用户名: 密码: 验证码:
多维最大熵模型及其在海岸和海洋工程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海岸及海洋工程所处的环境条件非常恶劣,它们经常遭受台风、寒潮等严重天气过程的影响。海堤是防御海洋灾害的主要建筑物,我国沿海地区经济发达,一旦遭遇台风而导致海堤损毁,将产生难以估量的经济损失和人员伤亡;海洋平台造价昂贵,灾害性的天气过程将导致平台无法正常工作,严重时甚至会使平台倾覆、石油泄漏,污染海洋环境、造成生态破坏。影响海岸及海洋工程的环境要素主要有风、浪、潮、流、海冰、海雾等,如何有效地构造其设计标准,对于工程结构的安全性和可靠性非常重要。传统的设计标准采用单因素方法,将每种海洋环境要素视为独立变量,进行单独设计。这种方法过于保守,无法反映实际的海洋环境条件。因而有必要进行多维环境要素联合设计标准的研究,这就需要有足够准确的多元概率分布模型作为理论支撑。目前建立的模型类型单一,有时无法反映实际海况,拟合时误差较大。
     本文在最大熵原理的基础上,推导了二维及多维最大熵模型,将其应用于海堤和海洋平台等的多维环境荷载联合设计中,并将其引入多维复合极值理论、结构可靠度分析以及风险分析中。本文的主要工作如下。
     一维最大熵分布函数可以涵盖海洋环境设计的多种分布,因而可以避免线型选择的问题。本文总结并提出了一维最大熵分布函数的7种参数估计方法,即三参数矩法、四参数矩法、经验适线法、最大似然法、概率权重法、L-矩法和粒子群算法;对这些参数估计方法进行了实例验证和Monte-Carlo模拟,结果表明最大似然法和经验适线法的拟合效果较优,因而推荐使用。
     由于海洋环境设计参数的估计误差较大,因而有必要引入置信区间的概念。本文提出了5种设计重现值的区间估计方法,即Woodruff法、最大似然法、样本分位数渐近法、顺序统计量法和符号检验法。根据数值模拟和实例验证得出,对一维最大熵分布函数,重现值区间估计的参数方法优于非参数方法;而在参数方法中,推荐使用最大似然法区间估计。
     鉴于一维最大熵分布函数在应用中的优越性,类似对二维情形,给出适用于海洋环境要素的约束组合,建立了二维最大熵分布函数,并推导出其参数的矩估计方法。基于二元Copula函数,推导出边缘分布均服从最大熵分布函数的各种二维最大熵模型,并将这一类Copula模型统一在最大熵原理之下,实现了其与二维最大熵分布函数的统一。利用二维最大熵模型,进行了渤海年极值波高和伴随风速的联合概率设计,以及营口、葫芦岛海冰的同现概率分析。计算结果表明,二维最大熵分布模型对数据的拟合优度良好。
     针对当前多维概率模型大多限于低维(二维或三维),很难向更高维推广的缺点,根据多维联合信息熵和最大熵原理,建立了一般的多维最大熵模型、矩约束下的多维最大熵模型,以及适合海洋环境约束的三维最大熵分布函数;鉴于建立的三维最大熵分布函数难于计算,利用多元Copula函数构造了边缘均服从一维最大熵分布函数的多维最大熵模型,并将其统一于最大熵原理之下。利用黄海某岛25年的年极值波高、周期、增水数据,根据三维最大熵模型,提出了一种海堤顶高程和越浪率的联合设计方法。
     针对灾害性天气过程中多维环境要素的两组样本(过程中同为极值的要素及荷载最大时伴随的环境要素),提出了两种新型的多维复合极值模型,进而获得多维复合最大熵模型。利用这些模型对青岛风暴潮的强度进行了分级,对台风过程下导管架平台的环境条件设计进行了计算。结果表明,多维复合最大熵模型描述台风/寒潮等灾害性天气过程的统计分布是合适的;并且,其中最大荷载对应环境要素组合下的多维复合极值分布对应的设计值更为安全。
     将多维最大熵模型引入静态结构可靠度计算中,结合直接积分法,使得结构可靠度计算的全概率法得以实现。鉴于静态可靠度计算无法考虑结构与荷载随时间的变化,无法真正保证结构的耐久性和安全性,因而对结构的时变可靠度进行了相应讨论,给出了相应服役期内时变可靠度的计算公式。最终,结合渤海某平台,就较为简单的情形进行了工程验证。
     利用标值点过程理论,将灾害性天气过程视为随机点事件,将过程中各种环境荷载作为该点事件的标值,建立了灾害性天气过程的Poisson多元标值点过程模型。将多维最大熵分布作为多维标值的联合分布,利用以上点过程模型,推导出了海洋平台的综合风险率,为其安全防护提供了参考。
The surrounding environmental conditions of marine and offshore structureswhich are influenced frequently by severe synoptic processes including typhoon andcold wave are very harsh. Sea dikes play an extremely important role in marinedisaster prevention. Once they are damaged by typhoon, the economic losses andcasualties are not overestimated because of high developed economy and populationdensity along the China’s coastline. In addition, disastrous synoptic processes severelyimpact the regular work of offshore platforms with high cost. At worst, these poorconditions would result in platforms overturning and oil spill which cause pollution tothe ocean circumstance and destruction of the ecological environment. Actually, theprimary environmental elements that affect the coastal and ocean structures includewind, wave, tide, current, sea ice, sea fog, and so forth. The establishment of jointdesign criteria of these loads is crucial for the safety and reliability of marinestructures. However, the traditional design standard is too conservative to reflect thereal ocean circumstance, since it regards all the environmental elements asindependent variables. Therefore, it is necessary to study the joint design criteria ofmultivariate environmental elements which demands proper multivariate probabilitydistributions. While, there are several shortages for existing models, such as singletype and large errors in data fitting.
     In this paper, several bivariate and multivariate maximum entropy modelsdeduced based on maximum entropy theory are applied in the joint design ofmultivariate environmental loads on sea dikes and ocean platforms. Also, thesemodels are introduced into multivariate compound extreme value theory, reliabilityanalysis of structure and risk analysis. The main work of this paper is as follows.
     One-dimensional maximum entropy distribution (OMED) function covers almostall the distributions adopted in ocean environmental design, so fitting the observationswith it can avoid the choice of fitting curves. This paper proposes or summarizes seven parameter estimation methods for OMED, including method of moment withthree parameters (MMT), method of moment with four parameters (MMF), empiricalcurve-fitting method (ECFM), maximum likelihood method (MLM), probabilityweighted method (PWM), L-moment method (LMM) and particle swarmoptimization method (PSOM). These methods are tested and validated using field dataand corresponding Monte-Carlo simulations. Results indicate that MLM and ECFMare both recommended due to their best fit to data.
     To avoid large errors of point estimation for design values of marineenvironmental elements, the concept of confidence intervals is introduced in thispaper. It contains five interval estimation methods for design return values, such asWoodruff method, maximum likelihood method, sample quantile asymptotic method,order statistic method and sign test method. According to the results of simulation andcase studies, with respect to OMED, parameter methods, among which maximumlikelihood is recommended firstly, are always better than non-parameter methods.
     Exactly as OMED, bivariate maximum entropy distribution (BMED) is deducedwith proper constraints for two-dimensional joint Shannon entropy. Meanwhile, themoment method for its parameters estimation is derived. Based on bivariate Copulafunctions, several types of BMED models with OMED as marginal distributions areconstructed. More importantly, they would be consistent with maximum entropytheory. These models are utilized to establish the joint probability design of waveheight and corresponding wind speed, analyze corresponding probability of sea icebetween Yingkou and Huludao. The conclusion is that BMED models can fit bivariatedata well.
     Presently, most multivariate models are limited in two or three dimensions anddifficult to be generalized to higher dimensions. On the basis of multivariate jointinformation entropy and maximum entropy theory, this paper proposes generalmultivariate maximum entropy models (MMEDs), MMEDs with moment constraints,and trivariate maximum entropy distribution (TMED) function with proper constraintsfor marine environments. Since the calculation for TMED function is very hard, TMED models with OMED margins based on trivariate Copuls are constructed.Similarly it could coincide with maximum entropy theory. As an example, a jointdesign method for the crest level and overtopping rate of sea dikes is proposed usingthe data of25a annual extreme wave height, wave period and storm surge observatedin an island of Huanghai Sea.
     This paper proposes two new multivariate compound extreme models fordifferent data samples (all extreme values in the same process, and concomitantvalues when the load is the largest in one process) in severe weather processes. Andthen multivariate compound maximum entropy models are easily derived. Applyingthese models, the classification criteria of storm intensity in Qingdao is establishedand the environmental element design values for a jacket platform in severe weatherprocesses are calculated.
