用户名: 密码: 验证码:
维康颗粒对疲劳型亚健康大鼠下丘脑蛋白谱的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     20世纪80年代中期,前苏联布赫曼教授通过研究发现,除了健康状态和疾病状态之外,人体还存在着一种非健康非患病的中间状态,称为亚健康状态(sub-health status)。世界卫生组织的一项全球性调查表明,真正健康的人仅占5%,患有疾病的人占20%,而75%的人处于亚健康状态。亚健康状态在经济发达、社会竞争激烈的国家和地区中普遍存在,人数一直呈逐年增加的趋势,成为国际上医学界研究的热点之一。亚健康的临床表现多种多样,而通过本课题组的大规模亚健康流行病学调查研究表明,其中疲劳不仅是亚健康状态的重要临床表现之一,也是导致亚健康发生发展的重要原因,疲劳型亚健康是亚健康的主要类型之一。因此,阐明疲劳型亚健康的发生机制,不仅有助于深入亚健康的病因学研究,而且可以采取积极的措施干预疲劳型亚健康的发生发展,会对疲劳型亚健康的防治产生积极的影响,进入良性循环,向健康方向转化。在目前有关疲劳型亚健康的研究中,建立较理想的疲劳型亚健康模型是研究得以深入的关键。然而目前尚未有比较理想、公认的疲劳型亚健康模型,而动物实验作为现代生物医学研究中的一个极为重要的实验方法和手段,具有可控性好、结果易获得、简便性好、容易复制等优点,为研究疲劳型亚健康的发生、发展规律及防治措施,研制疲劳型亚健康动物模型具有重要的意义。以往研究表明下丘脑在疲劳的形成中起有重要的调节作用,而蛋白质组学双向电泳技术为研究疲劳发生机制新的有效技术手段。因此,通过制备疲劳型亚健康大鼠模型,利用蛋白质组学的实验技术,着手于整体,全面观察疲劳型亚健康大鼠以及维康颗粒干预后疲劳型亚健康大鼠的下丘脑蛋白谱变化,为进一步识别疲劳型亚健康的生物标志物,探讨疲劳型亚健康发生发展机制,以及维康颗粒抗疲劳型亚健康的相关作用机制提供研究基础。
     【目的】
     建立疲劳型亚健康大鼠模型,运用蛋白质组学双向电泳技术初步研究疲劳型亚健康的发生机理,及维康颗粒抗疲劳型亚健康的作用机制。
     【方法】
     1.运用睡眠剥夺和负重力竭游泳的复合方法进行造模,即将模型组大鼠放入水深1.5 cm的盒子中剥夺睡眠,按其体质量5%负重后再于水深50cm的玻璃缸内进行力竭游泳训练,以沉入水中10s无法浮出水面判定达到力竭状态;正常空白对照组不给予任何刺激,自然饲养。经两次实验确定睡眠剥夺强度和总的造模时间,以建立疲劳型亚健康大鼠模型,以力竭游泳时间和大鼠血液生化指标为衡量标准,对建立的模型进行评估。
     实验一:确定睡眠剥夺强度,将SPF级健康雄性SD大鼠32只,随机分为20h/d(每天剥夺睡眠时间20h)、16h/d(每天剥夺睡眠时间16h)、12h/d模型组(每天剥夺睡眠时间12h)和空白对照组(不剥夺睡眠),每组8只,将模型组大鼠负重力竭游泳13d,观察大鼠力竭游泳时间的变化,试验结束后。采大鼠血清检测生化ALT、AST、TP、Alb、TBIL、BUN、Scr、UA、LDH、CK、GLU、TG、Tch及CRP值,对照空白组分析各实验组生化值的变化,依据上述两项内容确定大鼠睡眠剥夺强度。
     实验二:确定造模时间,依据实验一力竭游泳时间和生化值的变化,确定实验组为1d(造模时间为1d)、4d(造模时间为4d)、5d(造模时间为5d)实验组和空白对照组,采各组大鼠血清检测生化ALT、AST、TP、Alb、TBIL、BUN、Scr、UA、LDH、CK、GLU、TG、Tch及CRP值,空白对照组分析各实验组生化值的变化,以确定造模天数。
     2.在造模过程中给予大鼠维康颗粒干预,比较给药组、未给药模型组及空白对照组,以力竭游泳时间为衡量疲劳的标准,观察维康颗粒抗疲劳作用。
     3.统计学分析采用SPSS13.0 for windows统计软件包处理,同组不同时间点间比较、多个处理组与一个空白对照组比较采用单向方差分析(One-WayANOVA);重复测量资料采用重复测量数据的方差分析,显著性水准α=0.05,P<0.05为差异有统计学意义。
     4.运用蛋白质组学双向电泳技术,对正常组、模型组及给药组大鼠下丘脑蛋白点分离,依据蛋白图谱分析软件PDQuest分析下丘脑蛋白谱,发现有差异的蛋白点,找到与疲劳型亚健康发生及维康颗粒抗疲劳作用机制相关的蛋白。
     【结果】
     1.实验一:20h模型组力竭游泳时间随着实验天数的增加出现明显的改变,呈逐渐降低的趋势,第13d与第0d相比较明显缩短,差异有显著的统计学意义(P<0.01),同时血清生化AST、LDH、ALB、GLU、Tch出现了明显的异常,差异均有统计学意义(P<0.05,0.01)。16h、12h模型组力竭游泳时间随着造模天数的增加并无下降,且生化指标与正常组相比较差异无统计学意义(P>0.05)。
     2.实验二:与空白对照组比较,5d模型组中AST、ALT、BUN、Scr、HBDH、CK、TG、Tch水平有明显的改变,差异有明显的统计学意义(P<0.05,0.01),1d、4d模型组大鼠生化值差异无统计学意义(P>0.05)。
     3.造模4d后两组大鼠力竭游泳时间相比较,给药组大鼠力竭游泳时间明显延长,两组之间差异有显著的统计学意义(P<0.05)。
     4.运用蛋白质组学双向电泳技术分别对空白对照组、模型组、维康颗粒高剂量给药组大鼠下丘脑蛋白进行蛋白点的2-D分离,与空白对照组相比较,模型组共有71个点有明显差异,维康颗粒高剂量给药组有65个蛋白点有明显差异,其中模型组中蛋白点表达上升2倍及以上的点有18个,下降2倍及以上的点有15个;给药组中蛋白点表达上升2倍以上的点有12,下降2倍及以上的点有9个。其中模型组与空白对照组的差异71个点中,有32个差异点经维康颗粒干预后,有明显恢复,接近于正常。这些蛋白质的存在,可能与疲劳型亚健康发生的机制和维康颗粒抗疲劳型亚健康的作用靶点相关。
     【结论】
     1.本研究成功的运用每日睡眠剥夺20h复合负重其体重5%力竭游泳的作用因素,造模4d,建立了大鼠疲劳型亚健康模型。
