用户名: 密码: 验证码:
中间锦鸡儿油酸脱氢酶基因(CaFAD2)克隆与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木本植物油脂资源丰富,是制造生物柴油的重要原料。提高单不饱和脂肪酸含量,是改善植物油脂品质,改良油脂植物,降低生物柴油成本的关键。同时,脂肪酸也是植物细胞膜组成的重要部分,对于维持植物正常的生长发育和抗逆能力至关重要。利用基因工程手段改变油脂植物的脂肪酸成分,提高木本油料植物单不饱和脂肪酸比例,是创制抗逆性强的优质生物柴油原料植物的重要途径。油酸脱氢酶(油酰磷脂酰胆碱去饱和酶,FAD2)催化油酸脱氢合成亚油酸,调控多不饱和脂肪酸合成,是植物脂肪酸代谢过程中的关键元素。因此研究该酶基因的结构与功能,揭示其调控脂肪酸代谢的机理,探索表达调控方式和时空变化具有重要的理论和实际意义,但是,迄今有关木本油料植物脂肪酸合成分子生物学研究较少。本研究应用分子生物学手段,从木本油料植物—中间锦鸡儿(Caragana intermedia)中克隆获得FAD2基因(CaFAD2),利用生物信息学分析研究了CaFAD2蛋白质的结构和功能,成功构建了该基因的反义表达和正义表达载体,利用根癌农杆菌介导法成功获得脂肪酸不饱和度明显改变的转基因烟草株系,结合表型、生理生化和分子生物学对转基因烟草株系进行了综合分析,验证分析了CaFAD2基因的功能。
     1、利用RT-PCR和RACE方法,从中间锦鸡儿茎叶中克隆了CaFAD2基因cDNA的全长序列(Genebank No.AY957393),并验证分析了其功能,为中间锦鸡儿遗传改良提供了试验和技术基础。
     2、生物信息学分析结果表明,CaFAD2基因编码区全长为1053bp,编码350个氨基酸。所编码的蛋白质与大豆、芝麻、莲的FAD2同源性均达到80%以上;与拟南芥、烟草、油菜的同源性高于70%,属于油酸脱氢酶类。推测该蛋白质酶具有脂肪酸去饱和酶的6个跨膜区域和3个组氨酸保守区域。
     3、定量PCR检测结果表明,CaFAD2基因在中间锦鸡儿茎和叶中都有表达,但在不同器官中表达模式不同,叶中表达量高于茎中。
     4、利用CaFAD2基因保守区域片段构建成功CaFAD2基因反义表达载体,通过根癌农杆菌系统导入烟草,筛选获得CaFAD2基因抑制程度不同的阳性转基因烟草株系RTC0系。与对照烟草相比,转CaFAD2基因烟草叶片和种子总脂中多不饱和脂肪酸含量分别降低约20%和10%,而油酸含量分别升高约16%和7%,说明CaFAD2基因在烟草能够反义表达,抑制烟草内源FAD2基因表达。
     5、成功构建了CaFAD2基因全长正义表达载体,并利用根癌农杆菌表达系统转化烟草,获得阳性转CaFAD2全长基因的烟草株系TC0系。开展了转基因烟草和对照烟草低温过冬(8-12℃)培养试验,结果发现,对照烟草存活率(20%)明显低于转基因烟草TC0系(90%)。
     6、RT-PCR检测和脂肪酸分析结果显示,CaFAD2全长基因在TC0系烟草中能够表达,提高烟草中FAD2基因表达量,促进了多不饱和脂肪酸合成,转基因阳性烟草种子和叶片中多不饱和脂肪酸分别增加了7.77%和10.96%。
     7、通过生物信息学和转基因表达结合方式,探索分析了CaFAD2基因和SoyFAD2基因结构和功能差异。两个基因均来自茎叶,编码的蛋白质氨基酸同源性达90%,具有3个组氨酸保守区和6个跨膜区,但是前者氨基酸比后者少33个,组氨酸和跨膜区位置也有所不同。转基因研究发现,CaFAD2基因和SoyFAD2基因在烟草中均能正义表达,促使烟草种子和叶片中多不饱和脂肪酸含量增加,CaFAD2正义表达促进作用高于SoyFAD2,但是差异不显著。CaFAD2和SoyFAD2基因结构和表达调控机制复杂,可能存在转录和转录后综合调控机制。本研究结果为进一步研究脂肪酸合成酶基因表达规律和开展木本油料植物转基因改良提供了试验技术基础。
As an important renewable energy, Biodiesel develops fast in recent years with high price, lacking of plant oil and low quality. Because of low combusting value, high viscosity and instability of plant-derived biodiesel, thus it's important to cultivate oil plants with suitable components of fatty acids.According the report(Kevin J. Harrington, 1986), the ideal material plant oil contianing high unsaturated fatty acids features a long, unbranched carbon chain with only one double bond at the end of the molecule, on the other side, more polyunsaturated fatty acids can protect the plant from cold.
