用户名: 密码: 验证码:
菊花近缘属植物的耐盐评价及耐盐机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花(Dendranthema grandiflorum (Ramat.) Kitamura)是我国十大传统名花和世界四大切花之一,用途和栽培地域极广,在现代花卉生产中占有重要地位。盐渍化土壤严重影响菊花生产和品质,耐盐新品种选育已成为菊花育种的一个重要目标。野生种质资源常携带栽培物种缺乏的某些抗逆性,是抗性育种的重要基础材料。本文对32份菊花近缘种属野生资源的耐盐性进行了评价,发掘优异耐盐种质,并探讨其耐盐机制,为推动菊花耐盐种质创新和新品种选育奠定了基础。主要研究结果如下:
     1.以4个菊花近缘种属植物为试材,根据单株受害叶面积比率,从5个NaCl浓度中确定适宜的抗性筛选浓度为120mmol·L-1,并对32份菊花近缘种属植物进行抗盐评价;采用系统聚类法将32份材料的耐盐性分为极强、强、中等、敏感4个级别,其中芙蓉菊、牡蒿、达磨菊耐盐性极强;菊蒿、大岛野路菊耐盐性强;滨菊、黄金艾等7份材料的耐盐性中等,栽培菊品种、紫花野菊、小红菊、毛华菊、甘菊等20份材料对盐胁迫敏感。以形态症状为依据可以对菊花近缘属植物进行快速、有效的耐盐性评价、筛选。
     2.测定了13份菊花近缘属植物在NaCl胁迫后及未经胁迫的叶片叶绿素含量、脯氨酸含量、丙二醛含量、叶片相对含水量、K+、Na+含量及光合速率等15项指标,分析了未经胁迫的、胁迫后的生理指标及生理指标相对值与形态受害指标的相关关系,结果表明,在45个变量中,未经胁迫植物的钠鲜重、钾钠质量比,胁迫后的叶绿素a、总叶绿素、叶片相对含水量、丙二醛含量、脯氨酸含量、钠鲜重,叶绿素a相对值、叶绿素b相对值、总叶绿素相对值、丙二醛含量相对值、脯氨酸含量相对值、净光合速率相对值,共14个变量与形态受害指标有显著或极显著相关关系,可作为菊花近缘属植物苗期耐盐性综合评价的指标;运用主成分分析和隶属函数法综合评价了材料耐盐性,并分别建立了材料的耐盐综合评价值与未经胁迫处理植物的生理指标、胁迫后的指标、指标相对值(胁迫后的指标/未经胁迫的植物的指标)及涵盖三组指标变量的4个多元线形回归方程。利用所建立方程对供试物种进行耐盐性预测,预测结果与植株耐盐综合评价值一致程度高。用未经胁迫处理植物的K+/Na+质量比、胁迫后的叶绿素含量及脯氨酸含量三个变量的回归方程预测效果在4个回归方程中最好,因此,可用这3个指标在苗期对菊花近缘属植物耐盐性进行预测。
     3.对耐盐性的大岛野路菊(Dendranthema crassum)和盐敏感的萨摩野菊(D. ornatum)的两种菊属植物在盐胁迫下的叶绿素、光合气体参数及伤害程度进行了测定。结果表明,在盐胁迫下,2物种的Chl含量下降;叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)降低,胞间CO2浓度(Ci)升高;丙二醛(MDA)含量增加,萨摩野菊受抑制程度更大。大岛野路菊在胁迫下保持总叶绿素含量的稳定,维持一定水平的净光合速率,保持膜系统处于相对完好的状态,是其耐盐的部分原因。在造成两种菊属植物光合速率下降的原因中,非气孔限制始终发挥作用,当胁迫浓度达到120mmol·L-1后,萨摩野菊的气孔限制开始影响光合作用。
     4. NaCl胁迫下,大岛野路菊、萨摩野菊的新生叶面积比率减小,受害叶面积比率增加,叶电解质外渗率增加,大岛野路菊受胁迫影响较轻。2个物种体内Na+和Cl-含量随NaCl浓度的升高而增大,且地上部的Na+、Cl-积累量大于根系;新生叶、茎的K+含量随NaCl浓度的升高而增加;成熟叶是2个物种Na+、Cl-积累的主要器官。与耐盐性强的大岛野路菊相比,NaCl胁迫下萨摩野菊各器官积累的Na+和Cl-量均显著高于前者,其生长对其体内含有的Na+和Cl-比大岛野路菊更为敏感;除高盐胁迫下的根以外,大岛野路菊各器官的K-/Na+均显著高于萨摩野菊;大岛野路菊根向茎运输的SKNa值远高于萨摩野菊,茎向中位成熟叶运输的SK,Na值较低,高盐胁迫时茎向上位新生叶运输的SK,Na值较高。说明NaCl胁迫下大岛野路菊对C1-、Na+的累积能力弱、维持K+、Na+平衡的能力强,且根系对Na+的截留能力强,茎向上位新生叶运输Na+的选择性较低,这是其耐盐性强的主要原因,而茎向中位成熟叶运输Na+的选择性较高是其对盐胁迫的适应。多元回归分析结果还表明,Cl-对萨摩野菊的影响强于Na+。
     5.采用扫描电镜结合X射线能谱微区分布分析技术,研究了NaCl处理下大岛野路菊和萨摩野菊幼苗的K+、Na+、Cl-在亚器官间的区域化分布和吸收、运输特性,结果表明,在NaCl胁迫下,两物种的叶片、茎段各部位的Cl-浓度、Na+浓度均高于根系各部位的Cl-浓度、Na+浓度。萨摩野菊根系、茎段和叶片各部位的Na+、Cl-含量均高于大岛野路菊;大岛野路菊更多的Na+储存或截留在茎的髓和内皮层中,流入导管中的Na+含量低,减少了向叶片传输的Na+;大岛野路菊除了叶片的表皮、根系的表皮及外、中皮层外,其余部位的K+/Na+均高于萨摩野菊;除了茎段的髓部组织外,大岛野路菊各部位Ca2+/Na+值也均高于萨摩野菊,说明其维持离子平衡的能力强于萨摩野菊。两物种Na+、Cl-根系的表皮到中柱的横向传输路径中都受到了皮层的截留,但大岛野路菊根系皮层在减少Na+进入中柱的效果略强;从根到茎的纵向传输方向上,大岛野路菊根具有对Na+明显的截留,但没有发现其对C1-的截留作用,而萨摩野菊对两种盐离子均没有截留作用。另外,Cl-在物种间含量的差异比钠离子更大,两物种根系皮层在阻滞Cl-进入中柱的效果差异大于它们在Na+上的差异,由此说明两物种耐盐性差异可能与Cl-吸收及相关的区域化差异有相关性。
     6.大岛野路菊和萨摩野菊幼苗经NaCl处理后,叶片中的可溶性氨基酸、可溶性糖含量、Cl-和Na+随外界盐浓度的升高而上升,Ca2+、Mg2+、NO3-则相反,K+则先升后降,叶片中总无机离子在渗透调节中的贡献大于有机渗透调节剂,无机离子中Na+、Cl-、K+起主要作用;有机渗透调节剂中可溶性糖含量远高于可溶性氨基酸,但二者在胁迫后的增加幅度相当。两种植物的Na+/K+和Pro/AA值在胁迫后也增加。大岛野路菊的实测渗透势(MOP)在各胁迫下均大于其计算渗透势(COP),说明除所测的8种渗透调节剂外,植物体中还存在未测定的渗透调节物质。盐敏感的萨摩野菊在盐胁迫后渗透调节能力更强,说明大岛野路菊的耐盐性强于萨摩野菊,并非是渗透调节能力强所致。
     7.研究了NaCl长期胁迫处理(68天)4种耐盐菊花近缘属植物:大岛野路菊、菊蒿(Tanacetum vulgare)、达磨菊(Aster spathulifolius)、芙蓉菊(Crossostephium chinense)体内K+、Na+、Cl-在器官间的区域化分布特性。结果表明,胁迫下4植物Na+和C1-含量均比对照显著增加,并高于盐敏感种在凋亡时的Na+、Cl"含量,但4种植物均无明显受害特征。叶片中Na+、C1-的积累浓度高于根系,茎段、基部叶或成熟叶的Na+、Cl-积累量在各器官中最多。Cl-在各器官间的分配相对较均衡,而Na+在各器官间的分配差异较大。各器官的K+比对照减少,K+/Na+均显著低于对照,但代谢旺盛部位的K+/Na+值在器官间相对较高。根系对Na+、C1-的吸纳能力弱,根系自环境中吸收的SK,Na值较高,根系向茎段运输的SK,Na值较低,茎段向新生叶运输的SK,Na值高是它们耐盐性强的原因。芙蓉菊和达磨菊吸收C1-的能力明显低于其它3个物种;而菊蒿对Na+的吸收能力明显低于其它物种。所以离子吸收和分布策略的差异可能也是导致4种植物耐盐性相对强弱的重要原因。
     8.在NaCl长期胁迫处理后,大岛野路菊、菊蒿、达磨菊、芙蓉菊叶肉细胞轮廓清晰,组织结构保持完整,菊蒿、芙蓉菊的叶片变薄,等面叶特征消失或弱化;而达磨菊、大岛野路菊的叶肉及薄壁组织增厚,细胞体积增大,具有稀盐的结构特征。盐敏感种萨摩野菊在短期盐胁迫后的细胞轮廓模糊,细胞中叶绿体数量减少,发生细胞结构的解体。达磨菊、大岛野路菊在长期盐胁迫后叶片相对含水量增加,而菊蒿、芙蓉菊的叶片相对含水量下降,但依然保持较高的水平。
Chrysanthemum(Dendranthema grandiflorum (Ramat.) Kitamura), one of ten traditional flowers and one of four the world's major cut flowers, is widely cultivated for ornamental purposes, which plays an important role in modern flower production. Serious impact on soil salinization in chrysanthemum production and quality, and breeding new varieties of salt tolerant has therefore become an important goal of chrysanthemum breeding. Wild species germplasm resources often carried some important resistance that lack in cultivars is an important basis for resistance breeding materials. In order to discover the salt tolerant germplasm in Dendranthema, an evaluation system for salt-tolerance of Chrysanthemum was established. The paper also explores its salt mechanism for promoting innovation and new chrysanthemum varieties of salt-tolerant germplasm breeding foundation. The main results are as follows:
     Four species from Dendranthema and its relative genera were studied, the proper screening concentration of NaCl was determined as120mmol.L"1among NaCl at different concentrations of0,40,80,120,160and200mmol.L-1according tothe ratio of injured leaf area per plant, and salt tolerance of32species from Dendranthema and its relative genera were screened. Hierarchical clustering analysis showed that32taxa could be divided into extremely salt tolerant, salt tolerant, moderately salt tolerant and salt sensitive grade, respectively. Artemisia japonica, Aster spathulifolius, Crossostephium chinense are extremely salt tolerant, Tanacetum vulgare and Chrysanthemum crassum are salt-tolerant, seven taxa represented by Artemisia vulgaris, Leucanthemum vulgare are moderately salt tolerant,20taxa represented by Dendranthema zawadskii, D. chanetii, D. vestitum, D. lavandulifolium are salt sensitive ones. Salt tolerance screening of plants from Dendranthema and its relative genera can be achieved effectively and rapidly by morphological indexes.