     2.维康颗粒有延长大鼠力竭游泳时间,对疲劳型亚健康大鼠有抗疲劳的作用。
     3.本研究利用蛋白质组学双向电泳技术分析各组大鼠下丘脑蛋白图谱,发现与疲劳型亚健康发生和维康颗粒抗疲劳型亚健康的相关蛋白,初步揭示其发生机制。
BACKGROUND:
     The mid-1980s, the former Soviet Union professor Buheman found that, in addition to health and disease states, there is a middle state of human-health and illness, known as the Sub-health status. The investigation indicates that there are only 5% of all people in the real health status, 20% in disease and other 75% in the sub-health status. The sub-health status is popular in the developed and competition intense country and region, and more and more people suffer the sub-health status. So sun-health status has become the hot spot in the region of internationals medical science. The sub-health clinical manifestations is varied, and according to large-scale sub-health epidemiological studies suggest that fatigue is not only an important clinical manifestation of the sub-health state, but also a critical reason resulted in the development of sub-health. Thus, clarifying the mechanism of fatigue subhealth, not only to an in-depth study of the etiology of sub-health, but also further taking positive steps to prevent the development of fatigue will have a positive impact on subhealth, and make a beneficial circle to the direction of healthy.So to establish a kind of sub-health model is the key point to make the researches deepened at present study. However there are not such models for the pathogen and mechanism of sub-health haven't been found out yet. As animal experiment can be controlled、operated and repeated so easily and conveniently that it is one of the most important methods in modern biomedical research. Hence it is much necessary to establish the sub-health animal model for investigating the rule of occurrence, development and the methods to prevent and cure sub-health. Formerly study indicate that hypothalamus is important to the fatigue formation, two-dimensional electrophoresis in protome is utility technique for fatigue mechanism. Therefore,adopting the sub-health fatigue rat model and using the proteomics experimental technology to comprehensive observe hypothalamus proteinogram changes in the development of subhealth fatigue, and then applying bioinformatics methods to analyse the link between proteins and phenotype of fatigue in subhealth, identifying the biomarkers of subhealth fatigue and investigating the mechanisms in the development of subhealth fatigue, as well as the mechanism of Weikang-granula. prevention subhealth fatigue, provide a theoretical basis for the effective prevention the occurrence and development of sub-health.