     FAD2 is an important enzyme in the first step of polyunsaturated fatty acid synthey, located in endoplasmic reticulum. It catalyzes conversion of oleic acid to linoleic acid. Caragana intermedia is an important bio-energy plant distributing widly in the north China and its seeds can be made biodiesel, and it must be improved to decrease linoleic acid to increase oleic acid for polyunsaturated fatty acid of its oil is as high as 60.1%. And increasing the polyunsaturated fatty acid can protect it from low temperatures. Furthermore, the structure, function and regulation of FAD2 enzyme are far from being elucidated.
     In this work, According to published sequences, CaFAD2, an FAD2 homolog, was cloned by RT-PCR and RACE from total RNA of Caragana intermedia. The full-length of CaFAD2 is 1411bp (accession No. AY957393), and the longest open reading frame in the CaFAD2 encodes a polypeptide of 350 amino acids. The deduced amino acid sequence of CaFAD2 shows high identity to other plant delta-12 fatty acid desaturases, including the three histidine motifs, and two long stretches of hydrophobic residues which indicates of an integral membrane protein spanning membrane six times. To verify the function of CaFAD2, sense- and antisense of CaFAD2 were transformed into tobacco via Agrobacterium tumefaciens., and some transgenic plants with CaFAD2 were established in the population of the primary transformants. Although transgenic tobacco grew as wildetype tobacco, the analyses of fatty acid profile of the transgenic line RTCO(antisense-CaFAD2) and TC0(sense CaFAD2) showed that CaFAD2 has important effect on the polyunsaturated fatty acid synthesis. Adrastic increase of monounsaturated fatty acid especially oleic acid in total leaf lipid of RTC0 indicated that antisense-CaFAD2 decreased FAD2 expression in tabacco while CaFAD2 over expressing promoted the synthesis of polyunsaturated fatty acid, increase linolicl. It was possible CaFAD2 expressed constituitively in Caragana intermedia for that CaFAD2 expressed in both transgenic tobacco vegetative and seed tissues while the expressing level is higher in leaf than in stem in Caragana intermedia.
     To compare FAD2 from different plant species, SoyFAD2 was cloned from soybean. CaFAD2 and SoyFAD2 share 90% identity in deduced amino acid sequence. The longest ORF of SoyFAD2 encodes a polypeptide of 380 amino acids, including the three histidine motifs and two long stretches of hydrophobic residues. Sense of SoyFAD2 was transformed into tobacco. And in the transgenic line TS0, the amount of polyunsaturated fatty acid increased, which is the same of that in TC0.
     Oil biosynthesis is a complex biological process. There must be exist a network of genes playing different roles to control the components of fatty acids. In this study, the function of FAD2 from oil plant was investigated in detail, which may give more understanding in oil synthesis and provides genes to improve fatty acids components suitable for biodiesel.
引文
[1] Kevin J. Harrington. Chemical and Physical Properties of Vegetable Oil Esters and their Effect on Diesel Fuel Performance. Biomass, 1986, 9: 1-17
    [2] Kaieda M, Samukawa T, Kondo A, Fukuda H. Elect of methanol and water contents on productions on production of biodiesel fule from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng, 2001, 91: 12-15
    [3] Theelen J J, Ohlrogge JB. Metabolic engineering of fatty acid biosythesis in plants. Metab Eng, 2002, 4: 12-21
    [4] Browse J, Somerville C. Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol., 1991, 42: 467-506
    [5] Willet W C, Stampfer M J, Manson J E, et al. Intake of trans fatty acids and risk of co ronary heart disease among women. Lancet, 1993, 341: 581-585
    [6] Liu Q, Singh S, Green A. High-oleic and high-stearic cottonseed oils: nutritionally improved cooking oils developed using gene silencing. J Am Coil Nutr, 2002, 21: 205S-211S
    [7] Shanklin J, Cahoon EB. Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 611-641
    [8] Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell. 1995, 7: 957-970
    [9] Miquel MF, Browse JA. High-oleate oilseeds fail to develop at low temperature. Plant Physiol, 1994, 106: 421-427
    [10] Okuley J, Lightner J, Feldmann K, et al. Arabidopsis fad2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 1994, 6: 147-158
    [11] 周亦华,陈正华.植物种子中脂肪酸代谢途径的遗传调控与基因工程.植物学通报,1998,15(5):16-23
    [12] Van der Loo F J, For B G and Somerville C. Unusual fatty acids. In lipid Metabolism in Plants, 1993, 91-126. Boca Raton: CRC Press
