一种改进的最坏情况下公平的加权公平队列(mproved worst-case fair weighted fair queueing plus,IWF2Q+)调度算法。该算法通过在WF2Q+算法的虚拟开始时间和虚拟完成时间计算公式中引入“虚拟延迟时间”,解决了电力系统信息综合传输中由WF2Q+算法导致的推迟传输高优先级信息业务分组的问题。以NS2为工具,建立了基于区分服务体系结构模型的IEEE14母线系统信息综合传输网络仿真模型,运用网络仿真方法定量评估了以IWF2Q+算法实现基于区分服务体系结构模型的电力系统信息综合传输时各类信息业务的实时性和公平性。仿真结果表明IWF2Q+算法降低高优先级信息业务分组延时,同时兼顾综合传输的各类信息业务间的公平性,证明了1WF2Q+算法的有效性和可行性。
     电力系统广域控制系统需要可靠实时的信息传输。基于互联网技术的电力系统企业内联网将成为广域保护和控制系统的通信平台。文中对基于区分服务体系结构模型的服务质量保证措施在电力系统企业内联网中的应用进行了研究。利用EPOCHS平台构建了基于IEEE50机改进测试系统的广域频率稳定预测控制及通信系统仿真模型。利用该模型仿真研究了基于互联网技术实现的广域控制系统信息传输的服务质量保证问题。构建了采用集中式结构的主从式广域频率稳定预测控制Agent系统,设计了层次化星环拓扑结构的通信网络仿真模型,在EPOCHS中实现了PSS/E和NS2的联合仿真。仿真结果证实了服务质量保证措施的有效性。
     分析比较了IntelliGrid体系结构备选的通信故障恢复技术,指出SCTP是一种能够在传输层提供通信恢复服务的协议,在电力通信系统中有着良好的应用前景。在重点分析SCTP特点的基础上分析比较了SCTP与TCP协议的特性。采用网络仿真的方法研究了网络链路发生故障断开情况下,基于SCTP多宿性路径切换特性的网络级容错机制。针对SCTP原多宿性路径切换方法的不足,提出一和(?)SCTP改进多宿性路径切换方法。仿真验证了该方法在单路由器网络模型和多路由器网络模型中应用的有效性。
     论文率先将SCTP应用于广域后备保护通信,以解决电力通信网络与输电线路同时故障时,通过保证信息传输的实时性和可靠性来保证广域后备保护迅速可靠动作的问题。给出一种提高SCTP通信实时性的措施,并将该措施及SCTP改进多宿性路径切换方法应用于广域后备保护信息传输。在EPOCHS上构建了一种用于变电站集中式广域后备保护系统通信方式研究的仿真模型,完成通信网络及SCTP、广域后备保护Agent系统和电网建模工作。仿真验证了所提出的通信方式在广域后备保护信息传输中应用的有效性。
The power industry of China is in the transition from the stage of "interconnection of nationwide power grid, west-east electricity transmission, extra-high voltage power transmission and large power generation units" to the stage of "ultra-high voltage power transmission, smart grid and green energy generation". The reliability of power supply is increased as well as the operation and control for power grids are going harder and harder. Once the grid has a serious failure which can lead to wide spread break out. it will cause huge losses on the national economic and severe negative impacts on the community. The sphere of influence of interconnected power grid blackouts and socio-economic losses caused by blackouts can be controlled by the reliable and rapid relay protection and the emergency control scheme. But the experience of several large area blackouts indicated that problems of traditional protection may cause threats to the safe and stable operation for the interconnected power grid.
     The wide area protection system (WAPS) provides the important means of control for ensuring the safe and stable operation for the interconnected power grid. The real-time and reliable communication is the key for WAPS. WAPS has the characteristics include diversified system structure, covering a wide geographical field, lots of monitoring points and complex communication process et al. The traditional point-to-point or the dedicated channel communication in power systems can not meet WAPS's demand for communication. To meet the demand for transmitting various information for power system operation and control on the power information network platform, a Utility Intranet based on Internet technologies will be used widely under the trend of rapid developing of smart grid. Communication technologies based on Internet protocols will be new technology means for the implementation of the WAPS communication. In the thesis Internet protocols based communication technologies will be researched for WAPS's demand for the real-time capability and reliability of the information transmission in power grids. It has theoretical and practical significance for the implementation of WAPS. The main contents of the thesis are about the Internet communication technology and its application in the information transmission for WAPS in power systems. It focus on the Internet quality of service guarantee technology and the network transport layer stream control transport protocol to ensure real-time capability and reliability of information transmission for WAPS and the method for designing the WAPS simulation model based on the standard benchmark system on EPOCHS. It is of great significance for the Internet communication technology can be applied to the information transmission for the operation and control for power systems as well as WAPS is applied into the actual system.