     AIM:
     To establish sub-heath fatigue rat model, study the mechanism of the sub-health fatigue by two-dimensional electrophoresis of proteomic and study the mechanism of action of relieving the fatigue of sun-health status by weikang granula.
     METHODS:
     1. Combine sleep deprivation with exhaustive weight loading swimming exercising to establish rat fatigue model of sub-health status. Rats in the model group were used to establish the model of chronic fatigue by being kept in a cage with water to a height of 1.5 cm and being deprived of sleep, afterwards, rats were required to conduct exhaustive swimming exercise in a glass pool with loading 5% of rat body weight. Exhaustive swimming standard was 10 seconds after rats sank into water without outcrop. Rats in the normal control group were not given any stimulation and were fed routinely. Determine the degree of sleep deprivation and total experiment time by taking two experiments. Evaluate the model by exhaustive swimming time and blood biochemical indexes.
     Exp1: Determine the degree of sleep deprivation. Male healthy Sprague-Dawley 32 rats in the SPF level was adopted in this study and randomly divided into 20h/d, 16h/d, 12h/d model group and normal control group. Observe the change of exhaustive swimming time in the period of 13 days After the 13~(th)-day, blood sample was taken from the abdominal aorta in each group. And serum was prepared by centrifugation and was determined for the blood biochemical index of ALT, AST, TP, Alb, TBIL, BUN, Scr, UA, LDH, CK, GLU, TG, Tch and CRP. Analysis the changes of the index between the model groups and normal group and determine the degree of sleep deprivation according to the time and blood biochemical index.
     Exp2: Determine the days of making model. According to the changes of the exhaustive swimming time and blood biochemical index, 32 rats were divided into 1d, 4d, 5d model group and normal control group, Blood sample was taken from the abdominal aorta in each group and serum was prepared by centrifugation and was determined for the blood biochemical index of ALT, AST, TP, Alb, TBIL, BUN, Scr, UA, LDH, CK, GLU, TG, Tch and CRP. Analysis the changes of the index between the model groups and normal group and determine the days of making model to the change of blood biochemical index.
     2. Give the model group rat take weikang granula through oral administration. 24 rats were divided into treated group, model group and normal control group. Compare the exhaustive swimming time between the treated group and model group, and obverse the effectiveness of relieving the fatigue of sun-health status. The standard of weighting fatigue is the exhaustive swimming time.
     3. Statistics analyze by SPSS13.0 for windows, compare different time spots and compare more model groups and control group by One-Way ANOVA, Repeated measures data is analyzed by Repeated Measures ANOVA,α=0.05.
     4. Make use of two-dimensional electrophoresis of proteomic, segregate the proteinum spots of hypothalamus in the normal group, model group and the group of taking weikang granula. According to the proteinum spot analysis software----PDQuest, find and identify the difference proteinum spots. Find out the correlative proteinum about the mechanism of the fatigue in sun-health status and the reliving fatigue by the weikang granula.
     RESULTS:
     1. Exp1. The exhaustive swimming times of 20h model group changed conspicuously and became shorten gradually. Compared the o-day, the time of the 13~(th)-day was significantly shortened (P<0.01) in the 20h model group, and the level of AST, UA, LDH, GLU, Tch changed obviously (P<0.05 or 0.01). The exhaustive swimming time of 16h and 12h model groups was prolonged, the blood biochemical indexes of the two groups didn't change obviously comparing the normal group(P>0.05).