     Combined with direct integration method, MMEDs are introduced into staticstructure reliability analysis. Consequently, total probability method becomes feasible.However, time-varying condition of resistances and loads does not take into accountin this analytical procedure. In order to overcome this difficulty, time-variantreliability analysis is discussed, and several calculation equations of time-variantreliability in the tour of duty are deduced here.
     In fact, severe synoptic processes could be treated as stochastic point eventsaccording to scale point process theory. Poisson multivariate scale point processmodel for severe synoptic processes could be established if considering the extremevalues of environmental elements in one process as the scale values of the point event.Adopting MMED to fit the joint distribution of multivariate scale values, the syntheticrisk of ocean platforms is derived, which might provide references for safetyprotection.
引文
[1]董胜,林雪,陶山山,刘锦昆.基于危险率分析的风浪联合重现期研究.中国海洋大学学报,2012,42(3):80–84.
    [2]仇学艳,王超,秦崇仁.多元概率分析方法在海洋工程中的应用现状.海洋工程,2001,19(3):91–95.
    [3]张明霞,刘德辅,马丽.随机分析理论在泥沙淤积预测中的应用.海岸工程,2004,23(2):25–32.
    [4]刘德辅,亢清珍,韦勇,唐柳娟.海洋环境因素极值组合及设计标准.水科学进展,1998,19(2):146–150.
    [5]刘德辅,杨永春,王超.海冰荷载设计标准的不确定性及联合概率分析.海洋学报,1996,18(5):110–116.
    [6]王卫标.钱塘江海塘风险分析和安全评估研究:[博士学位论文].杭州:浙江大学,2005.
    [7]李兵.海堤漫坝风险分析研究:[硕士学位论文].南宁:广西大学,2002.
    [8]马逢时,刘德辅.复合极值分布理论及其应用.应用数学学报,1979,2(4):366–375.
    [9]吴帅兵,李典庆,周创兵.结构可靠度分析中变量相关时三种变换方法的比较.工程力学,2011,28(5):41–48.
    [10]《海堤工程设计规范》(SL435-2008)编制组.《海堤工程设计规范》(SL435-2008)实施指南.北京:中国水利水电出版社,2009.
    [11]董胜,郑天立,张华昌.海岸防灾工程.青岛:中国海洋大学出版社,2011.
    [12]刘德辅,施建刚,王铮.海洋环境条件联合设计标准.海洋学报,1994,16(2):116–123.
    [13] API RP2A-WSD. Recommended Practice for Planning, Designing and Constructing FixedOffshore Platforms-Working Stress Design,21st Edition,2005.
    [14] Lloyd’s Register of Shipping. Rules and Regulations for the Classification of a FloatingOffshore Installation at a Fixed Location. London,2008.
    [15]中国船级社.海上固定平台入级与建造规范.北京:人民交通出版社,1992.
    [16]中国船级社.海上移动平台入级与建造规范.北京:人民交通出版社,2005.
    [17]王涛,尹宝树,陈兆林.海洋工程.济南:山东教育出版社,2004.
    [18]刘德辅,董胜.随机工程海洋学.青岛:中国海洋大学出版社,2004.
    [19]中国海洋石油天然气行业标准.海上固定平台规划、设计和建造的推荐作法——荷载和抗力系数设计法(SY/T10009-2002),2002.
    [20]中华人民共和国交通部.中华人民共和国水利行业标准—海港水文规范(JTJ213-98).北京:人民交通出版社,1998.
    [21]中华人民共和国农业部.渔港总体设计规范(SC/T9010-2000).北京:中国标准出版社,2001.
    [22] Haver S. Wave climate off northern Norway. Applied Ocean Research,1985,7(2):85–92.
    [23] Guedes Soares C, Lopes L C, and Costa M D S. Wave climate modelling for engineeringpurposes. In: Schrefler, B.A., Zienkiewicz, O. C.(Eds), Computer Modelling in OceanEngineering, A.A. Balkema Pub., Rotterdam,1988,169–175.
    [24] Bitner-Gregersen E M and Haver S. Joint long term description of environmental parametersfor structural response calculations. In: Proceedings of the2nd International Workshop onWave Hindcasting and Forecasting, Vancouver, B. C,1989.
    [25] Dong S, Wang N N, Liu W, and Guedes Soares C. Bivariate Maximum Entropy Distributionof Significant Wave Height and Peak Period. Ocean Engineering,2013,59:86–99.
    [26] Kendall M. Multivariate analysis. Biometrical Journal,1977,19(4):309–519.
    [27] Ochi M K. Wave statistics for ships and structures. Proceedings of SNAME conference, NewYork,1978.
    [28] Fang Z S and Hogben N. Analysis and prediction of long-term probability distribution ofwave height and periods. Technical Report of the National Marine Institute, London,1982.
    [29] Dong S, Liu Y K, and Wei Y. Combined return value estimation of wind speed and waveheight with Poisson Bi-variate lognormal distribution. Proceedings of ISOPE2005, Seoul,Korea,2005, Vol.III:435–439.
    [30] Kroese D P, Taimre T, and Botev Z I. Handbook of Monte Carlo Methods. New York: JohnWiley&Sons,2011.
    [31] Schu ller R E and Stix R. A Critical appraisal of methods to determine failure probabilities.Structural Safety,1987,4:293–309.
    [32] Liu P L and Kiureghian D. Multivariate distribution models with prescribed marginals andcovariances. Prob. Eng. Mech,1986,1(2):105–112.
    [33] Liu P L and Kiureghian D. Optimization algorithms for structural reliability analysis.Technical Report UCB/SESM-86109, Department of Civil Engineering, Division ofStructural Engineering and Structural Mechanics, University of California, Berkely,2005.
    [34]刘德辅,王树青,郭海燕.海洋立管综合环境条件设计标准研究.海洋工程,2001,19(2):13–17.
    [35]刘德辅,杨永春,王超.海冰荷载设计标准的不确定性及联合概率分析.海洋学报,1996,18(5):110–116.
    [36] Liu D F, Yang Y C, and Wang C. Joint probability of environmental loads on marine structure.ISOPE1995, The Hague, the Netherlands,1995, Vol. II:408–411.
    [37]李晓冬,刘德辅,吕秀艳,牟善军.基于重点抽样法的固定式平台结构风险评价研究.中国海洋大学学报,2006,36(1):161–167.
    [38] Silverman B W. Density estimation for statistic and data analysis. London: Chapman andHall,1986.
    [39] Lall U and Bosworth K. Multivariate kernel estimation of functions of space and timehydrologic data. Stochastic and statistical methods in hydrology and environmentalengineering, Vol.3, K. V. Hipel, A. I. Mcleod, U. S. Panu, and V. P. Singh, eds., KluwerAcademic, Boston,1994,301–315.
    [40] Kim T W, F.ASCE J B V, and Yoo C. Nonparametric approach for bivariate droughtcharacterization using palmer drought index. Journal of Hydrological Engineering,2006,11:134–143.
    [41]郑红星,刘昌明.南水北调东中两线不同水文区降水丰枯遭遇性分析.地理学报,2000,55(5):523–532.
    [42] Wen Y K and Banon H. Development of environmental combination design criteria for fixedplatforms in the Gulf of Mexico. Proc. Offshore Technology Conference, OTC6540, Houston,1991:365–375.
    [43] Sakia R M. The Box-Cox transformation technique: a review. Journal of the Royal StatisticalSociety, Series D (The Statistician),1992,41(2):169–178.
    [44] Schoutens W. Stochastic processes and orthogonal polynomials. New York: Springer,2000.
    [45] Kiureghian A and Liu P L. Structural reliability under incomplete probability information.Journal of Engineering Mechanics,1986,112(1):85–104.
    [46] Winterstein S R. Nonlinear vibration models for extreme and fatigue. Journal of EngineeringMechanics,1988,114(10):1772–1790.
    [47] Rosenblatt M. Remarks on a multivariate transformation. Annals of Mathematical Statistics,1952,23(3):470–472.
    [48] Rackwitz R and Fiessler B. Structural reliability under combined load sequence. Computerand Structures,1978,114(12):2195–2199.
    [49] Prince-Wright R. Maximum likelihood models of joint environmental data for TLP design. In:Proceedings of the14th International Conference on Offshore Mechanics and ArcticEngineering (OMAE1995), ASME, New York, USA,2,1995.
    [50] Bitner-Gregersen E, Guedes Soares C, Machado U, and Cavaco P. Comparison of differentapproaches to joint environmental modelling. In: Proceedings of the17th InternationalConference on Offshore Mechanics and Arctic Engineering (OMAE98), ASME, New York,USA, Paper OMAE98-1495,1998.