     The thesis introduces the definition and the system architecture for wide area protection (WAP) firstly, analyzes WAPS's demand for communication, takes an overview about applications of Internet technologies in power systems and research status for WAPS communication, and illustrates the main works in the thesis.
     To guarantee the quality of service of various wide area communication services for integrated information transmission in power systems, an improved worst-case fair weighted fair queueing plus (IWF Q+) scheduling algorithm was proposed. IWF-Q+scheduling algorithm was obtained by introducing virtual delay time in the formulas of virtual start time and virtual finish time of WF2Q+scheduling algorithm. The problem that the packets of high-priority communication services were delayed by WF2Q+scheduling algorithm was solved by IWF2Q+scheduling algorithm. The integrated information transmission network model on IEEE14bus test system was constructed in NS2based on the Differentiated Services (Diffserv) architectural model which was implemented by IWF2Q+scheduling algorithm. Real-time performance and fairness of the communication services in integrated information transmission had been verified by a network simulation. The simulation result shows that IWF2Q+scheduling algorithm is validity and feasibility as the packet delay of high-priority communication services is reduced and the fairness of the traffics is considered.
     Electric power wide area control systems (WACS) need reliable real-time information transmission. An Internet Protocol (IP) based private Utility Intranet can form a medium for protection and control system communication. This article discuss differentiated services (DiffServ) for quality of service guarantees in Utility Intranet communication. As a case study, the simulation models of the wide area frequency stability predictive control system (WAFSPCS) and the communication system are created on the electric power and communication synchronizing simulator (EPOCHS). WAFSPCS is implemented on a modified IEEE50-generator test system. It is used to research the quality of service guarantee problem for the WACS information transmission implemented by the Internet protocol. The agent control system for WAFSPC is constructed. It has the centralized master-slave structure. A hierarchical star-ring communication network simulation model is designed. PSS/E is combined the Network Simulator2(NS2) in the EPOCHS simulation environment. The simulation results show the effectiveness of the advocated QoS guarantee scheme.
     The optional communication recovery technologies for the IntelliGrid architecture are analyzed and compared. It is known that SCTP is a transport layer protocol which can provide the communications recovery service. SCTP has a good applying prospect in power communication system. The characteristics of SCTP and TCP are compared and analyzed. In the case of network link failure, network-level fault tolerance mechanism based on SCTP multi-homing path switch is simulated. In order to find a way to overcome the drawback of the original SCTP path switching method based on multi-homing, an improved method is proposed. The simulation verifies the validity of the method in the single-router network model and the multi-router network model.
     When a communication link and a transmission line fail simultaneously, with consideration of the problem that how to ensure that the faulty transmission line is located and removed quickly and accurately by the wide area backup protection (WABP) through improving real-time capability and reliability for information transmission, the SCTP based communication mode is introduced in the thesis. The measure to improve real-time capability is taken. It is applied to the information transmission for WABP with the improved multi-homing path switching method of SCTP. The simulation model is constructed for the WABP communication mode research. The communication network and protocols, WABP agent system and the power grid are modeled on EPOCHS. The effectiveness of the proposed communication mode, which is used in WABP information transmission, is verified by simulating experiments.
引文
[1]中电联统计信息、部.全国电力工业统计快报[R].北京:中国电力企业联合会,2010.
    [2]中国电力企业联合会.辉煌五年——“十一五”电力工业发展成就斐然[EB/OL]. [2012-03-09]. http://www.cec.org.cn/zhuanti/dianlixingyeshierwuguihua/
    [3]国家电力监管委员会办公厅.国家电力监管委员会——专项监管报告[R].北京:国家电力监管委员会,2006.
    [4]国家电力监管委员会办公厅.2010年全国电力安全监管报告[R].北京:国家电力监管委员会,2011.
    [5]国家电力监管委员会办公厅.2009年电力安全监管报告[R].北京:国家电力监管委员会,2009.