     2. Exp2. Comparing the normal group, the level of AST, LT, BUN, Scr, HBDH, CK, TG, Tch changed obviously and ware significant different (P<0.05 or 0.01) in the 5d model group; And the biochemical indexes of the 1d and 4d model group did not change obviously(P>0.05).
     3. The exhaustive swimming time were longer obviously in the treated group than in the model group in the 14~(th)-day in the experiment (P<0.05).
     4. According to the analyses result by two-dimensional electrophoresis of proteomic, they changed mostly in volume and rarely in isoelectric point. Compared the control group, there are 71 difference spots in model group and 65 difference spots in treated group.find that there are 18 proteinum spots that express twice more, and there are 15 proteinum spots that express twice lower in model group and there are 12 proteinum spots that express twice more, and there are 9 proteinum spots that express twice lower in treated group. 32 difference spots recover obviously or close to normal by weikang granula intervention in the 71 difference spots. All of those proteinum spots might be interrelated to the cause of how to fatigue of sub-heath status happens.
     CONCLUSION:
     1. Be successful to establish the rat fatigue model of sub-health status by sleep deprivation combined with the exhaustive swimming for 4 days.
     2. The weikang granula have the function of prolonging the exhaustive swimming time and relieving the sub-health fatigue.
     3. Find the associated proteinum about how to fatigue of sub-heath status happen and how to relieving the sub-health fatigue by weikang granula.
引文
[1]赵瑞芹,宋振峰.亚健康问题的研究进展[J],国外医学社会医学分册外医学社会医学分册.2002,19(1):10-13SkoweraA,Cleare A,Blair D,et al.
    [2]High levels of type 2 cytokine-producing cells in chronic fatigue syndrome[J].Clin Exp Immunol.2004,135(2):294-302.
    [3]Narita M,Nishigami N,Narita N,et al.Association between serotonin transporter gene polymorphism and chronic fatigue syndrome.[J].Biochem Biophys Res Commun.2003,311(2):264-266.
    [4]Powell R,Ren J,Lewith G,et al.Identification of novel expressed sequences,up-regulated in the leucocytes of chronic fatigue syndrome patients[J].Clin Exp Allergy.2003,33(10):1450-1456.
    [5]Smimova IV,Pall ML.Elevated levels of protein carbonyls in sera of chronic fatigue syndrome patients[J].Mol Cell Biochem,2003,248(1-2):93-95.
    [6]王艳君,胡朝阳.从亚健康看中医诊疗现代化发展趋向[J].安徽中医学院学报,2002,21(4):1-4.
    [7]Chills B.Genomics,proteomics,and genetics in medicine[J].Adv Pediatr,2003,50:39-58.
    [8]Klein E,Klein JB,Thongboonkerd V.Two dimensional gel electrophoresis:a fundamental tool for expression proteomics studies[J].Contrib Nephrol,2004,141:25-39.
    [9]Asmussen E.Muscular Fatigue[J].Med Sci Sports Exerc,1979,11:313-321.
    [10]Lackstock WP,Weft WP.Proteomics:quantitative and physical mapping of cellular proteins[J].Trends Biotechnol,1999,17(3):121.
    [11]Hambers G,Lawrie L,Cash P,et al.A new approach to the study of disease[J].J Path,2000,192:80.
    [12]邢茂,张恩娟.三氧化二砷的抗癌作用和基础研究[J],华西药学杂志,2000,15(4):302.
    [13]钟南.基因组学在基因组计划中的作用[J].生命的化学,1999,19(1):9-12.
    [14]马寰,张伯礼,雒明池.亚健康状态的中医学研究现状[J].天津中医学院学报,2002,21(2):36-37.
    [15]凌家.肝与运动性疲劳关系浅探[J].湖南中医学院学报,2003,23(6):31-32.
    [16]曹长恩,皮寒义.慢性疲劳综合征重在理肝益脾探讨[J].实用中医杂志,1997,(5):38.
    [17]张桂才,黄福斌.升阳益胃汤加减治疗慢性疲劳综合征42例总结[J].湖南中医杂志,2002,18(1):9-11
    [18]周永红.补肾调肝祛邪法治疗慢性疲劳综合症理论探讨[J].新中医,2004,36(10):5-6.