    [13] Urie A L. Inheritance of high oleic acid in sunflower. Crop Sci. 1985, 25: 986-989
    [14] Grafe G L, Miller L A, Fehr W R et al. Fatty acid development in a soybean mutant with high stearic acid. J. American Oil Chemists' Society, 1985, 62: 773-775
    [15] Tonnet M L and Green A G. Characterization of the seed and leaf lipids of high and low linolenic acid flax genotypes. Arch. Biochem. Biophy, 1987, 256: 90-100
    [16] 张羽航,鲍时翔,郑学勤.脂肪酸脱饱和酶的研究进展.生物技术通报,1998,4:1-9
    [17] 卢善发.植物脂肪酸的生物合成与基因工程.植物学通报,2000,17(6):481-491
    [18] Roughan PG, Slack CR. Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol. 1985, 33: 97-132
    [19] Somerville C, Browse J. Plant lipids: Metabolism, Mutants and Membranes. Science 1991, 252: 80-87
    [20] Stymne S, Stobart AK, Gladd G. The role of the acyl-CoA pool in the synthesis of polyunsaturated 18 carbin fatty acids and triacylglycerol production in the microsomes of developing safflower seeds. Biochimica et biophysica acta, 1983, 752: 198-208
    [21] Somerville C, Browse J. Dissecting desaturation: plants prove advantageous. Trends Cell Biol, 1996, 6: 148-153
    [22] Gornicki P, Podkowinski J, Scappino L, et al. Wheat acetyl-coenzyme A carboxylase cDNA and protein structure. Proc Natl Acad Sci USA, 1994, 91: 6860-6864
    [23] Roesler KR, Shorrosh BS, Ohlrogge JB. Structure and expression of an Arabidopsis acetyl-coenzyme A carboxylase gene. Plant Physiol. 1994, 105: 611-617
    [24] Anderson Jr, Lutz SM, Gengenbach BG, et al. Genomic sequence for a nuclear gene encoding acetyl-coenzyme A carboxylase(accession no. L42814)in soybean. Plant Physiol, 1995, 109: 338-345
    [25] Egli MA, Lntz SM, Somers DA, et al. A maize acetyl-coenzyme A carboxylase cDNA sequence. Plant Physiol, 1995, 108: 1299-1300
    [26] Yanai Y, Kawasaki T, Shimada H, et al. Genomic organization of 251 kDa acetyl-CoA carboxylase genes in Arabidopsis: tandem gene duplication has made two differentially expressed isozymes. Plant Cell Physiol, 1995, 36: 779-797
    [27] Li S-J, Cronan JE. The genes encoding the two carboxyl-transferase subunits of Escherichia coli acetyl-CoA carboxylase. J Biol Chem, 1992, 267: 16841-16847
    [28] Sasaki Y, Hakamada K, Suama Y, et al. Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J Biol Chem, 1993, 268: 25118-25123
    [29] Sasaki Y, Konishi T, Nagano Y. The compartmentation of acetyl-coenzyme A carbo xylase in plants. Plant Physio, 1995, 108:445-449
    [30] Alban C, JuUien J, Job D, Douee R. Isolation and characterization of biotin carboxylase from pea chloroplasts. Plant Physiol, 1995, 109:927-935
    [31] Konishi T, Shinohara K, Yamada K, et al. Acetyl-CoA carboxylase in higher plants:most plants other than Graminease have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol. 1996, 37:117-122
    [32] Elborough KM, Winz R, Deka RK, et al. Biotin carboxyl carrier protein and carboxyltransferase subunits of the multi-subunit form of acetyle-CoA carboxylase from Brassica napus: cloning and analysis of expression during oilseed rape embryogenesis. Biocheme J, 1996, 315:103-112
    [33] Markham JE, Elborough KM, Winz Ra, et al. Acetyl-CoA carboxylase from Brassica napus. In JP Williams, MU Khan, NW Lem, eds, Physiology, Biochemeistry and Molecular Biology of Plant Lipids. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, 11-33
    [34] Shulte W, Topfer R, Straeke R, et al. Multifunctional acetyi-CoA carboxylase from Brassica napus is encoded by multi-gene family:indication for plastidic localization of at least one isoform. Proc Natl Acad Sci USA, 1997, 94:3465-3470
    [35] Ebel J, Sehmidt WE, Loyal R. Phytoalexin synthesis in soybean cells:elicitor induction of phenylalanine ammonialyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation. Arch Biochem Biophys, 1984, 232:240-248
    [36] Shintani DK, Ohlrogge JB. Feedback inhibition of fatty acid synthesis in tobacco suspension cells. Plant, 1995, 7:577-587
    [37] Harwood JL. Fatty acid metabolism. Annu Rev Plant Mol Biol, 1988, 39:101-138
    [38] Slabas A R, Faweett T. The biochemistry and molecular biology of plant lipid biosythesis. Plant Mol Biol, 1992, 19:169-191
    [39] Kater M M, Koningstein G M, Nijkamp H J J, et al. cDNA cloning and expression of Brassica napus enoyl-acyl carrier protein reductase in Escherichia coli. Plant Mol Biol, 1991, 17:895-909