    [6]force US Canada power system outage task. US Canada power system outage task force final report on the August 14,2003 blackout in the United States and Canada: causes and recommendations[R]. US secretary of energy and ministry of natural resources,2004.
    [7]蔡洋.电网调度管理须与电网发展俱进——北美东北电网事故浅析[J].电网技术,2004,28(08):6-9.
    [8]蔡洋.电网事故的回顾与分析及对电网调度管理的建议[J].电网技术,2007,31(11):6-10.
    [9]李春艳,孙元章,陈向宜,等.西欧“11.4”大停电事故的初步分析及防止我国大面积停电事故的措施[J].电网技术,2006,30(24):16-21.
    [10]唐斯庆,张弥,李建设,等.海南电网“9·26"大面积停电事故的分析与总结[.J].电力系统自动化,2006,30(01):1-7+16.
    [11](UCTE) Union for the Coordination of Electricity Transmission. Further facts about the system disturbance on 4.11.06[EB/OL]. [2006-11-06]. http://www.ucte.org/.
    [12](UCTE) Union for the Coordination of Electricity Transmission. First facts about the system disturbance on 4 November[EB/OL]. [2006-11-05]. http://www.ucte.org/.
    [13]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(07):5-10.
    [14]CIGRE. An international survey of-the present status and the-perspective of long-term dynamics in power systems[R]. CIGRE Task Force 38-02-08,1995.
    [15]Group Disturbance Analysis Working. Review of selected electric system disturbances in North America[R]. NERC, Princeton, New Jersey 08540-5731, 1979-1995.
    [16]陈德树.大电网安全保护技术初探[J].电网技术,2004,28(09):14-17+27.
    [17]徐慧明,毕天姝,黄少锋,等.基于潮流转移因子的广域后备保护方案[J].电网技术,2006,30(15):65-71.
    [18]王阳光.应对灾变的广域保护信息处理及通信技术研究[D].博士.2010:
    [19]张保会.电网继电保护与实时安全性控制面临的问题与需要开展的研究[J].电力自动化设备,2004,24(07):1-6.
    [20]蔡运清,汪磊,KipMorison,等.广域保护(稳控)技术的现状及展望[J].电网技术,2004,28(08):20-25.
    [21]徐天奇,尹项根,游大海,等.广域保护系统功能与可行结构分析[J].电力系统保护与控制,2009,37(03):93-97.
    [22]何志勤,张哲,尹项根,等.电力系统广域继电保护研究综述[J].电力自动化设备,2010,30(05):125-130.
    [23]李岩,陈德树,尹项根,等.一种用于线路光纤纵差的通信方案及设备研究[J].电力系统及其自动化学报,2004,16(02):1-4+76.
    [24]邵俊松,陈汹,曹一中,等.UFV-200系列安全稳定控制装置[J].电力系统自动化,2006,30(24):84-87.
    [25]刘瑞怡.广东电网安全稳定控制系统的通信通道[J].电力系统通信,2004,(09):48-50+64.
    [26]张启平,曹路,励刚,等.广域测量系统及其在华东电网的应用[J].华东电力,2005,33(01):5-10.
    [27]李丹,韩福坤,郭子明,等.华北电网广域实时动态监测系统[J].电网技术,2004,28(23):52-56.
    [28]严登俊,袁洪,高维忠,等.利用以太网和ATM技术实现电网运行状态实时监测[J].电力系统自动化,2003,27(10):67-70.
    [29]38.02.19 CIGRE SCTF. Systems Protection Schemes in Power Networks[R].2001.
    [30]吴云.基于光纤+SDH+IP技术的继电保护及故障信息传输系统[J].电力系统自动化,2004,28(01):88-91.
    [31]Buchholz B. M., Styczynski Z. A.. New tasks create new solutions for communication in distribution systems[C]. IEEE Power Engineering Society General Meeting, Montreal, Que,2006:155-160.
    [32]段献忠,何飞跃,辛建波,等.基于信息网络综合传输的电力系统运行与控制[J].电网技术,2004,28(09):38-41.
    [33]Khatib A. R., Zuzhu Dong, Bin Qiu, et al. Thoughts on future Internet based power system information network architecture[C]. IEEE Power Engineering Society Summer Meeting, Seattle, WA,2000:155-160.
    [34]Serizawa Y., Ohba E., Otani T., et al. Conceptual design for distributed real-time computer network architecture[C]. IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan,2002:26-31.