     The content of chlorophyll, proline, malondialdehyde, relative leaf water, K+and Na+, net photosynthesis rate etc.,15indicators of NaCl stressed and unstressed seedlings of13taxa from Dendranthema and its relative genera were measured. The relation between these physiological traits and morphology injured index were analysed, the results showed that among45variables, dry and fresh weight plus the ratios of K+Na+of unstressed plants, and the content of chlorophyll a, total chlorophyll, relative leaf water, malondialdehyde, proline, dry and fresh weight, relative value of chlorophyll a, chlorophyll b, total chlorophyll, malondialdehyde, proline, net photosynthesis rate of salt stressed seedlings, all14variables were significantly or highly significantly correlated with morphology injured extent. And it can be the indicators of comprehensive evaluation of salt tolerance of Dendranthema and its relative genera.
     Applying principal component analysis and subordinate function value analysis comprehensive salt tolerance evaluation of the material were made. Four multiple-linear regression equation between the comprehensive evaluation value of salt tolerance and physiological traits of salt stressed and unstressed seedlings, relative value(index after stress/index without stress) and variables including aforementioned three group index were established separately. The salt tolerance prediction of tested species used the established equation were highly consistent with comprehensive salt tolerance evaluation value. The predict effect by using ratios of K+/Na+of unstressed plants, chlorophyll content and proline content of plants being stressed is best among4regression equation, so, we suggested that the three indexes could be used to predict the salt tolerance in Dendranthema and its relative genera in seedlings.
     The effects of NaCl stress on the chlorophyll contents, photosynthetic gas exchange parameters and injury degree of two species of Dendranthema with different salt tolerance, i.e., Dendranthema crassum and D. ornatum were investigated. The results showed that under salt stress, Chl content decreased in two species. The net photosynthetic rate, stomatal conductance and transpiration rate declined significantly, while intercellular CO2concentration increased in the both species under salt stress. However, MDA content increased under salt stress. The inhibiting effect of D. ornatum was significantly greater than that of Dendranthema crassum. The partly cause of salt tolerant is that Dendranthema crassum under salt stress could keep the total chlorophyll contents stable, maintain the net photosynthetic rate stays at a certain level, and keep membrane system in relatively perfect working order. In the reasons for the decline in photosynthetic rate of two species of Dendranthema, non-stomatal limitation has always played a role, the stomatal limitation of D. ornatum began to affect photosynthesis when the stress concentration reached to120mmol.L-
     The ratio of injured leaf area per plant of two species increased, and the ratio of new developed leaf area per plant decreased, leaf relative electricity conductivity increased. Dendranthema crassum showed slighter injured symptom under NaCl stress than D. ornatum. The Na+and Cl-content in seedlings of two species, also the K+content in stem and new developed leaves increased as the NaCl concentrations increased, the Na+and Cl+accumulation in upper part of the seedlings was more than the amount in root. Na+and Cl-were primarily concentrated in mature leaves. Compared with salt tolerant D. crassum, the salt sensitive D. ornatum showed high Na+and Cl-accumulation in every organ, and its growth showed much correlation with the Na+and Cl-content in its organ. The ratios of K+/Na+in different parts of D. crassum seedlings were higher than D. ornatum's except the ratio in root under severe NaCl stress. D. crassum had a higher transportation selectivity of K+to Na+from root to stem, a lower of K+to Na+from stem to middle mature leaves under same salinity, and a higher K+to Na+from stem to upper new developed leaves under high NaCl salinity. That D. crassum accumulate lower Na+and Cl-, retained more Na+in root, be able to maintain ratios of K+Na+well, and have lower transportation selectivity of Na+from stem to upper leaves were the main reasons for the stronger salt-tolerance of it, while the higher transportation selectivity of Na+from stem to middle mature leaves was one of mechanisms of accommodation to salt stress. Cl-influenced D. ornatum'growth little more than Na+from multiple-linear regression analysis.
     By the method of X-ray microanalysis, the effects of different concentration NaCl on the absorption, transportation and compartmentalized distribution of K+, Na+and Cl-on the sub-organ level of2species of Dendranthema seedlings were studied, The results showed that under NaCl stress the Na+and Cl-accumulation in every part of the leaf and stem was more than the amount in root. Compared with D. crassum, D. ornatum showed high Na+and Cl" accumulation in every part of each organ, more section of Na+were stored in the inner cortex and marrow of its stem, while less Na+were inpoured into the vessels, as a result the Na+transported to leaves become less. Except for the of leaves and roots, outer and middle in root, K+/Na+was higher than the value in D. ornatum, Ca2+/Na+of every part in D. crassum, was also higher than the amount in D. ornatum, Except for the marrow in stem, which suggested that the ability of maintaining ion balance in D. crassum is better than that in D. ornatum. Both Na+and Cl-were withheld by cortex as their were transport Laterally from epidermis to stele in two species, but D. crassum could retained more Na+in root cortex and possess the ability of withholding Na+but not for Cl-when ion were transported vertically from root to stem, while neither Na+nor Cl-was observed being withheld in root of D. ornatum. The disparity of Cl-content between two species is great than the Na+content, also the retardarce of Cl-transport in cortex to stele is more remarkable than the Na+, which indicated that the difference of absorption and compartmentalized distribution of Cl-may explain the difference of salt resistance.
     When the seedlings of D. crassum and D. ornatum were treated with NaCl, soluble amino acids, the content of soluble sugar and the contents of Na+and Cl-in leaves all increased with salt concentration increased, Ca2+、Mg2+、NO3-decreased and K+was first increased and then decreased. Overall, the contribution of inorganic ions to osmotic adjustment in leaves was greater than the organic osmotica, and Na+and Cl-played the most important role. In organic osmotica, though the content of soluble sugar was much higher than soluble amino acids, increase extent of them were similar after stress. The Na+/K+and Pro/AA value of two plants also increased after the stress. The measured osmotic potential (MOP) of D. crassum is bigger than computational osmotic potential (COP), which implies that there still exists other osmotic in the plants except for the8osmotica determined in the experiment. Osmotic adjustment ability of salt-sensitive D. ornatum was much stronger after salt stress, which implies that the salt tolerance of D. crassum was stronger than D. ornatum was not the result of osmotic adjustment ability.
     The effects of long term (68d) NaCl stress on the compartmentalized distribution of K+, Na+and Cl-on the organ level of4salt tolerant taxa from Dendranthema and its relative, Dendranthema crassum, Tanacetum vulgare, Aster spathulifolius, Crossostephium chinense seedlings were studied, The results showed that after NaCl stress, no obvious injured symptom were exhibit in4species, and the Na+and Cl-content of4species increased significantly in comparison with the control, also the content were higher than the amount in salt sensitive D. ornatum when the plant exhibit chlorosis. Na+and Cl-accumulation in the leaf was more than the amount in root. The Na+and Cl-content of stem, lower leaves and mature leaves were highest among different organs. Compared with Na+distribution, the distribution of Cl-among different organs were more balanced. The content of K+and ratio of K+/Na+decreased, significantly in comparison with the control, but the K+/Na+on active metabolic organs remained on a higher value. That these four species accumulate lower Na+and Cl-in root, absorb more KT from environment, retained more Na+in root, be able to maintain ratios of K+/Na+well, and have higher transportation selectivity of K+from stem to upper leaves were the main reasons for the stronger salt-tolerance of them. while the higher transportation selectivity of Na+from stem to middle mature leaves was one of mechanisms of accommodation to salt stress. Cl-influenced D. ornatum' growth little more than Na+from multiple-linear regression analysis. The ability of Cl-absorption on Aster spathulifolius, Crossostephium chinense was lower than other two species, while the ability of Na+absorption of Tanacetum vulgare was lowest among these four species. So the difference on the strategy of ion absorption and compartmentalized distribution of plants may play an important role on the mechanism of salt resistance.