    [51] Wist H T, Myrhaug D, and Rue H. Statistical properties of successive wave heights andsuccessive periods. Applied Ocean Research,2005,26:114–136.
    [52] Sagrilo L V S, de lima E C P, and Papaleo A. A joint probability model for environmentalparameters. Journal of Offshore Mechanics and Arctic Engineering,2011,133(3):1–7.
    [53] Dong S, Liu W, and Xu P J. Combination criteria of joint extreme significant wave height andwind speed at Weizhoudao offshore area. OMAE2008, Estoril, Portugal,2008,241–246.
    [54]刘伟.基于最大熵分布的海洋平台环境条件联合重现值推算:[博士学位论文].青岛:中国海洋大学,2011.
    [55] Rice S O. Mathematical analysis of random noise. Bell System Thch. J.,1944,23:282–332.
    [56] Longuet-Higgins M S. Wave group statistics. Oceanic Whitecaps, E. C. Manohan and G.MacNiocaill, eds., D. Riedel Publishing Company, Dordrect,1986,15–35.
    [57] Myrhaug D, Dahle E A, and Rue H. A two-dimensional Weibull distribution and itsapplication to rolling. Journal of Offshore Mechanics and Arctic Engineering,1995,117(3):178–182.
    [58] Wist H T, Myrhaug D, and Rue H. Joint distribution of successive wave crest heights andsuccessive wave trough depths for second-order nonlinear waves. Journal of Ship Research,2002,46(3):175–185.
    [59] Nagao M, and Kadoya M. Two-variate exponential distribution and its numerical table forengineering application. Bulletin of the Disaster Prevention Research Institute,1971,20(3):183–215.
    [60] Bernt J L. A comparison of some multivariate Weibull distributions. In: Proceedings ofASME201029th International Conference on Ocean, Offshore and Arctic Engineering,OMAE2010-20678, Shanghai, China, June6-11.
    [61] Plackett R L. A class of bivariate distribution. Journal of the American Statistical Association,1965,60:516–522.
    [62]葛明达.连云港波高波周期统计分布.海洋工程,1984,(1):40–50.
    [63] Izawa T. The bivariate gamma distribution. Climate and Statistics,1953,4(1):9–15.
    [64] Moran P A P. Statistical inference with bivariate gamma distributions. Biometrika,1969,56:627–634.
    [65] Kelly K S and Krzysztofowicz R. A bivariate meta-Gaussian density for use in hydrology.Stochastic Hydrology and Hydraulics,1997,11:17–31.
    [66] Smith O E, Adelfang S I, and Tubbs J D. A bivariate gamma probability distribution withapplication to gust model. NASA Technical Memorandum82483, National Aeronautics andSpace Administration,1982.
    [67] Morgenstern D. Einfache beispiele zweidimensionaler verteilungen. Mitteilungeblatt furmathematische statistik. Wuezburg,1956,8(3):234–235.
    [68] Gumbel E J. Distributions a plusieurs variables don't les marges sont donnees. ComptesRendus de l'Academie des Science, Paris,1958,246:2717–2720.
    [69] Farlie D J G. The performance of some correlated coefficients for a general bivariatedistribution. Biometrika,1960,47(3):307–323.
    [70] Yue S, Ouarda T B M J, and Bobée B. A review of bivariate gamma distributions forhydrological application. Journal of Hydrology,2001,246(1-4):1–18.
    [71]覃爱基.皮尔逊Ⅲ型条件概率计算方法.人民长江,1986,12:45–52.
    [72] Coles S G. An introduction to statistical modeling of extreme values. London: Springer-Verlag,2001.
    [73] Coles S G and Tawn J A. Statistical methods for multivariate extremes: an application tostructural design. Appl. Statist.,1994,43(1):1–48.
    [74] Shi D J. Moment estimation for multivariate extreme value distribution. AppliedMathematics,1995,10(1):61–68.
    [75] Shi D J. Fisher information for a multivariate extreme value distribution. Biometrika,1995,82:644–649.
    [76] Shi D J. Multivariate extreme value distribution and its Fisher information matrix. ActaMathematicae Applicatae Sinica,1995,11(4):421–428.
    [77]史道济,冯燕奇.多元极值分布参数的最大似然估计与分步估计.系统科学与数学,1997,17(3):244–251.
    [78] Yue S. The Gumbel logistic model for the presenting a multivariate strom event. Advances inWater Resources,2001,24:179–185.
    [79] Ji Q L, Dong S, Cao S J, and Tao S S. Coincidence risk of extreme strom surges occurred inadjacent bays of Bohai Sea. Proc20th Int Offshore&Polar Eng Conf. Beijing: ISOPE2010,883–887.
    [80] Morton I D and Bowers J. Extreme value analysis in a multivariate offshore environment.Applied Ocean Research,1996,18:303–317.
    [81] McFadden D. Modelling the choice of residential location. In A. Karlgvist, L. Lundqvist, F.Snickars, and J. Weibull (eds.), Spatial Interaction Theory and Planning Models, NorthHolland,1978,75–96.
    [82] Tawn J A. Modelling multivariate extreme value distributions. Biometrika,1990,77:245–253.
    [83] Zachary S, Feld G, Ward G, and Wolfram J. Multivariate extrapolation in the offshoreenvironment. Applied Ocean Research,1998,20(3):273–295.
    [84] Shi D J and Zhou S S. Moment estimation for multivariate extreme value distribution in anested Logistic model. Annals of the Institute of Statistical Mathematics,1999,51(2):253–264.
    [85] Athanassoulis G A, Skarsoulis E K, and Belibassakis K A. Bivariate distribution with givenmariginals with an application to wave climate description. Applied Ocean Research,1994,16:1–17.
    [86] Sklar A. Fonctions de repartition a n dimensions et leurs marges. Publ. Inst. Statist. Univ.Paris,1959,8:229–231.
    [87] Nelsen R B. An introduction to copulas (second edition). New York: Springer-Verlag,2006.
    [88] Frees W E and Valdez E A. Understanding relationships using Copulas. North AmericanActuarial Journal,1998,2(1):1–25.
    [89] Favre A C, El Adlouni S E, Perreault L, Thiemonge N, and Bobee B. Multivariatehydrological frequency analysis using Copulas. Water Resources Research,2004,40(1):1–12.
    [90] Zhang L, Singh V P, and Asce F. Bivariate flood frequency analysis using the Copula method.Journal of Hydrologic Engineering,2008,13(4):286–287.
    [91] Grimaldi S and Serincesco F. Asymmetric Copula in multivariate flood frequency analysisAdvances in Water Resources,2006,29(8):1155–1167.
    [92] Salvatore G, Francesco S, Francesco N, and Lucio U. A3-Copula function application fordesign hyetograph analysis. IAHS-AISH Publication,2005,293:203–211.
    [93] Shiau J T. Fitting drought duration and severity with two-dimensional Copulas. WaterResources Management,2006,20(5):795–815.
    [94] Hanne T W, Dag M, and Havard R. Statistical properties of successive wave heights andsuccessive wave periods. Applied Ocean Research,2004,114–136.
    [95] de Waal D J and van Gelder P H A J M. Modelling of extreme wave heights and periodsthrough Copulas. Extremes,2005,8:345–356.
    [96] de Michele C, Salvadori G, Passoni G, and Vezzoli R. A multivariate model of sea stormsusing Copulas. Coastal Engineering,2007,54:734–751.
    [97] Muhaisen O S H, Elramlawee N J E, and García P A. Copula-EVT-based simulation foroptimal rubble-mound breakwater design. Civil Engineering and Environmental Systems,2010,27(4):315–328.
    [98]肖义,郭生练,熊立华,刘攀,方彬.一种新的洪水过程随机模拟方法研究.四川大学学报(工学版),2007,39(2):55–60.
    [99]周研来,梅亚东.基于Copula函数和Monte Carlo法的防洪调度风险分析.水电能源科学,2010,28(8):37–39.
    [100]张涛,赵春伟,雒文生.基于Copula函数的洪水过程随机模拟.武汉大学学报(工学版),2008,41(4):1–4.
    [101]刘曾美,陈子燊.区间暴雨和外江洪水位遭遇组合的风险.水科学进展,2009,20(5):619–625.
    [102]熊其玲,何小聪,康玲.基于Copula函数的南水北调中线降水丰枯遭遇分析.水电能源科学,2009,27(6):9–11.
    [103]丁志宏,冯平,张永.基于Copula模型的丰枯频率分析——以南水北调西线工程调水区径流与黄河上游来水的丰枯遭遇研究为例.长江流域资源与环境,2010,19(7):759–764.