    [40] Cahoon E B, Cranmer A M, Shanklin J, et al. Hexadecenoic acid is synthesized by the activity of a soluble Δ6 palmitoyl-acyl carder protein desaturase in Thunbergia alata endosperm. J Biol Chem, 1994, 269:27519-27526
    [41] Cahoon E B, Shanldin J, Ohlrogge J B. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc Natl Acad Sci USA, 1995, 89:11184-11188
    [42] Broadwater J A, Ai J, Loehr T M, et al. Peroxodiferric intermediate of stearoyl-acyl carrier protein Δ9-desaturase:oxidase reactivity during single turnover and implications for the mechanism of desaturation. Biochemistry, 1998, 37:12664-14671
    [43] Lindqvist Y, Huang W, Schneider G, et al. Crystal structure of Δ9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron protein. EMBO J, 1996, 8:281-292
    [44] Cahoon E B, Lindqvist Y, Sehnerider G, et al. Redesign of soluble fatty acid desaturase from plants for altered substrate specificity and double bond position. Proc Natl Acad Sci USA 1997, 94:4872-4877
    [45] Toeher, D. R. Leaver M. J. and Hodgson P. A. Recent advances in the biochemistry and molecular biology of fatty acyl desaturases, Prog. Lipid Res., 1998, 37(3):73-117
    [46] Jones AL, Lloyd D and Harwood JL et al. Rapid induction of microsomal Δ12(ω6)-desaturase activity in chilled Acanthamoeba castellanii, Biochem 3, 1993, 296:183-188
    [47] Sakamoto T, Wada H, Nishida I, et al. Δ9 acyl-lipid desaturases of cyanobacteria:molecular cloning and substrate specificities in terms of fatty acids,sn-positions, and polar head groups. J. Biol. Chem, 1994, 269:25576-25580
    [48] Los DA, Murata N. Structure and expression of fatty acid desaturases. Biochim Biophys Acta, 1998, 1394:3-15
    [49] James D W, Lira E, Keller J, et al. Directed tagging of the Arabidopsis Fatty acid elongation(FAE1) gene with maize transposon activator. Plant cell, 1995, 7:309-319
    [50] Dittieh F, Zajonie D, Huhne K, et al. Fatty acid elongation in yeast-biochemical characteristics of the enzyme system and isolation of elongation-defective mautants. Eur J Biochem, 1998, 252:477-485
    [51] Knutzon D S, Thompson, G A., Radke, S E. Modification of Brassica seed oil by anti-sense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl Acad. Sci. USA, 1992, 89:2624-2628
    [52] Mekhedov S. Lioruya OM. Ohlrogge J. Toward a functional catalog of the plant genome. A survey of genes for lipid biosythesis. Plant Physiology, 2000, 122:389-401
    [53] Roesler K, Shintani D, Savage Let al. Targetion of the Arabidopsis homomeric acetyl-coenzyme carboxylase to plastids of rapeseeds. Plant Physiol, 1997, 113:75-81
    [54] Lassner MW, Levering CK, Davies HW et al. Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiol, 1995, 109: 1389-1394
    [55] Zou J, Katabic V, Giblin E M. et al. Modification seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyl transferase gene. Plant Cell, 1997, 9: 909-923
    [56] 陈锦清,郎春秀.反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究.农业生物技术学报,1999,7(4):316-320
    [57] Lassner MW, Lardizabal K and Metz JG. A jojoba βketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell, 1996, 8: 281-292
    [58] Millar AA, Kunst L. Very-long-chain fatty acid biosythesis is controlled through the expression and specificity of the condesing enzyme. Plant J, 1997, 12(1): 121-131
    [59] Todd J, Post-Beittenmiller D, Jaworski J G. KCSl encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosyntheses in Arabidopsis thaliana. Plant J, 1999,17: 119-130
    [60] Barret P B, Delourme R, Renard M, et al. A rape seed FAEl gene is linked to the El locus associated with variation in the content of erucic acid. Theor Appl Genet, 1998, 96: 177-186
    [61] Barret P B, Harwood J L. Characterization of fatty acid elongase enzymes from germinating pea seeds. Phytochemistry, 1998, 48: 1295-1304
    [62] Clemens S, Kunst L. Isolation of a Brassica napus cDNA encoding 3-ketocyl-CoA synthase, a condensing enzyme involved in the biosythesis of very long chain fatty acids in seeds. Plant Physiol, 1997, 115: 313-314
    [63] Kunst L, Taylor D C, Underhill E W. Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem, 1992, 30: 425-434.
    [64] Jones A. Davies HM, Voelker TA. Palmitoyl-acyl carrier protein(ACP) thioesterase and the evolutionary origin of plant acyI-ACP thioesterases. Plant Ce11, 1995, 7(3): 359-371
    [65] Voelker TA, Hayes TR, Cranmer AM et al. Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J 1996, 9: 229-241
    [66] Broun P and Somerville C. Accumulation of ricinoleic, Lesquerolic and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol, 1997, 113: 933-942.