     Leaf thickness became thinning and the characters of isobilateral leaf disappeared or weakened in Tanacetum vulgare and Crossostephium chinense under prolong stress, but in D. crassum and Aster spathulifolius, the character of salt-dilution is obviously, such as thicken mesophyll and parenchyma tissue and increased cell volume. Under shot-term stress, the cells collapsed lending to distortion of organ morphology, reducing the number of cells in the chloroplast and distortion of organ morphology in Salt-sensitive species D. ornatum. Relative leaf water content in Aster spathulifolius and D. crassum increased while decreased in Tanacetum vulgare and Crossostephium chinense and maintained a high level under long-term stress.
引文
曹辉,于晓英,邱收,李婷.盐胁迫对萱草生长及其相关生理特性的影响.湖南农业大学学报(自然科学版),2007.33(6):690-693
    陈德明,俞仁培,杨劲松.盐渍条件下小麦抗盐性的隶属函数值法评价.土壤学报,2002,39(3)
    陈德明,俞仁培.作物相对耐盐性的研究Ⅰ.大麦和小麦不同生育期的耐盐性.土壤学报,1995,32(4):414-423
    陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,2006,18(1):51-55
    陈洁.水稻幼苗耐盐性的定量鉴定及耐盐生理生化研究.硕士学位论文,华南热带农业大学,2003
    陈静波,阎君,郭海林,刘建秀.暖季型草坪草大规模种质资源抗盐性评价指标的选择.草业科学,2008,25(4):95-99
    陈静波,阎君,张婷婷,刘建秀,郭海林.四种暖季型草坪草对长期盐胁迫的生长反应.草业学报,2008,17(5):30-36
    陈少良,李金克,毕望富,王沙生.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化.植物学通报,2001,18(5):587-596
    陈淑芳,朱月林,刘友良,胡春梅,张古文NaCl胁迫对番茄嫁接苗叶片ABA和多胺含量的影响.园艺学报,2006,33(1):58-62
    陈顺伟,高智慧,岳春雷,袁苗静,朱杭瑞,叶君往.盐雾胁迫下杜英等树种生理特性的变化.南京林业大学学报(自然科学版),2003,27(5):11-14
    陈托兄,张金林,陆妮,王锁民.不同类型抗盐植物整株水平游离脯氨酸的分配.草业学报,2006,15(1):36-41
    陈竹生,聂华堂,计玉,甘俊新,吴云伦.柑桔种质的耐盐性鉴定.园艺学报,1992,19(4):289-295
    程建峰,潘晓云,刘宜柏,戴廷波,曹卫星.水稻抗旱性鉴定的形态指标.生态学报,2005,25(11):3117-3125
    董志刚,程智慧.番茄品种资源芽苗期和幼苗期的耐盐性及耐盐指标评价.生态学报,2009,29(3):1348-1355
    董志刚,孟焕文,程智慧.黄瓜品种资源芽苗期和幼苗期耐盐性及其评价指标研究.干旱地区农业研究,2008,26(4):156-162
    杜立群,李银心,李洪杰,郭北海,朱至清,周百成.在1/3海水培养基上筛选豆瓣菜耐盐变异体.植物学报,1999,41(6):633-639
    冯蕾,白志英,路丙社,蔡胜文,冯丽娜.氯化钠胁迫对枳棋和皂荚生长、叶绿素荧光及活性氧代谢的影响.应用生态学报,2008,19(11):2503-2508
    葛江丽,石雷,谷卫彬.盐胁迫条件下甜高粱幼苗的光合特性及光系统Ⅱ功能调节.作物学报,2007,33(8):1272-1278
    龚明,丁念诚,贺子义,刘友良.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系.植物学报,1989,31(11):841-846
    管志勇,陈发棣,陈素梅,王斌.NaCl胁迫对菊花花序形态及生理指标的影响.西北植物学报,2009,29(8):1624-1629
    桂连友,孟国玲,龚信文,熊三浩.茄子品种(系)对侧多食跗线螨抗性聚类分析.中国农业科学,2001,34(5):465-468
    郭美兰.小麦族10种多年生禾草耐盐性综合评价.硕士学位论文,内蒙古农业大学,2006
    韩希忠,赵保江.黄河二角洲耐盐园林树种的选择.中国林业,2002,10:40-45
    何玮,范彦,徐远东,王琳,秦晓鹏,彭燕.红三叶苗期抗旱性指标筛选及综合评价.植物遗传资源学报,2009,10(4):572-577
    侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机制.植物生理学通讯,1999,35(1):1-7
    侯建华,云锦凤,张东晖.羊草与灰色赖草及其杂交种的耐盐生理特性比较.草业学报,2005,14(1):73-77
    贾双双,高荣广,徐坤.番茄砧木对南方根结线虫抗性鉴定.中国农业科学,2009,42(12):4301-4307
    江行玉,赵可夫,窦君霞.NaCl胁迫对玉米和演藜时片中内源多胺含量与幼苗生长的影响.植物生理学通讯,1999,35(3):188-190
    寇贺,曹敏建,那桂秋.大豆种子萌发期耐盐性综合鉴定指标初探.杂粮作物,2007,27(5):352-355
    李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应.植物学通报,2005,22(增刊):118-127
    李峰,谢永宏,覃盈盈.盐胁迫条件下湿地植物的适应策略.生态学杂志,2009,28(2):314-321
    李合生,现代植物生理学(第2版).北京:高等教育出版社,2006
    李明亮,赵可夫.盐度对海蓬子植株膜脂及其脂肪酸组分的影响.山东师大学报(自然科学版),1993,8(3):72-77
    李倩中,苏家乐,刘晓宏,陈尚平,刘晓青.4种槭属植物耐盐性差异的研究.江苏农业科学,2009,6:227-229
    李艳,马均,王贺正,张荣萍,李旭毅.水稻品种苗期抗旱性鉴定指标筛选及其综合评价.西南农业学报,2005,18(3):250-255
    梁春波,韩秀峰,邸宏,陈伊里.马铃薯新型栽培种耐盐性鉴定与筛选.中国马铃薯,2006,20(2):69-73
    林镕,陈艺林.中国植物志第74卷,中国植物志编辑委员会,1985,北京:科学出版社
    刘爱荣,王桂芹,章小华.NaCl处理对空心莲子草营养器官解剖结构的影响.广西植物,2007,27(5):682-686
    刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分子生物学学报,2005,31(4):389-395
    刘洪见,王月英,曾爱平.盐分胁迫对木荷幼苗生长影响研究.浙江农业科学,2008:697-699
    刘丽云.氯化钠胁迫下不同钙盐对苦楝萌发的缓解效应.湖北农业科学.2009,48(9):2181-2183
    刘一明,程凤枝,王齐,胡玉咏,王兆龙.四种暖季型草坪植物的盐胁迫反应及其耐盐阈值.草业学报,2009,18(3):192-199
    刘一明,王兆龙.冷季型草坪草品种(系)的耐盐性筛选.上海交通大学学报(农业科学版),2007,25(4):367-373
    刘友良,汪良驹.植物对盐胁迫的响应及其耐盐性.植物生理学与分子生物学,1998:752-769
    刘兆普,沈其荣,尹金来.滨海盐土农业.北京:中国农业科技出版社,1998:48-64
    刘子英.保护地蔬菜栽培中土壤次生盐渍化演变规律研究.硕士学位论文.中国农业大学,2005
    柳茜,敖学成,傅平,陈艳.非秋眠紫花苜蓿株系优选的性状分析.草业科学,2009,26(11):82-85
    卢树昌,苏卫国.重盐碱区耐盐植物筛选试验研究.西北农林科技大学学报(自然科学版),2004,32:19-24
    陆静梅,刘友良,胡波,庄炳昌.中国野生大豆盐腺的发现.科学通报,1998,43(19):2074-2078
    罗庆云,放丙军,刘友良.大豆苗期耐盐性鉴定指标的检验.大豆科学,2001,20(3):177-182
    骆建霞,史燕山,吕松,黄俊轩,王丹,李建科.3种木本地被植物耐盐性的研究.西北农林科技大学学报(自然科学版),2005,33(12):121-125
    马翠兰,刘星辉,陈素英.盐胁迫下柚和橘幼苗体内矿质元素变化的比较研究.热带亚热带植物学报,2005,13(4):333-337
    马雅琴,翁跃进.引进春小麦种质耐盐性的鉴定评价.作物学报,2005,31(1):58-64
    孟凡娟,王秋玉,王建中,李淑艳,王疆江.四倍体刺槐的抗盐性.植物生态学报,2008,32(3):654-663
    孟林,毛培春,张国芳.偃麦草属植物种质材料不同耐盐群体生理指标分析.干旱地区农业研究,2009,27(4):83-89
    穆俊丽,杨静慧,丁密超,何斌琼,宋晓洁.7个草木樨品种的耐盐性研究.西北农林科技大学学报(自然科学版),2009,37(1):73-78
    钱永生,张晓勤.盐胁迫下植物Na+/H+逆向转运蛋白研究进展.湖北农业科学,2007,46(2):314-319
    钦佩,周春霖,安树青.海滨盐土农业生态工程.北京:化学工业出版社,2002:86-94
    邱杨.小白菜耐盐性的遗传分析与耐盐相关基因的差异表达研究.硕士学位论文.中国农科院,2004
    裘丽珍,黄有军,黄坚钦,夏国华,龚宁.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究.浙江大学学报(农业与生命科学版),2006,32(4):420-427
    全先庆,张渝洁,单雷,毕玉平.高等植物脯氨酸代谢研究进展.生物技术通报,2007,1:14-18
    任珺.牧草抗旱性综合评价指标体系的AHP模型设计与应用的研究.草业学报,1998,7(3):34-40
    史庆华,朱祝军,Alaghabary K,钱琼秋.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,2004,10(2):188-191
    史晓杰,万力,张永庭,吴加敏.银北地区土壤盐渍化形成机理与模拟研究.水文地质工程地质,2007,06:116-120
    史燕山,骆建霞,张涛,王瑞,孟庆田,刘艳军,赵大顺.核果类果树砧木耐盐性差异的研究.西北 农林科技大学学报(自然科学版),2004,32(3):45-48