    [104]许月萍,童杨斌,富强,朱蓉.几种Copulas模拟不同历时降雨量的影响分析.浙江大学学报(工学版),2009,43(6):1107–1111.
    [105]张娜,郭生练,闫宝伟,刘攀. Copula函数在分期设计洪水中的应用研究.水文,2008,28(5):28–32.
    [106]牛军宜,冯平,丁志宏.基于多元Copula函数的引滦水库径流丰枯补偿特性研究.吉林大学学报(地球科学版),2009,39(6):1095–1100.
    [107]冯平,牛军宜,张永,侯红雨.南水北调西线工程水源区河流与黄河的丰枯遭遇分析.水利学报,2010,41(8):900–906.
    [108]覃龙.连接函数(Copula)及其应用:[硕士学位论文].乌鲁木齐:新疆大学,2007.
    [109]侯芸芸.基于Copula函数的多变量洪水频率计算研究:[硕士学位论文].西安:西北农林科技大学,2010.
    [110]韦艳华,张世英. Copula理论及其在金融分析上的应用.北京:清华大学出版社,2008.
    [111] Gro ma T. Copulae and Tail Dependence. Berlin: Diploma thesis, Humboldt-University,2007.
    [112]宋松柏,蔡焕杰,金菊良,康艳. Copulas函数及其在水文中的应用.北京:科学出版社,2012.
    [113] Shannon C E. A mathematical theory of communication. Bell System Tech. J.,1948,27:379–423,623–656.
    [114] Jaynes E T. Information theory and statistical mechanics. Phys. Rev.,1957,106:620-630;108:171–190.
    [115]吴克俭,孙孚.最大熵原理与海浪波高统计分析.海洋学报,1996,18(3):21–26.
    [116] Wang H, Qin D Y, Sun J L, and Wang J H. Study on the general model of hydrologicalfrequency analysis. Science in China (Series E),2001,44:52–61.
    [117] Zhang L Z and Xu D L. A new maximum entropy probability function for the surfaceelevation of nonlinear sea waves. China Ocean Engineering,2005,19(4):637–646.
    [118]董胜,许鹏婧,刘伟.胶州湾风暴潮增水重现值的长期预测.中国海洋大学学报,2009,39(5):1119–1124.
    [119] Dong S, Liu W, Zhang L Z, and Guedes Soares C. Long-term statistical analysis of typhoonwave heights with Poisson-maximum entropy distribution. The Proceedings of28thInternational Conference on Ocean, Offshore and Polar Engineering, Hawaii, USA,OMAE79278,2009,2:189–196.
    [120]董胜,姚艳杰.海岸港的设计潮位的最大熵分布统计分析.港工技术,2010,47(5):6–8.
    [121] Abramov R V. A practical computational framework for the multidimensional moment-constrained maximum entropy principle. Journal of Computational Physics,2006,211:198–209.
    [122] Abramov R V. An improved algorithm for the multidimensional moment-constrainedmaximum entropy problem. Journal of Computational Physics,2007,226:621–644.
    [123] Abramov R V. The multidimensional moment-constrained maximum entropy problem: ABFGS algorithm with constraint scaling. Journal of Computational Physics,2009,228:96–108.
    [124] Abramov R V. The multidimensional maximum entropy moment problem: a review ofnumerical methods. Commun. Math. Sci.,2010,8(2):377–392.
    [125] Neyman J. On a new class of ‘contagious’ distributions, applicable in entomology andbacteriology. Annals of Math. Stat.,1939,10:35–57.
    [126] Greenwood M, and Yule G U. An inquiry into the nature of frequency distributionrepresentative of multiple happenings with particular reference to the occurrence of multipleattacks of disease or of repeated accidents. J. Roy. Stat. Soc.,1920,83:255–279.
    [127] Eggenberger F, and Polya G. über die Statistik verketteter Vorg nge. Zeitschrift fürAngewandte Mathematik und Mechanik,1923,1:279–289.
    [128] Feller W. On a general class of ‘contagious’ distributions. The Annals of MathematicalStatistics,1943,14(4):389–400.
    [129]马逢时,刘德辅.复合极值分布理论及应用.应用数学学报,1979,2(4):366–375.
    [130] Muir L R and El-Shaarawi A H. On the calculation of extreme wave heights: a review.Ocean Engineering,1986,13(1):93–118.
    [131]王超.海洋工程环境.天津:天津大学出版社,1993.
    [132]邱大洪.工程水文学.北京:人民交通出版社,1999.
    [133]董胜,孔令双.海洋工程环境概论.青岛:中国海洋大学出版社,2005.
    [134]董胜,李奉利,孙瑞文.风暴增水随机分析的过阈法及其统计计算模式.青岛海洋大学学报,2000,30(3):542–548.
    [135] Wang L P, Sun X G, Lu K B, and Xu D L. A maximum-entropy compound distribution forextreme wave heights of tyhoon-affected sea areas. China Ocean Engineering,2012,26(1):49–58.
    [136] Liu D F, Wen S Q, and Wang L P. Compound bivariate extreme distribution of typhooninduced sea environments and its application. The Proceedings of12th InternationalOffshore and Polar Engineering Conference, Vol1, Kitakyushu, Japan,2002,130–134.
    [137]刘德辅,王莉萍,宋艳,庞亮.复合极值分布理论及其工程应用.中国海洋大学学报,2004,34(5):893–902.
    [138]刘德辅,王莉萍,庞亮.多维复合极值分布理论在极端海况概率预测中的应用.科学通报,2006,51(9):1112–1116.
    [139]董胜,郝小丽,李锋,刘德辅.海岸地区致灾台风暴潮的长期分布模式.水科学进展,2005,16(1):42–46.
    [140] Dong S, Liu Y K, and Wei Y. Combined return values estimation of wind speed and waveheight with Poisson Bi-variable Log-normal distribution. Proceedings of ISOPE2005, Seoul,Korea,2005, Vol.III:435–439.
    [141] Dong S and Hao X L. Statistical analysis of ocean environmental conditions with PTGEVD.Proceedings of OMAE2004, Vancouver, Canada,2004,617–621.
    [142] Freudental A M. The safety of structures. Transactions of ASCE,1947,112:125–159.
    [143] Ang A H S and Amin M. Safety factors and probability in structural design. Jnl Struct Div,ASCE,1969,95(ST7):1389–1405.
    [144]郗禄文.削角直立式防波堤可靠度分析:[博士学位论文].天津:天津大学,2005.
    [145]中华人民共和国原能源部.水利水电工程结构可靠度设计统一标准(GB50199—94).北京:中国计划出版社,1994.
    [146]中华人民共和国住房和城乡建设部.工程结构可靠度设计统一标准(GB50153—2008).北京:中国建筑工业出版社,2008.
    [147]中华人民共和国住房和城乡建设部.港口工程结构可靠度设计统一标准(GB50158—2010).北京:中国计划出版社,2010.
    [148]余建星,郭振邦,徐慧,黄衍顺.船舶与海洋结构物可靠性原理.北京:天津大学出版社,2001.
    [149] Lind N C. Consistent partial safety factors. Journal of the Structural Division,1971,97(6):1651–1669.
    [150]陈胜军.机械零件模糊可靠度等效正态分布计算方法的研究.机械设计,1996,9:6–7,14.
    [151]修宗祥.深水导管架海洋平台安全可靠性分析及优化设计:[博士学位论文].大连:大连理工大学,2010.
    [152]佟晓利,赵国藩.改进的Rosenblueth方法及其在结构可靠度分析中应用.大连理工大学学报,1997,37(3):316–321.
    [153]喻天翔,成刚虎,张选生,张祖明.考虑变量相关的机械零件可靠度计算.西安理工大学学报,2003,19(1):73–75.
    [154]吴帅兵,李典庆,周创兵.结构可靠度分析中变量相关时三种变换方法的比较.工程力学,2011,28(5):41–48.
    [155]李云贵,赵国藩.基于模糊随机概率理论的可靠度分析模型.大连理工大学学报,1995,35(4):528–531.
    [156]张爱林,王光远,赵国藩.现役石油井架结构体纱的模糊动态可靠性评定.工业建筑,1998,28(6):30–33,47.
    [157]吕震宙,冯元生.考虑随机模糊性时结构广义可靠度计算方法.固体力学学报,1997,18(1):80–85.
    [158] Genz A C and Malik A A. Remarks on algorithm006: an adaptive algorithm for numericalintegration over N-dimensional rectangular region. J. Computational and AppliedMathematics,1980,6(4):295–299.
    [159]张伟.结构可靠性理论与应用.北京:科学出版社,2008.