    [67] Qi B, Fraser T, Mugford S, Dobson G, et al. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nature Biotechnology, 2004, 22:739-745
    [68] Abbadi A, Domergue F, Bauer J, Napier JA, et al. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. The Plant Cell, 2004, 16(10):2734-2748
    [69] Stan S. Robert, Surinder P. Singh, Xue-Rong Zhou, et al. Metabolic engineering of Arabidopsis to produce nutrionally important DHA in seed oil. Functional Plant Biology, 2005, 32:473-479.
    [70] ShanMin J, Somerville C. Stearoyl-ACP desaturase from higher plants is structurally unrelated to the animal homolog. Proc Natl Acad Sci USA, 1991, 88:2510-2514
    [71] Thompson G A, Seherer D E, Aken S F, et al. Primary structures of the precursors and mature forms of stearoyl-acyl carrier protein desaturase from sunflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci USA, 1991, 88:2578-2582
    [72] Nishida I, Beppu T, Matsuo T, Murata N. Nucleotide sequence of a cDNA clone encoding a prescursor to stearoyl-(acyl-carrier-protein) desaturase from spinach, Spinacia oleracea. Plant Mol Biol, 1992, 19:711-713
    [73] Cahoon E B, Becket C K, Shanklin J, et al.. cDNAs for isoforms of the A9-stearoyl-acyl carrier protein desaturase from Thungergia alata endosperm. Plant Physiol, 1994, 106:807-808
    [74] Hawkins D J, Kridl JC.Characterization of acyl-ACP thioesterases of mangosteen(Garcinia mangostana) seed and high levels of state production in transgenic canola. Plant J, 1998, 13(6):743-752
    [75] Dehesh K, Jones A, Knutzon D S and Voelker T A. Production of high levels of 8:0 and 10:0 fatty acid in transgenic canola by overexpression of ChFatB2, A thioesterase cDNA from Cuphes hookeriana. Plant J, 1996, 9:167-172
    [76] Topfer R, Martini M and Schell J. Modification of plant lipid synthesis. Science, 1995, 268:681-686
    [77] Hitz WD, Yadav NS, Reitier RS, et al.. Reducing polyunsaturation in oils of transgenic canola and soybean. In Plant Lipid Metabolism, ed. JC Kader and P Maxlizk. Netherlands:Klumer Academic, 1995, 506-508
    [78] Kinney A J. Development of genetically engineered oilseeds. In Physiology Biochemistry and Molecular Biology, E. J. P. Williams, M. U. Kham. And N. W. Lem. 1997,.298-300.
    [79] Stoutjesdijk PA, Hurlestone C, Singh SP et al. High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppresiion of endog-enous Delta 12-desaturases. Biochem Soc Trans, 2000, 28(6):938-940
    [80] Bleibaum J L, Gene A, Fayet-Faber J, et al. In Abstracts National Plant Lipid Symposium. Minneapolis, MN, 1993, 136-145.
    [81] Yadar N, Wierzbicki A. Knowltion S, et al.. In Murata N, Somerville C R,(eds). American Society of Plant Physiologists, Rockville, M D, 1993, pp60~61
    [82] Grayburn WS, Collins CG, Hildebrand DF, et al.. Fatty acid alteration by a delta 9 desaturase in transgenic tobacco tissue. Biotechnology, 1992, 10(6):675-678
    [83] Ishizaki-Nishizawa O, Fujii T, Azuma M, et al. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific syanobacterial desaturase. Nat Biotechnol, 1996, 14:1003-1006
    [84] Hitz, W D, Carson, T J, Booth J T, et al. Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacteriumPlant Physiol, 1994, 105(2),635~641
    [85] Wallis JG, Browse J. Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res, 2002, 41:254-278
    [86] Schwartzbeek JL, Jung Sk, Abbott AG, et al. Endoplasmic oleoyl-PC desaturase references the second double bond. Phytochemistry, 2001, 57:643-652
    [87] Dyer JM, Mullen RT. lmmunocytologica localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett, 2001, 494:44-47.
    [88] Willett W C, Stampfer M J, Manson J E, et al. Intake of trans fatty acids and risk of coronary heart disease among women. Lancel. 1993, 341:581-585
    [89] Stender S, Dyergerg J, Holmer G, Ovesen Let al. The influence of trans fatty acids on health: a report from the Danish Nutrition Council. Clinical Science, 1995, 88:375-392
    [90] Booyens J and vender Merwe C F. Margaines and coronary artery disease. Med Hypo 1992, 37:241-244.
    [91] Toshio Sakamoto, Hajime Wada, Ikuo Nishika. Identification of conserved domains in the Δ~(12) desaturases of cyanobacteria. Plant Molecular Biology, 1994, 24:643-650.