    宋丹,张华新,耿来林,刘涛,白淑兰.植物耐盐种质资源评价及耐盐生理研究进展.世界林业研究,2006,19(3):27-32
    孙海菁,王树凤,陈益泰.盐胁迫对6个树种的生长及生理指标的影响.林业科学研究,2009,22(3):315-32
    孙金月,赵玉田,常汝镇,梁博文,刘方.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究.中国农业科学,1997,30(4):9-15
    孙黎,刘士辉,师向东,肖敏,汤照云,朱红伟,陈建中.10种藜科盐生植物的抗盐生理生化特征.干旱区研究,2006,23(2):309-313
    孙小芳,郑青松,刘友良.盐胁迫下不同基因型棉花萌发生长和离子吸收特性.棉花学报,2001,13(3):134-137
    孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验.作物学报,2001,27(6):27-32
    汤章诚.逆境下植物脯氨酸的累积及其可能意义.植物生理学通讯,1984,(4):6-10
    陶大立,何兴元.国内植物环境胁迫研究应注意的几个基本问题.生态学杂志,2009,28(1):102-107
    滕红梅,苏仙绒,崔东亚.运城盐湖4种藜科盐生植物叶的比较解剖研究.武汉植物学研究,2009,27(3):250-255
    汪贵斌,曹福亮,游庆方,祁稳红.盐胁迫对4树种叶片中K+和Na+的影响及其耐盐能力的评价.植物资源与环境学报,2001,10(1):30-34
    王标,虞木奎,孙海菁,成向荣,单奇华,方炎明.盐胁迫对不同种源麻栎叶片光合特征的影响.应用生态学报,2009,20(8):1817-1824
    王春梅.Na+在拒盐型小花碱茅、积盐型霸王逆境适应中的作用研究.兰州大学硕士学位论文,2008
    王聪,朱月林,杨立飞,陈罡,毛彦.菜用大豆耐盐品种的筛选及其耐盐生理特性.江苏农业学报,2009,25(3):621-627
    王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展.中国农学通报,2009,25(04):124-128
    王芳,丁烽,段培,马成涛,王宝山.一种以幼根K+外漏量鉴定小麦耐盐性的方法.植物生理学通讯,2006,42(6):1149-1152
    王芳,段迪,段培,王宝山.不同耐盐性小麦胚芽鞘伸长对NaCl胁迫的响应,作物学报,2007,33(12):2053-2058
    王贺正,马均,李旭毅,李艳,张荣萍,刘慧远,汪仁全.水稻开花期抗早性鉴定指标的筛选.作物学报,2005,31(11):1485-1489
    王家利,丁同楼,王宝山.肉质植物及其对盐渍和干旱环境的适应.山东师范大学学报(自然科学 版),2005,20(4):74-76
    王景艳,刘兆普,刘玲,刘冲.盐胁迫对长春花幼苗生长和生物碱含量的影响.应用生态学报,2008,19(10):2143-2148
    王军,周美学,许如根,吕超,黄祖六.大麦耐湿性鉴定指标和评价方法研究.中国农业科学,2007,40(10):2145-2152
    王丽燕,赵可夫.NaCl胁迫对海蓬子(Salicornia bigelovii Torr.)离子区室化、光合作用和生长的影响.植物生理与分子生物学学报,2004,30(1):94-98
    王丽燕.泌盐盐生植物的盐腺及泌盐机理研究概况.德州学院学报,2003,19(4):73-75
    王敏,杨万明,侯燕平,岳爱琴,李贵全,杜维俊.不同类型大豆花荚期抗旱性形态指标及其综合评价.核农学报,2010,24(1):0154-0159
    王淑慧,曹华雯,戴思兰.NaCl胁迫对四种菊科植物叶片中甜菜碱含量的影响.中国观赏园艺研究进展.2005:451-454
    王业遴,马凯,姜卫兵,凌志奋.五种果树耐盐力试验初报.中国果树,1990,(3):8-12
    王酉石.荒漠植物红砂在干早胁迫和盐胁迫下的渗透调节研究.兰州大学博士学位论文,2009
    王正航,武仙山,昌小平,李润植,景蕊莲.小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析.作物学报,2010,36(2):217-227
    王遵亲.中国盐渍土.北京:科学出版社,1993:325-344
    韦存虚,王建波,陈义芳,周卫东,孙国荣.盐生植物星星草叶表皮具有泌盐功能的蜡质层.生态学报,2004,24(11):2451-2456
    魏国强,朱祝军,方学智,李娟,程俊.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响.中国农业科学2004,37(11):1754-1759
    吴薇,高捍东,魏树强.水培盐碱胁迫对杂交新美柳生根特性的影响.林业科技开发,2008,22(3):32-34
    吴晓丽,韩清芳,贾志宽.不同紫花苜蓿几个抗旱指标的灰色关联分析.干旱地区农业研究,2008,26(3):100-103
    吴运荣,易可可,祝金明,吴平.利用表型相关分析筛选番茄耐盐指标.浙江大学学报(农业与生命科学版),1999,25(6):645-649
    郗金标,张福锁,田长彦.新疆盐生植物.北京:科学出版社,2006
    徐蕊,王启柏,张春庆,吴承来.玉米自交系抗旱性评价指标体系的建立.中国农业科学,2009,42(1):72-84
    许大全.光合作用测定及研究中一些值得注意的问题.植物生理学通讯,2006,42(6):1163-1167
    许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6(4):379-387
    许瑛,陈煜,陈发棣,陈素梅.菊花耐寒特性分析及其评价指标的确定.中国农业科学,2009,42(3): 974-981
    闫永庆,王文杰,朱虹,石溪婵,刘兴亮,祖元刚.3种杂交杨在不同盐碱地上的生长和生理适应性研究.植物研究,2009,29(4):433-438
    杨美娟.盐胁迫对中亚滨藜营养器官内部结构的影响及其盐囊泡发育过程研究.山东师范大学硕士学位论文,2005
    杨明锋.NaCl和KCl胁迫对碱蓬根和地上部分生长的效应.山东师范大学学报(自然科学版),2002,17(1):68-72
    杨培君.藜科植物轴器官的结构多样性初探.西北植物学报,2002,22(4):801-811
    姚丽贤,李国良,党志.集约化养殖禽畜粪中主要化学物质调查.应用生态学报,2006,17(10):1989-1992
    姚正培,孟君,李冠.玉米自交系芽苗期耐盐性的鉴定与筛选.华北农学报,2007,22(5):27-30
    余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响.土壤,2005,37(6):581-586
    郁万文.刺槐无性系耐盐差异.硕士学位论文,山东农业大学,2005
    张耿,高洪文,王赞,阳曦,孙桂芝,关宁.偃麦草属植物苗期耐盐性指标筛选及综合评价.草业学报,2007,16(4):55-61
    张耿.偃麦草属牧草苗期耐盐性综合评价及中间偃麦草Na+/H+逆向转运蛋白基因的克隆.硕士学位论文.中国农业科学院,2007
    张光弟,俞晓艳,冯晓蓉,崔新琴,赵建玉.千屈菜植株耐盐性初步研究.农业科学研究,2009,30(3):82-84
    张海燕,焦碧蝉,李贵全.大豆抗旱性鉴定指标评价的研究.大豆科学,2005,24(3):177-182
    张华新,刘正祥,刘秋芳.盐胁迫下树种幼苗生长及其耐盐性.生态学报,2009,29(5):2263-2271
    张华新,宋丹,刘正祥.盐胁迫下11个树种生理特性及其耐盐性研究.林业科学研究,2008,21(2):168-175
    张科,田长彦,李春俭.一年生盐生植物耐盐机制研究进展.植物生态学报,2009,33(6):1220-1231
    张丽平,张格英,史庆华,丁飞,王秀峰,冯建鹏.氯化钠胁迫对不同耐盐黄瓜品种的损伤效应及反射光谱特性的影响.植物营养与肥料学报,2008,14(4):761-765
    张敏,蔡瑞国,李慧芝,李建敏,戴忠民,王振林,尹燕枰.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化.生态学报,2008,28(1):310-411
    张玉,芦建国,廖勇.NaCl胁迫对花菖蒲叶片生长及几种生理指标的影响.安徽农业科学.2009,37(23):10976-10978
    张玉鑫,刘芳,康恩祥,陈年来.NaCl胁迫下甜瓜幼苗离子吸收特性研究.植物营养与肥料学报,2008,14(3):533-539
    张云起,刘世琦,杨凤娟,李东方.耐盐西瓜砧木筛选及其耐盐机理的研究.西北农业学报,2003, 12(4):105-108
    张子学,王正鹏.不同棉花品NaCl胁迫的生理表现及其耐盐性筛选指标分析.中国棉花,2004,31(8):8-10
    章英才.几种不同盐生植物叶的比较解剖研究.宁夏大学学报(自然科学版),2006,27(1):68-71
    赵宏波.东亚春黄菊族系统演化及栽培菊花与矶菊属间杂交研究.南京农业大学博士学位论文,2007
    赵可夫,李法曾,樊守金,冯立田.中国的盐生植物.植物学通报,1999,16(3):201-207
    赵可夫,周三,范海.中国的盐生植物.植物学通报,2002,19(5):611-613
    赵可夫.盐生植物.植物学通报,1997,14(4):1-12
    赵可夫.植物抗性生理.北京:中国科学技术出版社,1993,133-141
    赵瑞雪,朱慧森,程钰宏,董宽虎.植物脯氨酸及其合成酶系研究进展.草业科学,2005,25(2):90-97
    赵锁劳,窦延玲.小麦耐盐性鉴定指标及其分析评价.西北农业大学学报,1998,26(6):80-85
    赵听,盛芬玲,赵敏桂,吴雨霞NaCl胁迫下盐芥和拟南芥化合物含量与蛋白质结构变化比较-傅立叶红外光谱法.应用与环境生物学报,2008,14(3):371-377
    赵秀梅,董铁,刘芬,李红旭,郝燕NaCl胁迫对兰州百合苗期生长和发育的影响.干旱地区农业研究,2008,26(2):85-89
    赵秀梅,张剑侠,王跃进.葡萄组培苗耐盐性研究.果树学报,2005,22(3):202-206
    赵旭,王林权,周春菊,尚浩博.盐胁迫对四种基因型冬小麦幼苗Na+、K+吸收和累积的影响.生态学报,2007,27(1):205-213
    赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化.植物生理与分子生物学学报,2005,31(1):103-106
    甄伟玲,王文,孔东升,占玉芳,丁丽萍,滕玉风.4种宿根草本花卉的耐盐性.东北林业大学学报,2009,37(11):61-63
    周芬,曾长立,王建波.外源钙降低拟南芥幼苗盐害效应.武汉植物学研究,2004,22(2):179-182
    周俊国,朱月林,刘正鲁,王建国.组培条件下中国南瓜杂交种耐盐材料的筛选.核农学报,2007,21(4):345-348
    周俊国,朱月林,刘正鲁,张古文,王建国.NaCl胁迫对中国南瓜杂交种成株期根系生理生化特征的影响.西北植物学报,2007,27(10):2052-2058