    [35]Bin Qiu, Yilu Liu, Phadke A. G.. Communication infrastructure design for strategic power infrastructure defense (SPID) system[C]. IEEE Power Engineering Society Winter Meeting, New York, USA,2002:672-677.
    [36]Renesse Robbert Van, Birman Kenneth P., Vogels Werner. Astrolabe:A robust and scalable technology for distributed system monitoring, management, and data mining[J]. ACM Trans. Comput. Syst.,2003,21(2):164-206.
    [37]Birman K. P., Chen J., Hopkinson E. M., et al. Overcoming Communications Challenges in Software for Monitoring and Controlling Power Systems[J]. Proceedings of the IEEE,2005,93(5):1028-1041.
    [38]EPRI. Leading the drive to transform the power delivery system[EB/OL]. [2006-5-18]. http://mydocs.epri.com/docs/public/0000000000010 12029.pdf.
    [39]EPRI. IntelliGridSM architecture:architecture for the intelligent electricity, energy and utility services grid of the Future[EB/OL]. [2008-4-29]. http://www.epri-intelligrid.com/intelligrid/techdev/intelligrid/intelligrid.html.
    [40]柳明,何光宇,沈沉,等IECSA项目介绍[J].电力系统自动化,2006,30(13):99-104.
    [41]CEIDS. Development of an integrated energy and communications systems architecture (IECSA)[EB/OL]. [2003-3-21]. http://intelligrid.ipower.com/IntelliGrid_Architect ure/Marketing_IntelliGrid/resources.htm.
    [42]Hughes J.. IntelliGrid Architecture Concepts and IEC61850[C]. In 2005/2006 IEEE/PES Transmission and Distribution Conference and Exhibition, Dallas, TX, USA,2006:401-404.
    [43]Hauser C. H., Bakken D. E., Bose A.. A failure to communicate:next generation communication requirements, technologies, and architecture for the electric power grid[J]. Power and Energy Magazine, IEEE,2005,3(2):47-55.
    [44]Tomsovic K., Bakken D. E., Venkatasubramanian V., et al. Designing the Next Generation of Real-Time Control, Communication, and Computations for Large Power Systems[J]. Proceedings of the IEEE,2005,93(5):965-979.
    [45]Hauser CH, Bakken DE, Dionysiou I, et al. Security, trust, and QoS in next-generation control and communication for large power systems [J]. International Journal of Critical Infrastructures,2008,4(1):3-16.
    [46]Gjermundrod H., Bakken D. E., Hauser C. H., et al. GridStat:A Flexible QoS-Managed Data Dissemination Framework for the Power Grid[J]. Power Delivery, IEEE Transactions on,2009,24(1):136-143.
    [47]王焱,郑俊辉,易发胜,等.电力信息网的服务元体系结构[J].电力系统自动化,2007,31(08):85-89.
    [48]辛耀中,卢长燕.电力系统数据网络技术体制分析[J].电力系统自动化,2000,24(21): 1-6.
    [49]辛建波,段献忠.电力系统信息需求分类及其对通信网络的要求研究[.J].继电器,2004,32(21):21-25.
    [50]Ericsson G. N.. Classification of power systems communications needs and requirements:experiences from case studies at Swedish national grid[J]. Power Delivery. IEEE Transactions on,2002,17(2):345-347.
    [51]Ericsson G. N.. On requirements specifications for a power system communications system[J]. Power Deliver)'. IEEE Transactions on,2005,20(2):1357-1362.
    [52]Hu Yi, Madani Vahid, M Rui, et al. Requirements of Large-Scale Wide Area Monitoring, Protection and Control Systems[C].10th Annual Fault and Disturbance Analysis Conference, Georgia Tech,2007:1-9.
    [53]黄晓莉.面向21世纪的国家电力数据网络(上)[.J].电力系统自动化,1999,23(22):45-49.
    [54]Serizawa Y., Myoujin M., Kitamura K., et al. Wide-area current differential backup protection employing broadband communications and time transfer systems[J]. Power Delivery, IEEE Transactions on,1998,13(4):1046-1052.
    [55]Serizawa Y, Imamura H., Sugaya N., et al. Experimental examination of wide-area current differential backup protection employing broadband communications and time transfer systems[C]. IEEE Power Engineering Society Summer Meeting, Edmonton, Alta,1999:1070-1075.