    [92] Iba K., Gibson S., Nishiuchi T. et al. A gene encoding a chloroplast ω-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana.The Journal of Biological: Chemistry, 1993, 268(32):24099-24015
    [93] M K Watahiki and K T Yamamoto. A new isozyme of plasmid omega-3 fatty acid desaturase in Arabidopsis thaliana, Plant Physiology, 1994, 106, 1451-1452
    [94] Van de Loo, F. J., Broun, P., Turner, S. et al. An oleate 12-hydroxylase from Ricinus comrnunis L. is a fatty acyl desaturase homolog. Proc. Natl. Acad. Sci. USA, 1995, 92(15), 6743-6747
    [95] Heppard, E. P., Kinney, A. J., Stecea, K. Let al. Development and growth temperatue regulation of two different microsomal ω-6 desaturase genes in soybeans. Plant Physiol, 1996, 110, 311-319
    [96] Seheffler JA, Sehimdt H, Sperling P. Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet, 1997, 94:583-591
    [97] Kirsch, C, Hahlbroek, K and Somsscih, IE. Rapid and transient induction of a parsley microsomal[delta]12 fatty acid desaturase mRNA by fungal elicitor. Plant Physiol, 1997, 115, 283-289
    [98] Sakuradani E, Kobayashi M, Ashkari T et al. Identification of Delta 12-fatty acid desaturase from arachidonic acidproducing mortierella fungus by heterologuos expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochen, 1999, 261(3):812-820
    [99] Passorn S, Laoteng K, Rachadawong S, et al.(1999) Heterologous expression of Mucor rouxii delta 12-desaturase gene in Saccharomyces cerevisiae. Biophys Res Commun 265(3):771-776
    [100] Jung S, Poweil G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.). Ⅱ. Molecular basis and genetics of the trait. Mol Gen Genet, 1999, 263, 806-811
    [101] Jennifer L. S., Sook J., Albert G. A., et al. Endoplasmic oleyI-PC desaturase references the second double bond. Phytochemistry, 2001, 57:643-652
    [102] Jin Un-Ho, Lee Jin-Woo, Chung Young-Soo, et al. Characterization and temporal expression of aω-6 fatty acid desaturase cDNA from sesame(Sesamum indicum L.) seeds. Plant Science, 2001, 161:935-941
    [103] Liu Q., Curt L. B., Allan G. G., et al. Evolution of the FAD2-1 fatty acid desaturase 5'UTR intron and the molecular sysematics of Gossypium(Malvaceae). American Journal of Botan, 2001, 88:92-102
    [104] Irma L. P., Wisatre K., Mongkol N., et al. Molecular cloning and functional expression of the gene fro a cotton Δ-12 fatty acid desaturase(FAD2). Biochimica Biophysica Acta, 2001, 1522:11-129
    [105] Martinez-Rivas JM, Sperling P, Luhs W, Heinz E. Spatial and temporal regulation of three different microsomat oleate desaturase genes(FAD2) from normal-type and high-oleic varieties of sunflower(Helianthus annuus L.). Mol Breed, 2001, 8, 159-168.