    周俊国,朱月林,杨立飞,刘正鲁,张古文.NaCl胁迫下中国南瓜杂交种和黑籽南瓜植株离子吸收与积累特性研究.植物营养与肥料学报,2008,14(3):546-551
    周玲玲,刘萍,王军.新疆2种盐生补血草营养器官的解剖学研究.西北植物学报,2007,27(6):1127-1133
    周三,韩军丽,赵可夫.泌盐盐生植物研究进展.应用与环境生物学报,2001,7(5):496-501
    Abogadallah G M, Serag M M, El-Katouny T M, Quick W P. Salt tolerance at germination and vegetative growth involves different mechanisms in barnyard grass (Echinochloa crusgalli L.) mutants. Plant Growth Regulation,2010,60:1,1-12
    Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K. Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum,2009,53:2,243-248
    Allakhverdiev S I, Nishiyama Y, Miyairi S, Yamamoto H, Inagahi N, Kanesaki Y, Murata N. Salt stress inhibits the repair of photodamaged photosystem Ⅱ by Plant Physiologyressing the transcription and translation of psbA genes in Synechocystis. Plant Physiology,2002,130:1443-1453
    Amtmann A, Leigh R. Ion Homeostasis. Abiotic Stress Adaptation in Plants,2010,3:245-262
    Anthony J Kern and William E Dyer. Glycine Betaine Biosynthesis Is Induced by Salt Stress but Repressed by Auxinic Herbicides in Kochia scoparia. Journal of Plant Growth Regulation,2004, 23(1):9-19
    Antonello L M, Espindola M C G, Vidal M D, Menezes N L, Garcia D C. Effect of salt stress on the germination of calendula (Calendula officinalis L.) seeds. Revista Brasileira de Plantas Medicinais, 2008,10:4,117-120
    Badridze G, Weidner A, Asch F, Borner A. Variation in salt tolerance within a Georgian wheat germplasm collection. Genetic Resources and Crop Evolution,2009,56:8,1125-1130.
    Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences,2005, 24(1):23-58
    Bastias E I, Gonzalez-Moro M B, Gonzalez-Murua C. Zea mays L. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron are available. Plant Soil,2004,267: 73-84
    Batistic O, Kudla J. Calcium:Not Just Another Ion. Plant Cell Monographs. Cell Biology of Metals and Nutrients,2010,17:17-54
    Bergmann I,GeiB-Brunschweiger U, Hagemann M, Schoor A. Salinity tolerance of the chlorophyll b-synthesizing cyanobacterium Prochlorothrix hollandica strain SAG 10.89.Microb. Ecol,2008,55: 685-696
    Blumwald E, Aharon G S, Apse M P. Sodium transport in Plant cells. Bioehimica Et BioPhysiea Acta-Biomembranes,2000,1465(1-2):140-151
    Bor M, Ozdemir F, Tukan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. plant Sci,2003,164:77-84
    Carden D E, Walker D J, Flowers T J& Miller A J. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiology,2003,131:676-683
    Cheeseman J M. Mechanisms of Salinity Tolerance in Plants. Plant Physiology,1988,87:547-550
    Chen S L, Li J K, Wang S S, et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation and transport in regenerated plants of Populus euphratica and P. twmen Twsa. Canadian Journal of Forest Research,2003,33(6):967-975
    Chen S, Li J, Fritz E, et al. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manage,2002,168:217-230
    Cram J W, Torr P G, Ross D A. Salt allocation during leaf development and leaf fall in mangroves. Trees Struct Funct,2002,16:112-119
    Cramer G R, Lauchli A, Epstein E. Effects of NaCl and CaC12 on ion activities in complex nutrient and root growth of cotton. Plant Physiol,1986,81:792-797
    das Neves J P C, Ferreira L F P, Vaz M M, Gazarini L C. Gas exchange in the salt marsh species Atriplex portulacoides L. and Limoniastrum monopetalum L. in Southern Portugal. Acta Physiol. Plant, 2008,30:91-97
    Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegen F. Dual action of the active oxygen species during plant stress responses. Cellular Mol Life Sci,2000,57:779-795
    El-Beltagi H S, Salama Z A, El-Hariri D M. Some biochemical markers for evaluation of flax cultivars under salt stress conditions. Journal of Natural Fibers,2008,5:4,316-330
    El-Hendawy, Salah E Hu, Yuncai Schmidhalter, Urs. Assessing the suitability of various physiological traits to screen wheat genotypes for salt tolerance. Journal of Integrative. Plant Biology,2007,49(9): 1352-1360.
    Elkahoui S, Hemandez J A, Abdelly C, Ghrir R. Limam R Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci,2005,168: 607-613
    Eom Seok Hyun, SetterTimothy L, DiTommaso Antonio, Weston Leslie A. Differential growth response to salt stress among selected ornamentals. Journal of Plant Nutrition,2007,30(7-9): 1109-1126.
    Fall D, Diouf D, Neyra M, Diouf O, Diallo N. Physiological and biochemical responses of Acacia Seyal (Del.) seedlings under salt stress conditions. Journal of Plant Nutrition,2009,32:7,1122-1136
    Fernandez-Garcia N, Martinez V, Cerda A, er al. Water and nutrient uptake of grafted tomato plants grown under saline conditions. Journal of Plant Physiology,2002,159(8):899-905
    Flowers T J, Colmer T D. Salinity tolerance in halophytes. New Phytologist,2008,179:945-963
    Foyer CH,Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts,peroxisomes and mitochondria. Physiologia Plantarum,2003,119(3):355-364.