    [160]欧进萍,肖仪清,段忠东,周道成.基于风浪联合概率模型的海洋平台结构系统可靠度分析.海洋工程,2003,21(4):1–7.
    [161]张磊.直立式防波堤的可靠性分析:[硕士学位论文].青岛:中国海洋大学,2011.
    [162]唐家银.基于Copula对随机元间相依性的研究及其应用:[硕士学位论文].成都:西南交通大学,2005.
    [163]唐家银,赵永翔,何平,宋冬利.机械系统相关性可靠度计算的Copula新理论.机械科学与技术,2009,28(4):532–534,541.
    [164]唐家银,何平,施继忠,宋冬利.零件失效寿命相关的储备系统Copula可靠性模型.机械设计与制造,2010,4:96–98.
    [165]唐家银,赵永翔,何平,王沁,宋冬利.零件失效相关表决系统Copula可靠性模型.机械设计,2010,27(7):24–28.
    [166] Yi W D and Wei G W. Study on the reliability of dependence-parts vote system based onCopula functions. Journal of Southwest China Normal University,2007,32(6):52–55.
    [167]侯兵. Copula在可靠性理论中的运用.西南民族大学学报,2008,34(4):660–662.
    [168]王维虎,吕震宙,李倩.基于Copula理论的模糊可靠度隶属函数求解的自适应截断抽样法.计算力学学报,2011,28(6):844–850.
    [169]谢波涛.台风/飓风影响海区固定式平台设计标准及服役期安全度风险分析:[博士学位论文].青岛:中国海洋大学,2010.
    [170]吕秀艳,刘德辅,牟善军,李晓东.基于随机分析和概率预测的固定式海洋平台结构风险评估研究.中国海洋平台,2005,(5):6–11.
    [171]沈照伟.基于可靠度的海洋工程随机荷载组合及设计方法研究:[博士学位论文].杭州:浙江大学,2004.
    [172]程根伟,黄振平.水文风险分析的理论与方法.北京:科学出版社,2010.
    [173]耿雷华,姜蓓蕾,刘恒,徐澎波,胡亚林.南水北调东中线运行工程风险管理研究.北京:中国环境科学出版社,2010.
    [174]邓永录,梁之舜.随机点过程及其应用.北京:科学出版社,1992.
    [175]类淑河.风浪破碎的随机性、非线性和能量耗散特征研究:[博士学位论文].青岛:中国海洋大学,2010.
    [176]类淑河,马海燕,管长龙,田文婧,马昕.破碎波群的显著特征指标.中国海洋大学学报,2012,42(78):166–172.
    [177]邓永录,徐宗学.洪水风险率分析的更新过程模型及其应用.水电能源科学,1989,7(3):226–232.
    [178]徐宗学,肖焕雄.洪水风险率CSPPN模型初步应用研究.水利学报,1991,(1):28–33.
    [179]朱勇华.防洪风险分析中的一个Poisson标值点过程模型及其性质.武汉水利电力大学学报,2000,33(3):33–35.
    [180]朱勇华,董亚娟.防洪风险分析中的一个二元标值Poisson点过程模型.数学物理学报,2001,21A(4):527–532
    [1]中华人民共和国交通部.中华人民共和国水利行业标准-海港水文规范(JTJ213-98).北京:人民交通出版社,1998.
    [2]水利部水利水电规划设计总院,广东省水利水电科学研究院.中华人民共和国水利行业标准—海堤工程设计规范(SL435-2008).北京:中国水利水电出版社,2008.
    [3] API RP2A-WSD. Recommended Practice for Planning, Designing and Constructing FixedOffshore Platforms-Working Stress Design,21st Edition,2005.
    [4]中华人民共和国农业部.渔港总体设计规范(SC/T9010-2000).北京:中国标准出版社,2001.
    [5] Zhang L Z and Xu D L. A new maximum entropy probability function for the surfaceelevation of nonlinear sea waves. China Ocean Engineering,2005,19(4):637–646
    [6] Wang H, Qin D Y, Sun J L, and Wang J H. Study on the general model of hydrologicalfrequency analysis. Science in China (Series E),2001,44:52–61.
    [7] Rao A R and Hamed K H. Flood frequency analysis. New York, Washington D.C.: SciencePress,2000.
    [8]董胜,孔令双.海洋工程环境概论.青岛:中国海洋大学出版社,2005.
    [9] Coles S G. An introduction to statistical modeling of extreme values. London:Springer-Verlag,2007.
    [10]]赵伟,杨永增,于卫东,乔方利.长期极值统计理论及其在海洋环境参数统计分析中的应用.海洋科学进展,2003,21(4):471–476.
    [11]史道济.实用极值统计方法.天津:天津科学技术出版社,2006.
    [12]许鹏婧.导管架平台设计中的海洋水文气象参数的统计计算:[硕士学位论文].青岛:中国海洋大学,2010.
    [13] Shannon C E. A Mathematical Theory of Communication, Bell System Technical Journal,1948,27:379–423,623–656.
    [14]张学文.组成论.合肥:中国科学技术大学出版社,2003.
    [15] Jaynes E T. Information Theory and Statistical Mechanics. Phys. Rev.,1957,106:620–630.
    [16] Rafail V. Abramov. An improved algorithm for the multidimensional moment-constrainedmaximum entropy problem. Journal of Computational Physics,2007,226:621–644.
    [17]吴克俭,孙孚.最大熵原理与海浪波高统计分析.海洋学报,1996,18(3):21–26.
    [18] Zhou L M, Guo P F, Wang Q, and Du Y. Application of maximum entropy principle tostudying the distribution of wave heights in a random wave field. China Ocean Engineering,2004,18(1):69–78.
    [19]董胜,许鹏婧,刘伟.胶州湾风暴潮增水重现值的长期预测.中国海洋大学学报,2009,39(5):1119–1124.
    [20] Dong S, Tao S S, Lei S H, and Guedes Soares C. Parameter estimation of the maximumentropy distribution of significant wave height. Journal of Coastal Research,2012, doi:10.2112/JCOASTRES-D-11-00185.1.
    [21] Hosking J R M. L-moments: Analysis and Estimation of Distributions using LinearCombinations of Order Statistics. J. R. Statist. Soc. B,1990,52(1):105–124.
    [22]陈元芳,沙志贵,陈剑池,陈民.具有历史洪水时P-Ⅲ分布线性矩法的研究.河海大学学报,2001,29(4):76–80.
    [23]戴露,袁鹏,丁义,吴滔,谢珊. L-矩法在澜沧江流域参数统计中的应用.东北水利水电,2004,22(245):3–4.
    [24] Kennedy J and Eberhart R. Particle Swarm Optimization. Proceedings of IEEE InternationalConference on Neural Networks. IV,1995Nov/Dec, Piscataway, USA,1995,1942–1948.
    [25] Shi Y H and Eberhart R. A modified particle swarm optimizer. Proceedings of IEEEInternational Conference on Evolutionary Computation,1998May4–9, Anchorage, AK,USA,1998,69–73.
    [26]董胜,韩意,陶山山,樊敦秋. Weibull分布参数的粒子群算法估计.中国海洋大学学报,2011,42(6):120–125.
    [27] Greenwood J A, Landwehr J M, Matalas N C, and Wallis J R. Probability weighted moments:Definition and relation to parameters of several distributions expressable in inverse form.Water Resour. Res.,1979,15:1049–1054.
    [28]宋德敦,丁晶.概率权重法及其在P–Ⅲ分布中的应用.水利学报,1988,(3):1–11.
    [29]宋松柏,蔡焕杰,金菊良,康艳. Copulas函数及其在水文中的应用.北京:科学出版社,2012.
    [30]孙荣恒.应用数理统计(第二版).北京:科学出版社,2006.
    [31] Guedes Soares C. Hindcast of Dynamic Processes of the Ocean and Coastal Areas of Europe.Coastal Engineering.2008,55(11):825–826.
    [32] Pilar P, Guedes Soares C, and Carretero J C.44-Year Wave Hindcast For The North EastAtlantic European Coast. Coastal Engineering,2008,55(11):861–871.
    [33]国家海洋局第一海洋研究所.胜利辽东东探区海洋环境勘查分析报告.2009.
    [34] Ferreira J A and Guedes Soares C. An Application of the Peaks Over Threshold Method toPredict Extremes of Significant Wave Height. Journal of Offshore Mechanics and ArcticEngineering,1998,120(3):165–176.
    [35] Guedes Soares C and Scotto M G. Application of the r largest-order statistics for long-termpredictions of significant wave height. Coastal Engineering,2004,51:387–394.