    [19]胡兵,魏群利.慢性疲劳综合征辨治探要[J].安徽中医学院学报,2003(22)4:1-2.
    [20]Masaaki Tanaka,Fusao Nakamura,Shigekazu Mizokawa,et al.Establishment and assessment of a rat model of fatigue[J].Neuro Lett.,2003,352:159-162.
    [21]Fitts RH,Booth FW,Winder WW,et al.Skeletal muscle respiratory capacity,endurance,and glycogen utilization[J].Am J Physiol,1975,228:1029-1033.
    [22]刘雁峰,王天芳,杨维益.复合应激因素致“慢性疲劳”模型大鼠脾脏β-肾上腺素能受体变化的研究[J].中国中医基础医学杂,2000,6(6):22-24.
    [23]尹喜玲,肖颖,李可基.多重应激建立慢性疲劳综合征动物模型的研究[J].中国运动医学杂志,2005,24(4):452-456.
    [24]陈易新,王天芳,季绍良.慢性束缚致大鼠慢性疲劳模型的肾上腺皮质超微结构的变化[J].北京中医药大学学报,2000,23(1):33-35.
    [25]Nybo L,Secher NH.Cerebtal perturbations provoked by prolonged exercise[J].Prog Neurobiol,2004,72(4):223.
    [26]Ostman-Smith I.Adaptive changes in the sympathetic nervous system and some effect on organs of the rat following long term exercise or cold acclimation and the role of cardiac sympathetic nerves in the genesis of compensatory cardiac hypertrophy[J].Acta Physiol Scan,1979,suppl 477:1-34.
    [27]Dawson CA and Horvath SM.Swimming in small laboratory animals[J].Med Sci Sports Exert,1970,2(2):51-78.
    [28]朱全,浦钧宗.大鼠游泳训练在运动实践中的应用方法[J].中国运动医学杂志,1996,15(2):125-129.
    [29]史丽萍,马东明,解丽芳,等.力竭性运动对小鼠肝脏超微结构及肝糖原、肌糖元含量的影响[J].辽宁中医杂志,2005,32(9):971-973.
    [30]林华,吕国枫,宫德正,等.衰竭运动小鼠肝损伤的实验研究[J].天津体育学院学报,1994,9(4):9-11.
    [31]聂晓莉,李晓勇,靳文,等.慢性疲劳大鼠模型的建立及其对肝功能的影响[J].热带医学杂志,2007,7(4):323-325,344.
    [32]毛丽娟,宋文民,许豪文.长时间游泳对大鼠心肌线粒体渗透性转运的影响[J].上海体育学院学报,2000,24(4):43-45.
    [33]王和平,丰丙芝.急性游泳运动对大鼠肾功能的损伤与运动性疲劳产生的相关性[J].现代康复,2001,5(5):116.
    [34]李娟,常波.力竭性游泳运动对大鼠肾脏功能的损伤[J].中国临床康复2006,10(20):113-115.
    [35]Avakian EV,Evonuk E.Effect of panax ginseng extract on energy metabolism during exercise in rats[J].Planta Med,1984,41(2):151-54.
    [36]田京伟,杨建雄,李发荣,等.太白参对力竭游泳小鼠的作用.陕西医学杂志[J],2002,31(4):375-377.
    [37]曾云贵,何俊虎,牛晓光,等.运动训练对大鼠锌铜代谢及血清ALP,LDH活性影响的一研究[J].北京体育大学学报,2003,26(4):467,468,471.
    [38]殷劲.剧烈运动致疲劳时不同组织LDH同功酶变化的研究[J].中国运动医学杂志,1991,10(3):129-132.
    [39]冯连世.运动与血清酶活性的变化[J].中国运动医学杂志,1991,10(2):88-94.
    [40]封文平,冯连世,李开刚.酶偶联试剂盒法与千式生化分析法测定血清肌酸激酶、尿素的对比分析[J].中国运动医学杂志,2002,21(6):586-587.
    [41]Chen YJ,Serfass R C,Apple FS.Loss of myocardial CK_MB into the circulation following 3.5 hours of swimming in a rat model[J].Int J Sports Med.2000,21(8):561-565.