    Ghanem M E, Han RuiMing Classen B, Quetin-Leclerq J, Mahy G, Ruan ChengJiang Qin Pei Perez-Alfocea F, Lutts S. Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica:localization and composition in relation to salt stress. Journal of Plant Physiology,2010, 167:5,382-392
    Giri B, Kapoor R, Mukerji KG. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology,2007,54(4):753-760
    Gratani L, Crescente M F, Fabrini G, Varone L. Growth pattern of Bidens cernua L.:relationships between relative growth rate and its physiological and morphological components. Photosynthetica, 2008,46:179-184
    Gulzar S, Khan M A, Ungar I A. Salt tolerance of a coastal salt marsh grass. Communications in Soil Science and Plant Analysis,2003,34(17-18):2595-2605
    Gupta N K, Meena S K, Gupta S, Khandelwal S K. Gas exchange, membrane permeability,and ion uptake in two species of Indian jujube differing in salt tolerance. Photosynthetica,2002,40: 535-539
    Hamilton E W, Heckathom S A. Mitochondrial adaptations to NaCl. Complex Ⅰ is protected byanti-oxidants and small heat shock proteins, whereas complex Ⅱ is protected by proline and betaine plant physiology,2001,126(3):1266-1274
    Hasegawa P M, Bressan R A, Zhu J K & Bohnert H J. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499
    Hester M W, Mendelssohn I A, Mckee K L. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora:morphological and physiological constraints. Environmental and Experimental Botany,2001,46:277-297
    Hichem H, Naceur El A, Mounir D. Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L) varieties. Photosynthetica,2009,47 (4):517-526
    Jacob W. Kijne Abiotic stress and water scarcity:Identifying and resolving conflicts from plant level to global level. Field Crops Research,2006,97:3-18
    Jesus Cuartero, Maria C Bolarin, Vicente Moreno and Benito Pineda. Molecular Tools for Enhancing Salinity Tolerance in Plants. Molecular Techniques in Crop Improvement,2009,3:373-405
    Jithesh M N, Prashanth S R, Sivaprakash K R, et al. Antioxidative response mechanisms in halophytes: their role in stress defence. Journal of Genetics,2006,85(3):237-254
    Jyothsnakumari G, Thippeswamy M, Veeranagamallaiah G and Sudhakar C. Differential expression of LEA proteins in two genotypes of mulberry under salinity. Biologia Plantarum,2009,53(1): 145-150
    Kao W Y, Tsai T T, Shih C N. Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica,2003,41:415-419
    Karlidag H, Turan M, Yildirim E. Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant, Soil and Environment,2009,55:5,213-221
    Kern J, Zouni A, Guskov A, Kraub N. Lipids in the Structure of Photosystem Ⅰ, Photosystem Ⅱ and the Cytochrome b6f Complex. Photosynthesis and Respiration,30(1):203-242
    Knight H, Knight M R. Abiotic stress signaling pathways:specificity and cross-talk. Trends in plant Science,2001,6:262-267
    Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus. Environmental and Experimental Botany,2006,56:136-146
    Krause G H, Wei E. Chlorophyll fluorescence and photosysthesis:The basis. Ann Rev Plant Physiol Plant Mol Biol,1991,42:313-349
    Kursat Cavusoglu, Semra Kihc and Kudret Kabar Some morphological and anatomical observations during alleviation of salinity (NaCI) stress on seed germination and seedling growth of barley by polyamines. Acta Physiologiae Plantarum,2007,29(6):551-557
    Lawlor D W. Limitation to photosynthesis in water stressed leaves:stomata vs. metabolism and the role of ATP. Ann. Bot,2002,89:871-885
    Levitt J. Response of plants to environmental stress. New York:Academic Press,1972:365-350
    Li G, Wan S W, Zhou J, Yang ZY, Qin P. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Industrial Crops and Products,2010,31:1,13-19
    Li K C, Lu X S. Study on the germination of 9 varieties of Lolium spp. and salt tolerance in their seedlings. Pratacultural Science,2008,25:3,111-115
    Liu Li Xia, Hu XiaoLi, Song Jian, Zong XiaoJuan, Li DaPeng, Li De Quan. Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. Journal of Plant Physiology,2009,166:5,531-542
    Long S P, Bernacchi C J Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot,2003,54:2393-2401
    Lopez-Climent M F, Arbona V, Perez-Clemente R M, et al. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environmental and Experimental Botany,2008,62: 176-184
    Lu C, Qiu N, Lu Q. Wang B, Kuang T. Does salt stress lead to increased susceptibility of Photosystem11 to Photoinhibition and changes in Photosynthetic Pigment composition in halophyte Suaeda salsa grown outdoors. PlantScienee,2002,163:1063-1068
    Lu K X, Cao B H, Feng X P, He Y, Jiang D A. Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica,2009,47:381-387
    Lu K X, Yang Y, He Y, Jiang D A. Induction of cyclic electron flow around photosystem 1 and state transition are correlated with salt tolerance in soybean. Photosynthetica,2008,46:10-16
    Mahajan S, Tuteja N. Cold, salinity and drought stresses:An overview. Archives of Biochemistry and Biophysics,2005,444:139-158
    Majumder A L, Sengupta S,Goswami L. Osmolyte Regulation in Abiotic Stress. Abiotic Stress Adaptation in Plants,2010,3:349-370
    Mansour M M F, Salama K H A. Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany,2004,52:113-122
    Maxwell K, Johnson G N. Chlorophyll fluorescence a practical guide. Journal of Experimental Botany, 2000,51(345):659-668
    Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany,2003,49(1):69-76
    Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,9:405-410
    Mudalige R G, Longstreth D J. Effects of salinity on photosynthetic characteristics in photomixotrophic cellsuspension cultures from Alternanthera philoxeroides.-Plant Cell Tissue Organ Cult,2006,84: 301-308
    Munns R, James R A, Lauchli A. APlant Physiologyroaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany,2006,57:1025-1043
    Munns R. Comparative physiology of salt and water stress. Plant and Cell Environment,2002,25: 239-250
    Munns R. Why measure osmotic adjustment? Australian Journal of Plant Physiology,1988,15:717-726
    Navrot N, Rouhier N, Gelhaye E, et al. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiologia Plantarum,2007,129(1):185-195.
    Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling. Current Opinion in Plant Biology,2002, 5:388-395
    Netondo G W, Onyango J C, Beck E. Sorghum salinity:Ⅱ. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science,2004:806-811
    Niknam S R, McComb Jen. Salt tolerance screening of selected Australian woody species-a review. Forest Ecology and Management,2000, (139):1-19
    Omeira N, Barbour E K, Nehme P A,et al. Microbiological and chemical properties of litter from different chickentypes and production systems. Science of the Total Environment,2006,367(1): 156-162
    Parida A K, Das A B. Salt tolerance and salinity effeets on plants:areview. Ecotoxicology and Environmental safety,2005.60:324-34
    Parida A, Das A B, Mittra B. Effects of salt on growth, ion accumulation Photosynthesis and leaf anatomy of the mangrove, Bruguiera Parviflora. Trees structure and Function,2004,18:167-174
    Parida A, Das AB, Das P. NaCl stress causes changes in Photosynthetic Pigments, Proteins and other metabolic components in the leaves of a true mangrove, Bruguiera Parviflora, in hydroponic cultures. Journal of Plant Biology,2002,45:28-36
    Peng Y H, Zhu Y F, Mao Y Q, Wang S M, Su W A, Tang Z C. Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. Journal of Experimental Botany,2004,55:939-949
    Philip J White and Alison J Karley Potassium. Cell Biology of Metals and Nutrients, Plant Cell Monographs,2010,17:199-224
    Pinheiro H A, Silva J V, Endres L, Ferreira V M, Camara C de A, Cabral F F, Oliveira J F, Carvalho L W T, de Santos J M, dos Santos Filho B G. dos Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Industrial Crops and Products,2008,27:3,385-392
    Qin J, Dong W Y, He K N, Chen J, Liu J, Wang Z L. Physiological responses to salinity in Silver buffaloberry (Shepherdia argentea) introduced to Qinghai high-cold and saline area, China. Photosynthetica,2010,48(1):51-58
    Qiu N, Lu Q, Lu C. Photosynthesis, Photosystemll effieieney and hexantho Phylleyele in the salt-adapted halophyte AtriPlex centralasiatica.New Phytologist,2003,159:479-486
    Rahnama A, James R A, Poustini K, Munns R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology,2010,37:3,255-263
    Ralph P J, Gademann R. Rapid light curves:A powerful tool to assess photosynthetic activity. Aquatic Botany,2005,82:222-237
    Ranjbarfordoei A, Samson R, Van Damme P. Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. Photosynthetica, 2006,44:513-522
    Rodriguez H G, Roberts J K M, Jordan W R, Drew M C. Growth, water relations and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress.Plant Physiol,1997,113: 881-893
    Roshandel P. Relationship between salt tolerance and photosynthetic machinery performance in rice seedlings differing in salt tolerance. Journal of Plant Science Research,2008,24:1,89-93
    Saadollah, Arzani Ahmad, Maibody Seyed, All Mohamad, Feizi Mohaiad. Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crops Research,2005, 91(2-3):345-354
    Sairam R K, Srivastava G C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci,2002,162:897-904
    Santos C V. Regulation of chlorophyll biosynthesis and degradation by salts tress in sunflower leaves. Seientia. Horticulturae,2004,103:93-99
    Sarvikas P, Tyystjarvi T, Tyystjarvi E. Kinetics of prolonged photoinhibition revisited:photoinhibited Photosystem Ⅱ centres do not protect the active ones against loss of oxygen evolution. Photosynthesis Research,2010,103(1):7-17
    Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica,2003,41: 321-330
    Shabala S N, Lew R R. Twgor Regulation in Osmotically Stressed Arabidopsis Epidermal Root Cells. Direct Support for the Role of Inorganic Ion Uptake as Revealed by Concurrent Flux and Cell Turgor Measurements. Plant Physiology,2002,129:290-299
    Shi H Z, Lee B H, Wu S J, Zhu J K. Overexpression of a plasma membrane Na+/H+antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology,2003,21:81-85
    Shi H Z, Quintero F J, Pardo J M, Zhu J K. The putative plasma membrane Na+/H+antiporter SOS1 controls long-distance Na+transport in plants. Plant Cell,2002,14:65-477
    Shi H Z, Zhu J K. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Molecular Biology,2002,50:543-550
    Sobrado M A. Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica,2005,43(2):217-221
    Steduto P, Albrizio R, Giorio P, Sorrentino G. Gasexchange response and stomatal and nonstomatal limitations to carbon assimilation of sunflower under salinity. Environ.Exp. Bot,2000,44:243-255
    Stepien P, Klobus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum,2006,50:610-616
    Storey R, Schachtman D P, Thomas M R. Root structure and cellular chloride, sodium and potassium distribution in salinised grapevines. Plant, Cell and Environment,2003,26:769-800
    Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus Alba L.) under NaCI salinity. Plant Sci,2001,161:613-619
    Tabur S, Demir K I. Role of some growth regulators on cytogenetic activity of barley under salt stress. Plant Growth Regulation,2010,60:2,99-104
    Taffouo V D, Meguekam L, Kenne M, Magnitsop A, Ourry A. Salt stress effects on germination, plant growth and the accumulation of metabolites in five leguminous plants. Proceedings of the 9th International Conference on Precision Agriculture, Denver, Colorado, USA,2008,7:245
    Tang F P, Chen F D, Chen S M, Teng N J, Fang W M. Intergeneric hybridization and relationship of genera withinthe tribe Anthemideae Cass. (I. Dendranthema crassum(kitam.) kitam. ^Crossostephium chinense (L.) Makino). Euphytica,2009,169:133-140.