    [36] Guedes Soares C. Bayesian Prediction of Design Wave Heights. In: Reliability andOptimization of Structural Systems, P. Thoft-Christensen (Ed), Springer-Verlag,1988,311–323.
    [37] Borgman L E. Risk Criteria. Journal of the Waterways and Harbors Division,1963,89(3):1–35.
    [38] Woodruff R S. Confidence Intervals for Medians and Other Position Measures. Journal of theAmerican Statistical Association,1952,47(260):635–646.
    [39] García M M, Cebrián A A, and Rodríguez E A. Quantile interval estimation in finitepopulation using a multivariate ratio estimator. Metrika,1998,47:203–213.
    [40] Chow V T. Handbook of applied hydrology. New York: McGraw-Hill,1964.
    [41] Khalidoum B, Carlos D D, and Alin C. Confidence Intervals of Quantiles in HydrologyComputed by an Analytical Method. Natural Hazards,2001,24:1–12.
    [42] Cunnane C. Statistical distributions for flood frequency analysis. World MeteorologicalOrganization Operational Hydrology, Report No.33, WMO-No.718, Geneva, Switzerland,1989.
    [43] Rao A R and Hamed K H. Flood frequency analysis. New York, Washington D.C.: SciencePress,2000.
    [44] Kite G W. Frequency and risk analyses in hydrology. Reston: Water Resources Publications,1977.
    [45] Coles S. An introduction to statistical modeling of extreme values. London: Springer-Verlag,2007.
    [46] Cramer H. Mathematical methods of statistics. Princeton: Princeton University Press,1999.
    [47] Avramidis A N and Wilson J R. Correlation-induction techniques for estimating quantiles insimulation experiments. Operations Research,1998,46:574–591.
    [48] van Zwet W R. Convex transformations of random variables. Mathematical Centre Tracts7,Amsterdam, the Netherlands,1964.
    [49] David H A. Order Statistics,2nd edition. New York: John Wiley,1981.
    [50]孙山泽.非参数统计讲义.北京:北京大学出版社,2000.
    [51] Tao S S, Dong S, Lei S H, and Guedes Soares C. Interval estimation of return wave height formarine structural design. The Proceedings of30th International Conference on OffshoreMechanics and Polar Engineering, Rotterdam, the Netherlands, OMAE49421,2011.
    [52]夏华永,李树华.广西沿海年极值波高分析.热带海洋学报,2001,20(2):1–7.
    [1]刘伟.基于最大熵分布的海洋平台环境条件联合重现值推算:[博士学位论文].青岛:中国海洋大学,2011.
    [2]欧进萍,段忠东,肖仪清.海洋平台结构安全评定——理论、方法与应用.北京:科学出版社,2002.
    [3]段忠东,周道成,肖仪清,欧进萍,陆钦年.极值风浪联合概率模型参数估计的简化方法.哈尔滨建筑大学学报,2002,35(6):1–5.
    [4] Yue S. The Gumbel logistic model for the presenting a multivariate strom event. Advances inWater Resources,2001,24:179–185.
    [5] Ji Q L, Dong S, Cao S J, and Tao S S. Coincidence risk of extreme strom surges occurred inadjacent bays of Bohai Sea. Proc20th Int Offshore&Polar Eng Conf. Beijing: ISOPE2010,883–887.
    [6]董胜,林雪,陶山山,刘锦昆.基于危险率分析的风浪联合重现期研究.中国海洋大学学报,2012,42(3):80–84.
    [7] Ochi M K. On long-term statistics for ocean and coastal waves. Proceedings of the16thCoastal Engineering Conference.1978,2:59–75.
    [8] Dong S, Liu Y K, and Wei Y. Combined return value estimation of wind speed and waveheight with Poisson Bi-variate Lognormal distribution. Proc15th Int Offshore&Polar EngConf. Seoul: ISOPE,2005,3:435–439.
    [9]覃爱基.皮尔逊Ⅲ型条件概率计算方法.人民长江,1986,12:45–52.
    [10] Dong S, Liu W, and Xu P J. Combination criteria of joint extreme significant wave height andwind speed at Weizhoudao offshore area. Proceedings of OMAE2008, Estoril, Portugal,OMAE57219,2008.
    [11] Bernt J L. A comparison of some multivariate Weibull distributions. Proceedings of theASME201029th international conference on ocean, offshore and arctic engineering,OMAE2010-20678, June6-11,2010, Shanghai, China.
    [12] Yue S, Quarda T B M J, and Bobée B. A review of bivariate gamma distributions forhydrological application. Journal of Hydrology,2001,246:1–18.
    [13] Nelsen R B. An Introduction to Copulas. New York: Springer,2006.
    [14]段权,王超.结构振动一次性失效的可靠度二维概率计算.西安交通大学学报,1994,28(8):70–75.
    [15] Abramov R V. An improved algorithm for the multidimensional moment-constrainedmaximum entropy problem. Journal of Computational Physics,2007,226:621–644.
    [16]张学文.组成论.合肥:中国科学技术大学出版社.2003.
    [17]侯芸芸.基于Copula函数的多变量洪水频率计算研究:[博士学位论文].西安:西北农林大学,2010.
    [18] Salvadori G. Bivariate return periods via2-Copulas. Statistical Methodology,2004,1:129–144.
    [19] Gumbel E J. Multivariate extreme distributions. Bulletin of the International StatisticalInstitute,1960,39(2):471–475.
    [20] Gumbel E J and Mustafi C K. Some analysis properties of bivariate extreme distribution.Journal of the American Statistical Association,1967,62:569–588.
    [21]葛明达.连云港波高周期统计分布.海洋工程,1984,1:48–49.
    [22] Claude E. Shannon: A Mathematical Theory of Communication, Bell System TechnicalJournal,1948,27:379–423,623–656.
    [23] Abramov R. A practical computational framework for the multidimensional moment-constrained maximum entropy principle. Journal of Computational Physics,2006,211:198–209.
    [24]韦艳华,张世英. Copula理论及其在金融分析上的应用.北京:清华大学出版社,2008.
    [25]宋松柏,蔡焕杰,金菊良,康艳. Copulas函数及其在水文中的应用.北京:科学出版社,2012.
    [26] Song S B and Sigh V P. Frequency analysis of droughts using the Plackett copula andparameter estimation by genetic algorithm. Stoch Environ Res Risk Assess,2010,24:783–805.
    [27] Capéraà P, Fougères A L, and Genest C. A nonparametric estimation procedure for bivariateextreme value copulas. Biometrika,1997,84(3):567–577.
    [28] Hu L. Essays in econometrics with applications in macroeconomic and financial modeling
    [博士学位论文]. New Haven: Yale University,2002.
    [29] Genest C and Mackay J. The joy of copulas: Bivariate distributions with uniform marginals.American Statistician,1986,40:280–283.
    [30] Plackett R L. A class of bivariate distributions. Journal of American Statistical Association,1965,60(310):510–522.
    [31] Palaro H P and Hotta L K. Using conditional Copula to estimate value at risk. Journal of DataScience,2006,(4):93–115.
    [32]覃龙.连接函数(Copula)及其应用:[硕士学位论文].乌鲁木齐:新疆大学,2007.
    [33]侯芸芸.基于Copula函数的多变量洪水频率计算研究:[硕士学位论文].西安:西北农林科技大学,2010.
    [34] Klugman S A and Parsa R. Fitting bivariate loss distributions with Copulas. Insurance:Mathematics and Economics,1999,24(1-2):139–148.
    [35] Genest C and Rivest L. Statistical inference procedures for bivariate Archimedean copulas.Journal of American Statistical Association,1993,88:1034–1043.
    [36]钟波,张鹏. Copula选择方法.重庆工学院学报,2009,23(5):155–160.
    [37]徐英辉,董胜,陶山山.渤海导管架平台结构响应计算公式拟合.海洋湖沼通报,2013,已接收.
    [38]丁德文.工程海冰学概论.北京:海洋出版社,1999.
    [1]仇学艳,王超,秦崇仁.多元概率分析方法在海洋工程中的应用现状.海洋工程,2001,19(3):91–95.
    [2]刘德辅,施建刚,王铮.海洋环境条件联合设计标准.海洋学报,1994,16(2):116–123.
    [3]刘德辅,亢清珍,韦勇,唐柳娟.海洋环境因素极值组合设计标准.水科学进展,1998,19(2):146–150.
    [4]刘德辅,杨永春,王超.海冰荷载设计标准的不确定性及联合概率分析.海洋学报,1996,18(5):110–116.
    [5]张明霞,刘德辅.随机分析理论在泥沙淤积预测中的应用.海岸工程,2004,23(2):25–32.
    [6] Bourgund U and Bucher C G. Importance sampling procedure using design point (ISPUD).Research Report of University of Innsbruck,1986,86(8):1–158.