    [56]Serizawa Y., Imamura H., Kiuchi M.. Performance evaluation of IP-based relay-communications for wide-area protection employing external time synchronization[J]. IEEE Power Engineering Society Summer Meeting, Vancouver, BC,2001:909-914.
    [57]崔沅,程林,孙元章,等.应用ATM网络实现电力系统远程实时监控[J].电力系统自动化,2002,26(14):7-11+19.
    [58]姜廷刚,高厚磊,刘炳旭.适合广域测量系统的通信网探讨[J].电力系统及其自动化学报,2004,(06):57-60.
    [59]王冬青,何飞跃.基于多协议标记交换网络的电力系统信息综合传输方法[J].电网技术,2008,32(16):9-15.
    [60]周鸿喜,高强,侯思祖,等.利用MPLS构建电力宽带通信网的探讨[J].中国电力,2001,(S1):35-38+82.
    [61]严登俊,鞠平,袁洪.网络通信模式下电网相量的广域测量与实时传输系统[J].电网技术,2004,28(04):15-18+50.
    [62]李刚,王少荣,程时杰.广域电网同步状态监测系统中的实时通信[J].电网技术,2004,28(18):39-43.
    [63]彭静,卢继平,汪洋,等Warns中的通信网络平台构建[J].电力系统保护与控制,2009,37(12):62-67.
    [64]朱江峰,黄佩伟.基于IP技术的配电自动化通信系统[J].电力系统自动化,2000,24(15): 49-51.
    [65]刘清瑞,成海彦.采用因特网进行电力实时数据通信的试验研究[J].电力系统自动化,2001,25(20):67-68.
    [66]袁宇波,丁俊健,陆于平,等.基于Internet/Intranet的电网继电保护及故障信息管理系统[J].电力系统自动化,2001,25(17):39-42.
    [67]Coury D. V., Thorp J. S., Hopkinson K. M., et al. Agent technology applied to adaptive relay setting for multi-terminal lines[C]. IEEE Power Engineering Society Summer Meeting, Seattle, WA,2000:1196-1201.
    [68]Coury D. V., Thorp J. S., Hopkinson K. M., et al. An agent-based current differential relay for use with a utility intranet[J]. Power Delivery. IEEE Transactions on,2002, 17(1):47-53.
    [69]罗毅,涂光瑜,张锦辉,等.变电站信息数字化综合传输方案[J].电力系统自动化,2001,25(08):42-44+55.
    [70]陈政,涂光瑜,罗毅,等.变电站信息综合传输中的流量控制实现[J].电力系统自动化,2003,27(24):40-44.
    [71]辛建波,段献忠.基于DiffServ网络实现变电站信息综合传输[J].电力系统自动化,2005,29(05):69-73.
    [72]蒋杰,江道灼,倪承波.电力通信ATM网络中的QoS技术[J].继电器,2005,33(24):63-68.
    [73]Doi H., Serizawa Y., Tode H., et al. Simulation study of QoS guaranteed ATM transmission for future power system communication[J]. Power Delivery, IEEE Transactions on,1999,14(2):342-348.
    [74]Doi H., Serizawa Y.. The applicability of hybrid priority control for ATM network under the required QoS conditions[C]. IEEE Power Engineering Society Summer Meeting, Edmonton, Alta,1999:766-771.
    [75]施永益,黄忠东.基于排队论和QoS的电力系统主干网带宽估算[J].电力系统自动化,2002,26(18):51-53.
    [76]邹盟军,曹健雄.电力信息网络的服务质量策略[J].电力系统自动化,2003,27(13):63-67.
    [77]王焱,郑俊辉,曾家智.一种电力信息网的新型QoS机制[J].电力系统自动化,2007,31(19):73-75+107.
    [78]苏盛,曾祥君,曾耿晖,等.基于高速通信的多Agent保护系统通信仿真分析[J].长沙理工大学学报,2006,03(04):72-76.
    [79]Kyung Nam Kim, Keon Young Yi. Simulation of Network Traffic for a Power Infrastructure Defense System Using a Network Simulator[C]. IEEE International Conference on Industrial Technology, Mumbai,2006:745-749.
    [80]吴崇昱,孙雷波,张军.一种基于软实时通信的广域保护原理[J].电力自动化设备,2006,26(12):21-24.