    [106] Dyer JM, Chapial DC, Kuan JCW, et al. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung, implications for the evolution of plant fatty acid diversity. Plant Physiol, 2002, 130, 2027-2038
    [107] Banilas G, Moressis A, Nikoloudakis N, Hatzopoulos P. Spatial and temporal expressions of two distinct oleate desaturases from olive(Oea europaea L.). Plant Sci, 2005, 168, 547-555
    [108] Liu Q, Singh SP, Brubaker CL, Sharp PJ, et al. Molecular cloning and expression of a cDNA encoding a microsomal ω-6 fatty acid desaturase from cotton(Gossypium hirsutum). Aust J Plant Physiol, 1999, 26, 101-106
    [109] Pirtle IL, Kong charorensuntorn W, Nampaisansuk M, et al. Molecular cloning and functional expression of the gene for a cotton △-12 fatty acid desaturase(FAD2). Biochim Biophys Acta, 2001, 1522, 122-129
    [110] 赵爱芬.差巴嘎蒿和小叶锦鸡儿根系分布及生长动态的研究.中国草地,1994,3:15-19
    [111] 阿拉塔,赵书元,李敬忠.三种锦鸡儿生物学特性及栽培利用的研究.内蒙古畜牧科学,1997,(4):8-11
    [112] 牛西午.柠条生物学特性研究.华北农学报,1998,13(4):122~129
    [113] 牛西午,丁玉川,张强,等.柠条根系发育特征及有关生理特性研究.西北植物学报,2003,23(5):860-865
    [114] 孙德祥.半荒漠地区灌木饲料林营造技术研究.干旱区资源与环境,1995,9(2):74-79
    [115] 程积民.宁南黄土丘陵区灌木林生产力的研究.水土保持研究,1996,3(1):129-136
    [116] 郭爱龙,张海升,冯利群.六种沙生灌木pH值、缓冲容量及对脲醛树脂胶(UF)固化时间的影响.木材工业,1996,12(5):18-20
    [117] 牛耕芜,冯利群,郭爱龙.柠条、沙柳制造刨花板生产工艺研究.内蒙古林学院学报(自然科学版),1997,17(4):66-71
    [118] 郭爱龙,张海升,高晓霞,等.4种锦鸡儿灌木材微观构造、纤维形态和化学成份的分析研究.内蒙古林学院学报(自然科学版),1998,20(1):13-17
    [119] 田兰凤,吕振华.全杆柠条强韧纸浆的生产工艺.纸和造纸,2002,5(3):25
    [120] 喻乐飞.柠条中密度纤维板生产备料工艺的探讨.林产工业,2003,30(2):30-32,18
    [121] 薛富.柠条制浆造纸的探讨.内蒙古林业,2002,6:8
    [122] 许凤,孙润仓,詹怀宇.防沙治沙灌木生物资源的综合利用.造纸科学与技术.2004,23(1):17-20
    [123] 刘家琼.柠条、花棒生理特性的研究.林业科技通讯,1980,(6):12
    [124] 张振万,杨淑性.陕西锦鸡儿属植物.西北植物研究,.983,(3):21-31
    [125] 曹宛虹,张新英.锦鸡儿属6种沙生植物次生木质部解剖.植物学报,1991,33(3):181-187
    [126] 安守芹,张称意,王玉魁,等.四种沙生植物营养器官的比较解剖研究.中国草地,1996(3):30-36
    [127] 常朝阳,张明理.锦鸡儿属植物幼茎及叶的解剖结构及其生态适应性.植物研究,1997,17(1):65-71
    [128] 燕玲,李红,刘艳.13种锦鸡儿属植物叶的解剖生态学研究.干旱区资源与环境,2002,16(1):100-106
    [129] 冯金朝,张承烈,黄子琛,等.不同环境条件下沙生植物的CO_2气体交换研.西北植物学报,1997,17(2):135-141
    [130] 张利平,王新平,刘立超.沙坡头主要建群植物油蒿和柠条的气体交换特征研究.生态学报,1998,18(2):133-137
    [131] 王邦锡,黄久常,王辉.不同生长季节光照强度和温度对柠条叶片光合作用和呼吸作用的影响.中国沙漠,1996,16(2):145-148
    [132] 肖春旺.施水量对毛乌素沙地4种优势植物叶绿素荧光的影响.草地学报,2001,9(4):298-301
    [133] 高素华,郭建平.毛鸟素沙地优势种在高CO_2浓度条件下对土壤干旱胁迫的响应.草业学报,2003,12(2):36-39
    [134] 周海燕,张景光,龙利群,等.脆弱生态带典型区域几种锦鸡儿属优势灌木的光合特征.中国沙漠,2001,21(3)227-231
    [135] 苏培玺,陈怀顺,李启森.河西走廊中部沙漠植物δ13C值的特点及其对水分利用效率的指示.冰川冻土,2003,25(5):597-602
    [136] 李录章.花棒、柠条蒸腾作用的研究.内蒙古林业,1999,6:33
    [137] 杨文斌,任建民,杨茂仁,等.柠条锦鸡儿沙柳蒸腾速率与水分关系分析.内蒙古林业科技,1995,3:1-6
    [138] 王孟本,李洪建,柴宝峰.柠条的水分生理生态学特性.植物生态学报,1996,20(6):494-501.
    [139] 贾志清,孙保平,刘涛,等.黄家二岔小流域不同树种蒸腾作用研究.水土保持通报, 1999,19(5):12-15
    [140] 王孟本,李洪建,柴宝峰,等.黄土区树种抗旱性指数的研究.植物研究,1999,19(3):341-346
    [141] 朱春云,赵越,刘霞,等.锦鸡儿等早生树种抗旱生理的研究.干旱区研究,1996,13(1):59-63.