    [42]Lin W T.Exercise,biochemistry[M].People's Physical Education Publishing House,1999,14.
    [43]陈志.C-反应蛋白的检测及其临床意义[J].国外医学临床生物化学与检验学分册,1994,15(3):98.
    [44]Humphery-Smith I,Cordwell S,Blachstock W,et al.Proteome research:comp lementarity and limitations with respect to the RNA and DNA worlds[J].Electrophoresis.1997,18(8):1217-1242.
    [45]Peng J,Gygi SP:Proteomics:The move to mixtures[J].J M ass Spectrom.2001,36(10):1083-1091.
    [46]Aggarwal K,Lee KH.Functional genomics and p roteomics as a foundation for systems biology[J].B fief Funct Genom ic Proteom ic.2003,2(3):175-184.
    [47]Schmid MB.Structural p roteomics:the potential of high-through put structure determination.TrendsM icrobiol[J].2002,10(10 Supp 1):S27-31.
    [48]Patterson SD,Aebersold RH.Proteomics:the first decade and beyond[J].N at Genet.2003 Mar;33 Supp 1:311-323.
    [49]姜楠,霍海如,李兰芳,等.桂皮醛对发热大鼠下丘脑蛋白质组双向凝胶电泳分析[J],中药药理与临床,2003,19(6):11-13.
    [50]李智,李炜,陈泽奇,等.天麻钩藤饮对偏头痛肝阳上亢证大鼠下丘脑蛋白质的影响[J],中国临床康复,2006,10(47):45-48.
    [51]杨京洲,运动性疲劳产生的中枢机制和心理学因素对其的影响[J].中国临床康复,2002,6(7):10111.
    [1]Nybo L,Secher NH.Cerebral perturbations provoked by prolonged exercise[J].Prog Neurobiol,2004,72(4):223.
    [2]Davis JM.Possible mechanism of central nervous system fatigue during exercise[J].Med and Sci in Sports and Exerc,1997,29:45.
    [3]Noakes TD,St Clair Gibson A.Logical limitations to the "catastrophe" models of fatigue during exercise in humans[J].Br J Sports Med,2004,38:648-649.
    [4]杨京洲,运动性疲劳产生的中枢机制和心理学因素对其的影响[J].中国临床康复,2002,6(7):10111.
    [5]Wallis DI,5-HT receptor involved in initiation or modulation of motor patterns opportunities for drug development[J].Trend Pharmacol Sci,1994,15:288.
    [6]Stensrud T,Ingjer F,Holm H,et al.L Tryptophan supplementation does not improve running performance[J].Int J Sports Med,2003,13:481.
    [7]Weicker H,Struder HK.Influence of exercise on serotonergic neuromodulation in the brain[J].Amino Acids,2001,20(1):35.
    [8]Davis JM,Aderson NL,Welsh RS.Serotonin and central nervous system fatigue- nutritional considerations[J].AmJ Clin Nutr,2000,72(s):573.
    [9]George A.Central nervous system stimulants[J].Baillieres Best Pract Res Clin Endocrinal Me tab,2000,14:79.
    [10]万选才.现代神经生物学[M].北京:北京医科大学中国协和医科大学联合出版社,1999.145-148.
    [11]Chaoulof.F.Efect of acute physical exercise on central serotonersic systems [J].Med.Sci.Sports Exerc,1997,29(1):58-62.
    [12]王斌.力竭运动对大鼠纹状体、中脑及下丘脑单胺类神经递质含量的影响[J].中国运动医学杂志,2002,21(3):248-252.
    [13]Meusen.R,et al.Endurance training effects on neurotransmitter release study[J].Acta physiol Scand,1996.159:335-341.
    [14]Chaouloff.F,et al.Physical exercise:evidence for differential consequences of tryptophon on 5—synthesis and metabolism in central serotonergic cell bodies and terminals[J].NratraTransm,1987,78:121-130.
    [15]Chaouloff.F.Physical exercise and brain monoamines:a review[J].Acta.Physiol Scand,1989,137:1-13.
    [16]Guezennec CY,Abdelmalki A,Serrurier B,et al.Effects of prolonged exercise on brain ammonia and amino acids[J].Int J Sports Med,1998,19:323-327.