    Tester M, and Davenport R. Na+tolerance and Na+transport in higher plants. Annals of botany,2003, 91(5):503-527
    Tester M, Davenport R. Na+tolerance and Na+transport in higher plants. Annals of Botany,2003,91(5): 503-527
    Tonon G, Kevers C, Faivre-Rampant O, Graziani M, Gaspar T. Effect of NaCI and mannitol iso-osmotic stresses on praline and free polyamine levels in embryogenic Fraxinus angustifolia callus. Journal of Plant Physiology,2004,161:701-708
    Turhan E, Eris A. Changes of growth, amino acids, and ionic composition in strawberry plants under salt stress conditions. Communications in Soil Science and Plant Analysis,2009,40:21-22,3308-3322
    Vasantha K M, Madhura J N, Sashidhar V R. Expression of two transporter genes involved in entry and extrusion of sodium in roots under saline stress:tolerant and susceptible genotypes of finger millet have similar levels of expression. Journal of Plant Science Research,2008,24:2,115-123
    Veeranagamallaiah G, Ranganayakulu G S, Thippeswamy M, Sivakumar M, Reddy K E, Pandurangaiah M, Sridevi V. Chinta Sudhakar Aldose reductase expression contributes in sorbitol accumulation and 4-hydroxynon-2-enal detoxification in two foxtail millet (Setaria italica L.) cultivars with different salt stress tolerance. Plant Growth Regulation,2009,59:2,137-143
    Wang B, Davenport R J, Volkov V, Amtmann A. Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. Journal of Experimental Botany,2006,57(5):1161-1170
    Wang HuaHua, Liang XiaoLei, Wan Qi, Wang XiaoMin, Bi YuRong. Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta,2009,230:2, 293-307
    WangY, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-xygenase, glycine betaine content. Photosynthesis and transpiration in Anlaranthus tricolor leaves during salt stress. The Journal of Horticultural Science and Biotechnology,2000,75:623-627
    White P J, Broadley M R. Chloride in soils and its uptake and movement within the plant:A review. Annals of Botany,2001,88(6):967-988
    Wing Y, Francisca L, Fuk Ling W, et al. Tonoplast located GmCLCl and GmNHXl from soybean enhance NaCl tolerance in transgenic bright yellow(BY)-2 cells. Plant Cell Environ,2006,9(29): 1122-1137
    Xiong L, Zhu 1 K. Molecular and genetic aspects of plant response to osmotic stress. Plant and Cell Environment,2002,25:131-139
    Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants:challenges and opportunities. Trends in plant Science,2005,10:615-620
    Yang X, Lu C. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiologia Plantarum,2005,124:343-352
    Zhang H X. Blumwald E. Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits. Nature Biotechnology,2001,19:765-768
    Zhao X, Tan H J, Liu Y B, Li X R, Chen G X. Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus. Plant Cell, Tissue and Organ Culture,2009,98:1,97-103
    Zhu J K. Plant salt tolerance. Trends in Plant Science,2001,6:66-71
    Zhu J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,2003,6: 441-445
    Zhu JK. Salt and Drought stress signal transduction in plants. Annual Review of Plant Physiologyogy and Plant Molecular Biology,2002,53:247-273
    安永平,强爱玲,张媛媛,张文银,曹桂兰,韩龙植.渗透胁迫下水稻种子萌发特性及抗旱性鉴定指标研究.植物遗传资源学报,2006,7(4):421-426
    柏军华,王克如,初振东,陈兵,李少昆.叶面积测定方法的比较研究.石河子大学学报,2005,23(2):216-218
    柴守玺.小麦抗旱生态分类中适合性聚类方法的研究.应用生态学报,2000,11(6):833-838
    陈德明,俞仁培,杨劲松.盐渍条件下小麦抗盐性的隶属函数值法评价,土壤学报,2002,39(3):368-374
    陈发棣,陈佩度,李鸿渐.几种中国野生菊的染色体组分析及亲缘关系初步研究.园艺学报,1996,23(1):67-72
    陈惠哲,Natalia Ladatko,朱德峰,林贤青,张玉屏,孙宗修.盐胁迫下水稻苗期Na+和K+吸收与分 配规律的初步研究.植物生态学报,2007,31(5):937-945
    陈俊愉,王四清,王春香.花卉育种中的几个关键环节.园艺学报,1995,22(4):372-376
    戴思兰,陈俊愉,李文彬.菊花起源的RAPD分析.植物学报,1998,40:1053-1059
    高方远,陆贤军,康海岐,孙淑霞,刘光春,任光俊.水稻耐低磷种质的苗期筛选与鉴定.作物学报,2006,32(8):1151-1155
    高惠玄.实用统计方法与SAS系统.北京:北京大学出版社,2001:185-256
    高三基,罗俊,陈如凯,张木清,潘大仁.甘蔗品种抗旱性光合生理指标及其综合评价.作物学报,2002,28(1):94-98
    葛江丽,石雷,谷卫彬.盐胁迫条件下甜高粱幼苗的光合特性及光系统Ⅱ功能调节.作物学报,2007,33(8):1272-1278
    桂连友,孟国玲,龚信文,熊三浩.茄子品种(系)对侧多食跗线螨抗性聚类分析.中国农业科学,2001,34(5):465-468
    黄有军,夏国华,郑炳松,黄坚钦,邵香君.芙蓉菊盐胁迫下的生长表现和生理响应.江西农业大学学报,2007,29(3):389-394
    贾双双,高荣广,徐坤.番茄砧木对南方根结线虫抗性鉴定.中国农业科学,2009,42(12):4301-4307
    赖运平,李俊,张泽全,董雪芳,刘新春,魏会廷,胡晓蓉,彭正松,杨武云.小麦苗期抗旱相关形态指标的灰色关联度分析.麦类作物学报,2009,29(6):1055-1059
    雷莹,张红艳,宋文化,徐娟.利用多元统计法简化夏橙果实品质的评价指标.果树学报2008,25(5):640-645
    冷华妮,段红平,陈益泰,孙海菁,胡韵雪.不同种源枫香磷响应指标的主成分分析.土壤,2010,42(1):82-87
    李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术.北京:高等教育出版社,2000:261-263
    李彦,张英鹏,孙明,高弼模.盐分胁迫对植物的影响及植物耐盐机理研究进展.中国农学通报,2008,24(1):258-263
    罗庆云,於丙军,刘友良.大豆苗期耐盐性鉴定指标的检验.大豆科学,2001,20(3):177-182
    钮福祥,华希新,郭小丁,邬景禹,李洪民,丁成伟.甘薯品种抗旱性生理指标及其综合评价初探.作物学报,1996,22:392-398
    孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验.作物学报,2001,27(6):794-801
    陶大立,何兴元.国内植物环境胁迫研究应注意的几个基本问题.生态学杂志,2009,28(1):102-107
    王宝山,赵可夫.小麦叶片中K+、Na+提取方法的比较.植物生理学通讯,1995,31(1):50-52
    袁志发,宋世德.多元统计分析(第二版).北京:科学出版社,2009
    张海燕,焦碧蝉,李贵全.大豆抗旱性鉴定指标评价的研究.大豆科学,2005,24(3):177-182
    张科,田长彦,李春俭.一年生盐生植物耐盐机制研究进展.植物生态学报,2009,33(6):1220-1231
    张明生,谈锋,张启堂.快速鉴定甘薯品种抗旱性的生理指标及方法的筛选.中国农业科学2001,34(3):260-265
    张天真.作物育种学总论.北京:中国农业出版社,2003:21-26
    Ashraf M, Harris P J C. Potential biochemical indicators ofsalinity tolerance in plants. Plant Sci,2004, 166:3-16
    Basu S, Gangopadhyay G, Mukherjee B B. Salt tolerance in rice in vitro:implication of accumulation of Na, K and proline. Plant Cell, Tissue, and Organ Culture,2002,69:5-64
    Chen F D, Chen S M, Guo W M, Ji Sh. Salt tolerance identification of three wild chrysanthemum. Acta Horticulture,2003,618:299-305
    Gadi M, Hanan S, Arik H, Yoram K and Avian Z. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation. Planta,2005, 222:70-79
    Koyama M L, Levesley A, Koebner R M. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol,2001,125:406-422
    Megdiche W, Amor N B, Debez A, Hessini K, Ksouri R, Zuily F Y and Abdelly C. Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiologiae Plantarum,2007,29(4):375-384
    Munns R. Comparative physiology of salt and water stress. Plant Cell Environ,2002,25:239-250
    Sadat Noori S A, McNeilly T. Assessment of variability in salt tolerance based on seedling growth in Triticum durum Desf. Genetic Resources and Crop Evolution,2000,47:285-291
    Seyed Ahmad Sadat Noori. Assessment for salinity tolerance through intergeneric hybridisation:Triticum durum×Aegilops speltoides. Euphytica (2005) 146:149-155
    Wang J P, Drayton M C, George J, Cogan N O I, Baillie R C, Hand M L, Kearney G A, Erb S, Wilkinson T,Bannan N R, Forster J W, Smith K F. Identification of genetic factors influencing salt stress tolerance in white clover (Trifolium repens L) by QTL analysis. TAG Theoretical and Applied Genetics,2010,120(3):607-619
    Wang W X, Vincour B, Altman A. Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta,2003,218:1-14
    陈少良,李金克,毕望富,王沙生.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化.植物学通报,2001,18(5):587-596
    陈宣钦,於丙军,刘友良.栽培和野生大豆及其杂交后代幼苗的耐氯性与多胺积累的关系.植物生理与分子生物学学报,2007,33(1):46-52
    陈因.N03-含量的测定.现代植物生理学实验指南.北京:科学出版社,1999:139-140
    高庆义,王宝山.高粱叶中有机渗透调节物质对NaCl胁迫的响应山东师大学报.自然科学版,1998,13(3):587-596
    葛江丽,石雷,谷卫彬.盐胁迫条件下甜高粱幼苗的光合特性及光系统Ⅱ功能调节.作物学报,2007,33(8):1272-1278
    郭书奎,赵可夫NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学报,2001,27(6):461-466
    韩志平,郭世荣,焦彦生NaCl胁迫对西瓜幼苗生长和光合气体交换参数的影响.西北植物学报,2008,28(4):0745-0751
    贾庚祥,朱至清,李银心.甜菜碱与植物耐盐基因工程.植物学通报,2002,19(3):272-279
    李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术.北京:高等教育出版社,2000:261-263
    李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术.北京:高等教育出版社,2000:134,258,260