    [7]侯芸芸.基于Copula函数的多变量洪水频率计算研究:[硕士学位论文].西安:西北农林科技大学,2010.
    [8]周金宇,谢里阳,韩文钦,朱福先.基于Nataf变换的载荷相关系统风险预测方法.机械工程学报,2009,45(8):137–141.
    [9]张尧庭,方开泰.多元统计分析引论.北京:科学出版社,2006.
    [10]戴昌军.多维联合分布计算理论在南水北调东线丰枯遭遇分析中的应用研究:[硕士学位论文].南京:河海大学,2005.
    [11]史道济.实用极值统计方法.天津:天津科学技术出版社,2006.
    [12] Coles S G. An introduction to statistical modeling of extreme values. London: Springer-Verlag,2007.
    [13] Coles S G and Tawn J A. Modelling extreme multivariate events. J. Roy. Statist. Soc. Scr. B,1991,53:377–392.
    [14] Coles S G and Tawn J A. Statistical methods for multivariate extremes: an application tostructural design. Appl. Statist.,1994,43(1):1–48.
    [15] Shi D J. Moment estimation for multivariate extreme value distribution. Appl. Math. J.Chinese Univ. Ser. B.1995,10:61–68.
    [16]史道济,冯燕奇.多元极值分布参数的最大似然估计与分步估计.系统科学与数学,1997,17(3):244–251.
    [17] McFadden D. Modelling the choice of residential location. In Spatial Interaction Theory andPlanning Models, Karlquist A et al.(Ed.), Amsterdam: North-Holland Publishers,1978,75–96.
    [18] Shi D J and Zhou S S. Moment estimation for multivariate extreme value distribution in anested Logistic model. Ann. Inst. Statist. Math.,1999,51(2):253–264.
    [19] Abramov R. A practical computational framework for the multidimensional moment-constrained maximum entropy principle. Journal of Computational Physics,2006,211:198–209.
    [20] Abramov R. An improved algorithm for the multidimensional moment-constrained maximumentropy problem. Journal of Computational Physics,2007,226:621–644.
    [21] Abramov R. The multidimensional moment-constrained maximum entropy problem: A BFGSalgorithm with constraint scaling. Journal of Computational Physics,2009,228:96–108.
    [22] Abramov R. The multidimensional maximum entropy moment problem: a review ofnumerical methods. Commun. Math. Sci.,2010,8(2):377–392.
    [23]韦艳华,张世英. Copula理论及其在金融分析上的应用.北京:清华大学出版社,2008.
    [24] Nelsen R B. An Introduction to Copulas. New York: Springer,2007.
    [25]宋松柏,蔡焕杰,金菊良,康艳. Copulas函数及其在水文中的应用.北京:科学出版社,2012.
    [26] Gudendorf G and Segers J. Nonparametric estimation of multivariate extreme-value copulas.Journal of Statistical Planning and Inference,2012,142(12):3073–3085.
    [27] Kimberling C H. A probabilistic interpretation of complete monotonicity. Aequationes Math.,1974,10:152–164.
    [28] Joe H. Multivariate Models and Dependence Concepts. London: Chapman&Hall,1997.
    [29] Embrechts P, Lindskog F, and McNeil A J. Modelling Dependence with Copulas andApplications to Risk Management. In S Rachev (ed.), Handbook of Heavy TailedDistributions in Finance,2003,329–384.
    [30] McNeil A J. Sampling Nested Archimedean Copulas. Journal of Statistical Computation andSimulation,2008,78:567–581.
    [31] Salvatore G and Francesco S. Asymmetric copula in multivariate flood frequency analysis.Advances in Water Resources,2006,29:1155–1167.
    [32] Eckhard L. Construction of asymmetric multivariate copulas. Journal of multivariate analysis,2008,99:2234–2250.
    [33] Joe H. Parametric families of multivariate distributions with given margins. Journal ofMultivariate Analysis,1993,46:262–282.
    [34] Gudendorf G and Segers J. Extreme-value Copulas. Institut De Statistique, UniversitéCatholique De Louvain, Discussion Paper0926, pp:1–20.
    [35] Michele C D, Salvadori G, Passoni G, and Vezzoli R. A multivariate model of sea stormsusing copulas. Coastal Engineering,2007,54:734–751.
    [36] Genest C and Rivest L. Statistical inference procedures for bivariate Archimedean copulas.Journal of American Statistical Association,1993,88:1034–1043.
    [37]钟波,张鹏. Copula选择方法.重庆工学院学报,2009,23(5):155–160.
    [38]《海堤工程设计规范》(SL435-2008)编制组.《海堤工程设计规范》(SL435-2008).北京:中国水利水电出版社,2008.
    [39] Environment Agency. R&D Technical Report No.W178. Overtopping of seawalls: design andassessment manual. UK: HR Wallingford Ltd,1999.
    [40] Owen M W. Design of seawalls allowing for wave overtopping. HR Wallingford Report, No.EX924,1980.
    [41] Technical Advisory Committee on Flood Defence. Technical Report: Wave Run-up and WaveOvertopping at Dikes.(herein referred to as the “TAW Manual”), Delft, The Netherland:Technical Advisory Committee on Flood Defence,2002.
    [42] EA-Environmental Agency. EurOtop. Wave overtopping of sea defences and relatedstructures: assessment manual. Herausgeber: Kuratorium für Forschung imKüsteningenieurwesen,2007.
    [43] CECW-EW. EM1110-2-1100. Coastal engineering manual-part Ⅳ-5. USA: U.S. ArmyCorps of Engineers,2008.
    [44] Goda Y. Random seas and design in maritime structures. Tokyo: University of Tokyo Press,1985.
    [45] Goda Y. Derivation of unified wave overtopping formulas for seawalls with smooth,impermeable surfaces based on selected CLASH datasets. Coastal Engineering,2009,56:385–399.
    [46]浙江水利厅.浙江省海塘工程技术规定.杭州:浙江水利厅,1999.
    [47] U. S. Army Coastal Engineering Research Center. Shore Protection Manual: I–II. Washington,D.C: U.S. Government Printing Office,1984.
    [48] Media J R. Wind effects on runup and breakwater crest design. Coastal Engineering,1998,26:1068–1081.
    [49] Mase H, Sakamoto M, and Sakai T. Neural network for stability analysis of rubble-moundbreakwaters. J. Waterw., Port, Coast. Ocean Eng.,1995,121(6):294–299.
    [50] van Gent M R A and van den Boogaard H F P. Neural network modelling of forces onvertical structures. Proc. ICCE.1998,2:2096–2109.
    [51] Medina J R, Garrido J, Gómez-Martín E, and Vidal C. Armour damage analysis using neuralnetworks. Proc. Coastal Structures, Portland,2003,236–248.
    [52] Panizzo A, Briganti R, van der Meer J W, and Franco L. Analysis of wave transmissionbehind low-crested structures using neural networks. Proc. Coastal Structures, Portland,2003,555–566.
    [1] Neyman J. On a new class of ‘contagious’ distributions, applicable in entomology andbacteriology. Annals of Math. Stat.,1939,10:35–57.
    [2] Greenwood M and Yule G U. An inquiry into the nature of frequency distributionrepresentative of multiple happenings with particular reference to the occurrence of multipleattacks of disease or of repeated accidents. J. Roy. Stat. Soc.,1920,83:255–279.
    [3] Eggenberger F and Polya G. über die Statistik verketteter Vorg nge. Zeitschrift fürAngewandte Mathematik und Mechanik,1923,1:279–289.
    [4] Feller W. On a general class of ‘contagious’ distributions. The Annals of MathematicalStatistics,1943,14(4):389–400.
    [5]刘德辅,马逢时.极值分布理论在计算波高多年分布中的应用.应用数学学报,1976,1:23–37.
    [6]王超.海洋工程环境.天津:天津大学出版社,1993.
    [7]邱大洪.工程水文学.北京:人民交通出版社,1999.
    [8]董胜,孔令双.海洋工程环境概论.青岛:中国海洋大学出版社,2005.
    [9] Muir L R and El-Shaarawi A H. On the calculation of extreme wave heights: a review. OceanEngineering,1986,13(1):93–118.
    [10]马逢时,刘德辅.复合极值分布理论及应用.应用数学学报,1979,2(4):366–375.
    [11]董胜,李奉利,孙瑞文.风暴增水随机分析的过阈法及其统计计算模式.青岛海洋大学学报,2000,30(3):542–548.
    [12] Dong S, Liu W, and Zhang L Z. Long-term statistical analysis of typhoon wave heights withPoisson-maximum entropy distribution. Proceedings of the ASME200928th internationalconference on ocean, offshore and arctic engineering, OMAE2009-79278, May31-June5,2009, Hawaii, USA.