    [81]毕研秋,赵建国.基于OPNET的电力系统广域信息网络研究[J].电力自动化设备,2008,28(06):103-107.
    [82]Dahai Zhang, Yanqiu Bi. Communication network of Wide Area Protection System using OPNET simulator[C]. IEEE International Symposium on Industrial Electronics, Seoul,2009:1298-1303.
    [83]Tianqi Xu, Xianggen Yin, Dahai You, et al. A novel communication network for three-level wide area protection system[C]. IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA,2008:1-8.
    [84]徐天奇,尹项根,游大海,等.3层式广域保护系统通信网络[J].电力系统自动化,2008,32(16):28-33.
    [85]Chenine M., Karam E.. Nordstrom L.. Modeling and simulation of wide area monitoring and control systems in IP-based networks[C]. IEEE Power & Energy Society General Meeting, Calgary, AB,2009:1-8.
    [86]Hopkinson K. M., Birman K. P., Giovanini R., et al. EPOCHS:integrated commercial off-the-shelf software for agent-based electric power and communication simulation[C]. Proceedings of the 2003 Winter Simulation Conference, New-Orleans, Louisiana,2003:1158-1166.
    [87]Hopkinson K., Xiaoru Wang, Giovanini R., et al. EPOCHS:a platform for agent-based electric power and communication simulation built from commercial off-the-shelf components[J]. Power Systems, IEEE Transactions on,2006,21(2): 548-558.
    [88]Giovanini R, Hopkinson K, Coury D V, et al. A primary and backup cooperative protection system based on wide area agents[J]. IEEE Transactions on Power Delivery,2006,21(3):1222-1230.
    [89]Hopkinson K., Roberts G., Xiaoru Wang, et al. Quality-of-Service Considerations in Utility Communication Networks [J]. Power Delivery, IEEE Transactions on, 2009,24(3):1465-1474.
    [90]熊慕文,涂光瑜,罗毅,等.基于权重与预丢弃策略的变电站信息综合传输[J].电力系统自动化,2006,30(08):52-56.
    [91]张之哲,李兴源,程时杰.智能电网统—信息系统的框架、功能和实现[J].中国电机工程学报,2010,30(34):1-7.
    [92]程时杰,李兴源,张之哲.智能电网统—信息系统的电网信息全域共享和综合应用[J].中国电机工程学报,2011,31(01):8-14.
    [93]林闯,单志广,任丰原.计算机网络的服务质量(QoS)[M].清华大学出版社,2004:174-177.
    [94]Bennett J C R, Zhang Hui. WF2Q:worst-case fair weighted fair queueing[C]. Proceeding of IEEE INFOCOM'96, San Francisco,1996:120-128.
    [95]Bennett Jon C. R., Zhang Hui. Hierarchical packet fair queueing algorithms[C]. Conference proceedings on Applications, technologies, architectures, and protocols for computer communications, Palo Alto, California. United States, 1996:143-156.
    [96]Stiliadis D, Varma A. Rate-proportional servers:a design methodology for fair queueing algorithms [J]. IEEE/ACM Transactions on Networking,1998,6(2): 164-174.
    [97]Stoica I, Hussein A W. Earliest eligible virtual deadline first:A flexible and accurate mechanism for proportional share resource allocation[R]. Virginia:Old Dominion University,1995.
    [98]Blake S., Black D., Carlson M., et al. An architecture for differentiated services. RFC 2475.1998. http://www.ietf.org/rfc/rfc2475.txt.
    [99]Shenker S., Wroclawski J.. Network element service specification template. RFC 2216.1997. http://www.ietf.org/rfc/rfc2216.txt.
    [100]Society IEEE Power Engineering. IEEE Standard Communication Delivery Time Performance Requirements for Electric Power Substation Automation. IEEE.2005.
    [101]王晓茹,阮铮,刘克天.电力系统扰动后稳态频率预测直接法改进[J].电力系统及其自动化学报,2010,22(04):1-5.
    [102]元翔,范方黎.电力宽带数据通信网的设计方案[J].电力系统自动化,2000,24(18):56-60.
    [103]Begovic M., Novosel D., Karlsson D., et al. Wide-Area Protection and Emergency Control[J]. Proceedings of the IEEE,2005,93(5):876-891.
    [104]Adamiak M. G., Apostolov A. P., Begovic M. M., et al. Wide Area Protection— Technology and Infrastructures[J]. Power Delivery, IEEE Transactions on,2006, 21(2):601-609.