    [17]Abdelmalki A,Merino D,Bonneau D,et al.Administration of a GABAB agonist baclofen before running to exhaustion in the rat:effects on performance and on some indicators of fatigue[J].Int J Sports Med,1997,18:75-78.
    [18]张蕴琨,王斌,蒋晓玲.游泳训练对小鼠脑组织递质性氨基酸和5—羟色胺的影响[J].中国运动医学杂志,1999,18:324-325.
    [19]Fernstrom JD.Role of precursor availability in control of monoamine biosynthesis in brain[J].Physiol Rev,1983,63:484-546.
    [20]潘同斌,施永凡,王瑞元.慢性低氧及运动训练对大鼠血清一氧化氮含量及一氧化氮合酶活力的影响[J].西安体育学院学报,2005,22(1):83-85.
    [21]Hatakeyama S,Kawai Y,Ueyama T,et al.Nitric oxide syntheses-containing magnocellular neurons of the rat hypothalamus synthesize oxytocin and vasopressin and express Foss following stress stimuli[J].Journal of chemical Neuroanatomy,1996,11(4):243-256.
    [22]Lee S,Rivier C.Interaction between coricotropin-reieaslng factor and nitric oxide in mediating the response of the rat hypothalamus to immune and non-immune stimuli[J].Molecular Brain Research,1998,57(1):54-62.
    [23]Kaehler ST,Singewald N,Sinner C,et al.Nitric oxide modulates the release of serotonin in the rat hypothalamus[J].Brain Research,1999,835(2):346-349.
    [24]刘鸿宇,于芳,王琳,等.运动疲劳应激杏仁体核簇神经元中一氧化氮合酶的表达[J].成都体育学院学报,2005,31(1):93-96.
    [25]Banister E W,Cameron BJ.Exercise induced hyperammonemea peripheral and central effects[J].Int J Sports Med,1990,11(2):129-142.
    [26]Wagenmakers AJM,Bechers EJ,Brouns F,et al.Carbohydrate supple mentation glycogen depletion and amino acid metabolism during exercise[J].Am J Physi,1991(260):883-890.
    [27]李志清,梁述祖.某些化学物质对疲劳发生的作用[J].武汉体育学院,1992,26(2):48-51.
    [28]Lloyd AR.Muscle performance,voluntary activation,twitch properties and perceived effort in normal subjects and patients with the CFS[J].Brain,1991(114):85-98.
    [29]Friman G.Effects of acute infectious disease on isometric muscle strength.Scand[J].J Clin Lab Invest,1997(37):303-308.
    [30]黄玉芳,等.开心散对老年大鼠记忆力和单胺类神经递质的影响[J].中华老年 医学杂志,1998,17(3):154-157.
    [31]黄玉芳,等.老年大鼠神经.内分泌和血流变学改变及开心散的影响[J].实用老年医学,1999,13(6):306-308.
    [32]卞慧敏,等.开心散对东莨菪碱模型大鼠脑内单胺类神经递质和胆碱酯酶活性的影响[J].中药药理与临床,2000,16(1):5-7.
    [33]陈会友,等.醒脑胶囊治疗血管性痴呆的实验性研究[J].西安医科大学学报,1999,20(2):191-194.
    [34]李承军,等.衰老大鼠的神经递质代谢特点及温肾阳中药对代谢的影[J].中国中医基础医学杂志,1997,3(6):19-22.
    [35]李泓,等.脑脉宝对大鼠脑缺血再灌注损伤后单胺类神经质的影响[J].中药药理与临床,1995,(5):34-37.
    [36]彭康,等.乌龙丹对多发性梗塞性痴呆大鼠学习记忆功能的影响及其机制[J].中医杂志,1999,40(12):746-748.
    [37]王天芳,王琳,张翠珍.慢性疲劳综合征的研究进展[J].中国公共卫生,2002,18:1006-1009.
    [38]Georgiades E,Behan WM,Kilduff LP,et al.Chronic fatigue syndrome:new evidence for a central fatigue disorder[J].Clin Sci(Lond),2003,105:213-218.
    [39]田振军,张志琪.小鼠运动性疲劳相关基因筛选的初步研究[J].中国运动医学杂志,2002,21:426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700