    [142] 徐世健,安黎哲,冯虎元,等.两种沙生植物抗旱生理指标的比较研究.西北植物学报,2000,20(2):224-228
    [143] 张慧茹,王丽娟,郑蕊,等.宁夏五种抗旱性牧草与脯氨酸含量的相关性研究.宁夏农学院学报,2001,22(4):12-14
    [144] 胡建成,郑海金,陈鑫阳,等.柠条ca~(2+)-ATPase的性质及钙调素含量与抗旱性的关系.西北植物学报,1997,17(6):52-56
    [145] 赵明范,葛成,翟志中.干旱地区次生盐碱地主要造林树种抗盐指标的确定及耐盐能力排序.林业科学研究,1997,10(2):194-198
    [146] 安守芹,于卓,孔丽娟,等.花棒等四种豆科植物种子萌发及苗期耐盐性的研究.中国草地.1995,6:29-32
    [147] 董玉娟,李富英,王秀美.梭梭、柠条抗逆性的比较分析[J].内蒙古民族大学学报(自然科学版),2003,18(5):425-428
    [148] 晁中彝.锦鸡儿属种子蛋白的营养.中国油脂,.987,(5):30-32
    [149] 晁中彝.柠条籽油涂料的研制.西北林学院学报,1987,2(1):98-107
    [150] 晁中彝.锦鸡儿属植物种子含油率与油内脂肪酸组成的理化性质的研究.陕西林业科技,1988,(3):1-3
    [151] 晁中彝.锦鸡儿属植物种子油的研究.西北林学院学报,1988,(1):113-118
    [152] 晁中彝.用脱脂柠条种籽粕研制高粘淀粉和果葡糖浆.陕西林业科技,1995,2:26-27
    [153] 韩蕊莲,晁中彝.柠条种子营养测定与成分分析.西北植物学报,1996,16(6):95-97
    [154] 孙德祥,周子伟.宁夏沙地主要灌木饲料林树种经济性状分析.中国沙漠,1995,15(1):92-95
    [155] 安守芹,方天纵,赵怀清,等.五种固沙饲用灌木营养成分生长期的动态.干旱区资源与环境,1996,10(3):69-74
    [156] 高卫华,冀利彪.内蒙古西部五种沙生植物营养成分分析.内蒙古农牧学院学报,1996,17(1):23-28
    [157] 杨恒华,杨红文.共和盆地干草原柠条饲料林的研究.青海草业,1996,5(2):13-18
    [158] 王晗生.黄土高原主要薪炭林树种营养成分分析.西北植物学报,1997,16(3):293-300
    [159] 王晗生.黄土高原几种灌木的叶营养成分分析.西北林学院学报,1997,12(1):53-56
    [160] 王玉魁,闫艳霞,安守芹.乌兰布和沙漠沙生灌木饲用营养成分的研究.中国沙漠,1999,19(3):280-284
    [161] 许冬梅,王玲,崔慰贤.治沙灌木主要养分及在羊瘤胃的降解率和体外消化率.宁夏农林科技,1999,(4):31-33
    [162] 李爱华,李月华.枯草期柠条草粉补饲滩羊的试验研究.中国草食动物,2001,3(4):27-29
    [163] 刘晶,魏绍华,李世钢.柠条饲料生产的开发.草业科学,2003,20(6):32-35
    [164] 高卫华,巴达拉夫.内蒙古西部五种防风固沙植物四种微量元素含量的研究.内蒙古草业,1994,3:47-49
    [165] 胡琏,傅德山,余清泉.灌木草场的建立与利用.呼和浩特:内蒙古教育出版社,1989,81-94
    [166] 张秀芬,贾玉山.饲草料贮藏与加工.呼和浩特:内蒙古人民出版社,1989,117
    [167] 邱昌恩,向显智,潘继承.红花锦鸡儿根的化学成分研究.湖北师范学院学报(自然科学版),1997,17(3):99-101
    [168] 崔益泠,穆青,胡昌奇.Studies on the Phenylprop Anoids from Caragana Rosea.Natural Product Research and Development(天然产物研究与开发),2003,15(4):277-283
    [169] 王玉兰,陈未名,李广义.藏药鬼箭锦鸡儿的化学成份.1990,中草药,17(8):8
    [170] 郑海燕,魏永生.藏锦鸡儿原药材中总黄酮含量的初步测定.青海大学学报(自然科学版),2001,19(5):10-12,14
    [171] 贾世山,周桂坤.中间锦鸡儿根异黄酮的分离鉴定.中药通报,1988,13(12):34-35
    [172] 孙智华,张懋,胡昌奇.柠条醇A衍生物的制备.中国医药工业杂志,2004,35(4):197-199
    [173] 魏伟,王洪新,胡志昂,第.Primary studies on molecular ecology of Caragana spp. Populations distributed over Maowusu sandy grassland: from RAPD data. 生态学报, 1999, 19: 16-22
    [174] MA Cheng-Cang, GAO Yu-Bao, LIU Hui-Fen et al. Interpecific Transition Among Caragana microphylla, C. davazamcii and C. korshinskii Along Geographic Gradient. l. Ecological and PARD. Acta Boron Sinica, 2003, 45(10): 1218-1227
    [175] Somerville C. Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc Natl Acad Sci USA, 1995, 92: 6215-6218
    [176] Sarmiento C, Garce's R, Mancha M. Oleate desaturation and acyl turnover in sunflower (Helianthus annuus L.) seed lipids during rapid temperature adaptation. Planta, 1998, 205:595-600.
    [177] Garce's R, Sarmiento C, Maneha M. Temperature regulation of oleate desaturase in sunflower (Helianthus annuus L.) seeds. Planta, 1992, 186:461-465
    [178] Stoutjesdijk P, Singh SP, Liu Q, et al. hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol, 2002, 129:1723-1731
    [179] Mingfeng Yang, Guiling Zheng, Fayun Zhang, et al. FAD2-silencing has pleiotropic effect on polar lipids of leaves and varied effect in different organs of transgenic tobacco, Plant Science, 2006, 170(1):170-177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700