    [105]Andreozzi Sergio. DiffServ simulations using the network simulator:requirements. issues and solutions [D].2001:
    [106]ns-2 documentation and software, version 2.29. Univ. California Berkeley, LBL, USC/ISI, and Xerox Parc[EB/OL]. [2011-10-28]. http://www.isi.edu/nsnam/ns
    [107]肖世杰.构建中国智能电网技术思考[J].电力系统自动化,2009,33(09):1-4.
    [108]CEIDS. Intelligrid Architecture:Architecture for the Intelligent Electricity Grid of the Future[EB/OL]. [2012-03-12]. http://intelligrid.epri.com/.
    [109]EPRI. IntelliGridSM Architecture[EB/OL]. [2012-03-12]. http://intelligrid.epri.com/.
    [110]CEIDS. The integrated energy and communication systems architecture:Volume IV IECSA technical analysis [EB/OL]. [2012-03-12]. http://intelligrid.epri.com/docs/ IECSA_VolumeIV.pdf.
    [111]CEIDS. The integrated energy and communication systems architecture:Volume IV IECSA technical analysis, Appendix C:Resilient Communication Services[EB/OL]. [2003-3-21]. http://www.intelligrid.info/IntelliGrid_Architecture /IECSA_Volumes/IECSA_VolumeIV_AppendixC.pdf.
    [112]Stewart R.. Stream Control Transmission Protocol. RFC 4960.2007. http://www.ietf.org/rfc/rfc4960.txt.
    [113]CEIDS. The integrated energy and communication systems architecture:Volume IV IECSA technical analysis, Appendix D:technologies, services, and best Practices [EB/OL]. [2003-3-21]. http://www.intelligrid.info/IntelliGrid_Architectur e/IECSA_Volumes/IECSA_VolumeⅣ_AppendixD.pdf.
    [114]Caro Jr. A. L., Iyengar J. R., Amer P. D., et al. SCTP:a proposed standard for robust Internet data transport[J]. Computer,2003,36(11):56-63.
    [115]徐培文,谢水珍,杨从保.软交换与SIP实用技术[M].北京:机械工业出版社2007:36.
    [116]Coene L.. Stream Control Transmission Protocol Applicability Statement. RFC 3257.2002. http://www.ietf.org/rfc/rfc3257.txt.
    [117]Ong L., Yoakum J.. An Introduction to the Stream Control Transmission Protocol (SCTP). RFC 3286.2002. http://www.ietf.org/rfc/rfc3286.txt.
    [118]Stewart R., Arias-Rodriguez I., Poon K., et al. Stream Control Transmission Protocol (SCTP) Specification Errata and Issues. RFC 4460[EB/OL]. [2006-4-30]. http://www.ietf.org/rfc/rfc4460.txt.
    [119]张保会,周良才,汪成根,等.具有容错性能的广域后备保护算法[J].电力系统自动化,2010,34(05):66-71.
    [120]张淑娥,孔英会,高强.电力系统通信技术[M].北京:中国电力出版社,2005:69-116.
    [121]李中年.电力通信[M].北京:国防工业出版社,2009:474-495.
    [122]云南省电力设计院.电力系统光纤通信线路设计[M].北京:中国电力出版社,2002:177-181.
    [123]G ITU-T Recommendation.841-1998 Types and characteristics of SDH network protection architectures.1998.
    [124]王冬青.基于数据网的新型广域后备保护系统[D].博士.2006:
    [125]熊小伏,吴玲燕,陈星田.满足广域保护通信可靠性和延时要求的路由选择方法[J].电力系统自动化,2011,35(03):44-48.
    [126]宋功益.电网故障诊断与广域后备保护算法研究[D].硕士.2010:
    [127]窦晓波,胡敏强,吴在军,等.数字化变电站通信网络的组建与冗余方案[J].电力自动化设备,2008,28(01):38-43.
    [128]童晓阳,王晓茹,Hopkinson Kenneth,等.广域后备保护多代理系统的仿真建模与实现[J].中国电机工程学报,2008,28(19):111-117.
    [129]Gaeil Ann, Woojik Chun. Design and implementation of MPLS network simulator supporting LDP and CR-LDP[C]. IEEE International Conference on Networks, Singapore,2000:441-446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700