    [13] Wang L P, Sun X G, Lu K B, and Xu D L. A maximum-entropy compound distribution forextreme wave heights of tyhoon-affected sea areas. China Ocean Engineering,26(1):49–58.
    [14] Liu D F, Wen S Q, and Wang L P. Compound bivariate extreme distribution of typhooninduced sea environments and its application. The Proceedings of12th International Offshoreand Polar Engineering Conference, Vol1, Kitakyushu, Japan,2002,130–134.
    [15]刘德辅,王莉萍,宋艳,庞亮.复合极值分布理论及其工程应用.中国海洋大学学报,2004,34(5):893–902.
    [16]刘德辅,王莉萍,庞亮.多维复合极值分布理论在极端海况概率预测中的应用.科学通报,2006,51(9):1112–1116.
    [17]董胜,郝小丽,李锋,刘德辅.海岸地区致灾台风暴潮的长期分布模式.水科学进展,2005,16(1):42–46.
    [18] Dong S, Liu Y K, and Wei Y. Combined return values estimation of wind speed and waveheight with Poisson Bi-variable Log-normal distribution. Proceedings of ISOPE2005, Seoul,Korea,2005, Vol.III:435–439.
    [19] Dong S and Hao X L. Statistical analysis of ocean environmental conditions with PTGEVD.Proceedings of OMAE2004, Vancouver, Canada,2004,617–621.
    [20]李贤平.概率论基础.北京:高等教育出版社,2006.
    [21]郭可才,郭明克,江崇波,严素.9711号台风对山东半岛灾害的初步分析.海洋预报,1998,15(2):47–51.
    [22]李培顺.青岛地区的台风暴潮灾度预报研究.海洋预报,1998,15(3):72–78.
    [1] Freudental A M. The safety of structures. Transactions of ASCE,1947,112:125–159.
    [2]中华人民共和国住房和城乡建设部.港口工程结构可靠度设计统一标准(GB50158—2010).北京:中国计划出版社,2010.
    [3]中华人民共和国住房和城乡建设部.工程结构可靠度设计统一标准(GB50153—2008).北京:中国建筑工业出版社,2008.
    [4]中华人民共和国原能源部.水利水电工程结构可靠度设计统一标准(GB50199—94).北京:中国计划出版社,1994.
    [5]余建星,郭振邦,徐慧,黄衍顺.船舶与海洋结构物可靠性原理.北京:天津大学出版社,2001.
    [6] Lind N C. Consistent partial safety factors. Journal of the Structural Division,1971,97(6):1651–1669.
    [7]陈胜军.机械零件模糊可靠度等效正态分布计算方法的研究.机械设计,1996,9:6–7,14.
    [8]修宗祥.深水导管架海洋平台安全可靠性分析及优化设计:[博士学位论文].大连:大连理工大学,2010.
    [9]佟晓利,赵国藩.改进的Rosenblueth方法及其在结构可靠度分析中应用.大连理工大学学报,1997,37(3):316–321.
    [10]喻天翔,成刚虎,张选生,张祖明.考虑变量相关的机械零件可靠度计算.西安理工大学学报,2003,19(1):73–75.
    [11]吴帅兵,李典庆,周创兵.结构可靠度分析中变量相关时三种变换方法的比较.工程力学,2011,28(5):41–48.
    [12]李云贵,赵国藩.基于模糊随机概率理论的可靠度分析模型.大连理工大学学报,1995,35(4):528–531.
    [13]张爱林,王光远,赵国藩.现役石油井架结构体纱的模糊动态可靠性评定.工业建筑,1998,28(6):30–33,47.
    [14]吕震宙,冯元生.考虑随机模糊性时结构广义可靠度计算方法.固体力学学报,1997,18(1):80–85.
    [15] Coles S G. An introduction to statistical modeling of extreme values. London:Springer-Verlag,2007.
    [16] Nelsen R B. An Introduction to Copulas. New York: Springer,2006.
    [17] Genz A C and Malik A A. Remarks on algorithm006: an adaptive algorithm for numericalintegration over N-dimensional rectangular region. J. Computational and AppliedMathematics,1980,6(4):295–299.
    [18]张伟.结构可靠性理论与应用.北京:科学出版社,2008.
    [19]欧进萍,肖仪清,段忠东,周道成.基于风浪联合概率模型的海洋平台结构系统可靠度分析.海洋工程,2003,21(4):1–7.
    [20]张磊.直立式防波堤的可靠性分析:[硕士学位论文].青岛:中国海洋大学,2011.
    [21]唐家银.基于Copula对随机元间相依性的研究及其应用:[硕士学位论文].成都:西南交通大学,2005.
    [22]唐家银,赵永翔,何平,宋冬利.机械系统相关性可靠度计算的Copula新理论.机械科学与技术,2009,28(4):532–534,541.
    [23]唐家银,何平,施继忠,宋冬利.零件失效寿命相关的储备系统Copula可靠性模型.机械设计与制造,2010,4:96–98.
    [24]唐家银,赵永翔,何平,王沁,宋冬利.零件失效相关表决系统Copula可靠性模型.机械设计,2010,27(7):24–28.
    [25] Yi W D and Wei G W. Study on the reliability of dependence-parts vote system based onCopula functions. Journal of Southwest China Normal University,2007,32(6):52–55.
    [26]侯兵. Copula在可靠性理论中的运用.西南民族大学学报,2008,34(4):660–662.
    [27]王维虎,吕震宙,李倩.基于Copula理论的模糊可靠度隶属函数求解的自适应截断抽样法.计算力学学报,2011,28(6):844–850.
    [28]谢波涛.台风/飓风影响海区固定式平台设计标准及服役期安全度风险分析:[博士学位论文].青岛:中国海洋大学,2010.
    [29]余建星,郭振邦,徐慧,黄衍顺.船舶与海洋结构物可靠性原理.天津:天津大学出版社,2001.
    [30] Rackwitz R and Fiessler B. Structural reliability under combined random load sequences.Computer&Structures,1978,9(5):489–494.
    [31]贡金鑫,赵国藩.考虑抗力随时间变化的结构可靠度分析.建筑结构学报,1998,19(5):43–51.
    [32] Hiroyuki K and Takeshi K. Reliability theory of deteriorating structures. Journal of theStructural Division,1975,101(1):295–310.
    [33] Mori Y and Ellingwood B R. Time-dependent system reliability analysis by adaptiveimportance sampling. Structural Safety,1993,12(1):59–73.
    [34]欧进萍,段忠东,肖仪清.海洋平台结构安全评定——理论、方法与应用.北京:科学出版社,2003.
    [35]徐英辉,董胜,陶山山.渤海导管架平台结构响应计算公式拟合.海洋湖沼通报,2013,已接收.
    [1]吕秀艳,刘德辅,牟善军,李晓东.基于随机分析和概率预测的固定式海洋平台结构风险评估研究.中国海洋平台,2005,(5):6–11.
    [2]沈照伟.基于可靠度的海洋工程随机荷载组合及设计方法研究:[博士学位论文].杭州:浙江大学,2004.
    [3]程根伟,黄振平.水文风险分析的理论与方法.北京:科学出版社,2010.
    [4]耿雷华,姜蓓蕾,刘恒,徐澎波,胡亚林.南水北调东中线运行工程风险管理研究.北京:中国环境科学出版社,2010.
    [5]邓永录,梁之舜.随机点过程及其应用.北京:科学出版社,1992.
    [6]类淑河.风浪破碎的随机性、非线性和能量耗散特征研究:[博士学位论文].青岛:中国海洋大学,2010.
    [7]类淑河,马海燕,管长龙,田文婧,马昕.破碎波群的显著特征指标.中国海洋大学学报,2012,42(78):166–172.
    [8]邓永录,徐宗学.洪水风险率分析的更新过程模型及其应用.水电能源科学,1989,7(3):226–232.
    [9]徐宗学,肖焕雄.洪水风险率CSPPN模型初步应用研究.水利学报,1991,(1):28–33.
    [10]朱勇华.防洪风险分析中的一个Poisson标值点过程模型及其性质.武汉水利电力大学学报,2000,33(3):33–35.
    [11]朱勇华,董亚娟.防洪风险分析中的一个二元标值Poisson点过程模型.数学物理学报,2001,21A(4):527–532.
    [12]张波,张景肖.应用随机过程.北京:清华大学出版社,2007.
    [13]张里千,殷永泉译.公共事业理论的数学方法.北京:科学出版社,1958.(Khinchin, A.Ya. Mathematical methods in the theory of queueing.1955.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700