    梁永超,丁瑞兴.硅对大麦根系中离子的微域分布的影响及其与大麦耐盐性的关系.中国科学(C辑),2002,32(2):113-122
    林鹏.中国红树林生态系.北京:科学出版社,1997
    罗庆云,於丙军,刘友良.NaCl胁迫下Cl-和Na+对大豆幼苗胁迫作用的比较.中国农业科学,2003,36(11):1390-1394
    马新蕾,王玉军,谢胜利,李峰,王玮.根施甜菜碱对水分胁迫下烟草幼苗光合机构的保护植物.生理与分子生物学学报,Journal of Plant Physiology and Molecular Biology 2006,32(4):465-472
    汪月霞,孙国荣,王建波,曹文钟,梁建生,余政哲,陆兆华.NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系.生态学报,2006,26(1):122-129
    王宝山,赵可夫.小麦叶片中K+、Na+提取方法的比较.植物生理学通讯,1995,31(1):50-52
    王丽燕,赵可夫NaCl胁迫对海蓬子(Salicornia bigelovii Torr.)离子区室化、光合作用和生长的影响.植物生理与分子生物学学报,2004,30(1):94-98
    王淑慧,曹华雯,戴思兰NaCl胁迫对4种菊科植物叶片中甜菜碱含量的影响.中国观赏园艺研究进展,2005:451-454
    王素平,郭世荣,胡晓辉,贾永霞,焦彦生NaCl胁迫对黄瓜幼苗体内K+、Na+和Cl-分布的影响.生态学杂志,2007,26(3):348-354
    杨洪兵,陈敏,王宝山.小麦幼苗拒Na+部位的拒Na+机理.植物生理与分子生物学报,2002,28(3):181-186
    杨晓英,章文华,王庆亚,刘友良.江苏野生大豆的耐盐性和离子在体内的分布及选择性运输.应用生态学报,2003,14(12):2237-2240
    殷晓军,赵彦修,张慧.甜菜碱的合成及与其相关基因的遗传工程.植物生理学通讯,2002,38(3):299-304
    余叔文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社,1998,752-769
    於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长和离子分布的影响.作物学报,2001,27(6):776-780
    张玉鑫,刘芳,康恩祥,陈年来NaCl胁迫下甜瓜幼苗离子吸收特性研究.植物营养与肥料学报,2008,14(3):533-539
    张玉鑫,刘芳,康恩祥,陈年来NaCl胁迫下甜瓜幼苗离子吸收特性研究.植物营养与肥料学报,2008,14(3):533-539
    赵可夫,范海.盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究.应用与环境生物学报,2000,6(2):99-105
    赵可夫,李法曾.中国盐生植物,1999
    赵可夫,李军.盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响.植物学 报,1999,41(12):1287-1292
    郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响.植物生理学报,2001,27(4):325-330
    周强,李萍,曹金花,於丙军.测定植物体内氯离子含量的滴定法和分光光度法比较.植物生理学通讯,2007,43(6):1163-1166
    朱士农,郭世荣.嫁接对盐胁迫下西瓜植株体内Na+和K+含量及其分布的影响.园艺学报,2009,36(6):814-820
    朱晓军,杨劲松,梁永超,娄运生.杨晓英盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响.中国农业科学,2004,37(10):1497-1503
    邹琦.植物生理学实验指导.北京:中国农业出版社,2000:80-82,137-138,119-120
    Ashihara H, Wakahara S, Suzuki M, Kato A, Sasamoto H, Baba S. Comparison of adenosine metabolism in leaves of several mangrove plants and a poplar species. Plant Physiol Biochem,2003,41: 133-139
    Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 2004,166:3-16
    Ashraf M, Rahmatullah Ahmad R, Bhatti A S, Afzal M, Sarwar A, Maqsood M A, Kanwal S. Amelioration of salt stress in sugarcane(Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere,2010,20(2):153-162
    Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany,2007,59:206-216
    Bethke, P C, Drew M C. Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol,1992,99: 219-226
    Botella M A, Martinez V, Nieves M.&Cerda A. Effects of salinity on the growth and nitrogen uptake by wheat seedlings. Journal of Plant Nutrition,1997,20:793-804
    Bottacin A, Cacco G.&Saccoman M. Nitrogen absorption and assimilation in NaCl-resistent and NaCl-susceptible millet genotypes (Pennisetum americanum). Canadian Journal of Botany,1985, 63:517-520
    Burman U, Garg B K, Kathju S. Water relations, photosynthesis and nitrogen metabolism of Indian mustard(Brassica juncea Czern.& Coss.) grown under salt and waterstress. J. Plant Biol,2003, 30:55-60
    Chen S L, Li J K, Wang S S, et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation and transport in regenerated plants of Populus euphratica and P. Twmen Twsa. Canadian Journal of Forest Research,2003b,33(6):967-975
    Chen S, Li J, Fritz E, et al. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manage,2002a,168:217-230
    Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Science,2005,45:437-442
    das Neves J P C, Ferreira L F P, Vaz M M, Gazarini L C. Gas exchange in the salt marsh species Atriplex portulacoides L. and Limoniastrum monopetalum L. in Southern Portugal. Acta Physiol. Plant, 2008,30:91-97
    Demidchik V, Tester M. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol,2002,128:379-387
    Dev T, Britto, Thomas J, Ruth S and Lapi H J, Kronzucker. Cellular and whole-plant chloride dynamics in barley:insights into chloride-nitrogen interactions and salinity responses. Planta,2004,218: 615-622
    Ding L, Zhu J K. Reduced Na+uptake in the NaCl hypersensitive SOS1 mutant of Arabidopsis thaliana. Plant Physiology,1997,113:795-799
    Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation toosmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany,,2002,47:39-50
    Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol,2000,51:463-499
    Jiang X Y, SONG J, FAN H, ZHAO K F. Regulations of Exogenous Calcium and Spermidine on Ion Balance and Polyamine Levels in Maize Seedlings Under NaCl Stress. Acta Phytophysiologica Sinica,2000,26(6):539-544
    Khan M A, Ungar I A, Showalter A M. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk J Arid. Environ,2000,45: 73-84
    Lauchli A, James R A, Munns R. Salt exclusion and the cellspecific localization of Na+ in wheat roots. Proceedings of SEB, Annual Main Meeting, Barcelona, Spain, Oxford:Elsevier,2005,7:345-346
    Levitt J. Response of plants to environmental stress (2nd Ed). New York:Academic Press,1980, 365-434
    Lin H X, Zhu M Z, Yan M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Zh, Chao D Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theoretical and Applied Genetics, 2004,108:253-260
    Lu K X, Cao B H, Feng X P, He Y, and Jiang D A. Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica,2009,47 (3):381-387
    Luo Q Y, Yu B J, Liu Y L. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol,2005,162:1003-1012
    Maathuis, F J M, Amtmanna. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios. Annuals of Botany,1999,84:123-133
    Majumder A L, Sengupta S, Goswami L. Osmolyte Regulation in Abiotic Stress. Abiotic Stress Adaptation in Plants,2010,3:349-370
    Moya J L, Gomez-Cadenas A, Primo-Millo E, Talon M. Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandar in citrus root stocks is linked to water use. Journal of Experimental Botany,2003,54(383):825-833
    Munns R, R A James and Lauchli A. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany. Plants and Salinity Special Issue,2006,57(5):1025-1043
    Munns R, Tester M. Mechanisms of salt tolerance. Annu Rev Plant Biol,2008,59:651-681
    Munns R. Comparative physiology of salt and water stress. Plant, Cell and Environment,2002,25:2, 239-250
    Munns, R. Physiological processes limiting plant-growth in saline soils:some dogmas and hypotheses. Plant Cell Environ,1993,16:15-24
    Oliver Batistic and Jorg Kudla. Calcium. Not Just Another Ion. Plant Cell Monographs. Cell Biology of Metals and Nutrients,2010,17:17-54
    Parida A K, Das A B, Sanada Y, Mohanty P. Effects of salinity on biochemical components of the mangrove. Aegiceras corniculatum. Aquat Bot,2004c,80:77-87
    Parida A K, Das A B. Salt tolerance and salinity effects on plants:a review. Ecotoxicol. Environ. Saf, 2005,60:324-349
    Parida A K, Mittra B, Das A B, Das T K, Mohanty P. Highsalinity reduces the content of a highly abundant 23-kDa protein of the mangrove Bruguiera parviflora. Planta,2005,221:135-140
    Santa-Cruz A, Martinez-Rodriguez M M, Perez-Alfocea F, Romero-Aranda R, Bolarin M C. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci,2002,162: 825-831
    Shabala S, Cuin T A. Cellular mechanisms of potassium transport in plants. Physiol Plant,2008,133: 651-669
    Shabala S, Demidchik V, Shabala L, Cuin T A, Smith S J, Miller A J, Davies J M, Newman I A. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+ -permeable channels. Plant Physiol,2006,141:1653-1665
    Shannon M C, Grieve C M. Tolerance of vegetable crops to salinity. Scientia Horticulturae,1999,78: 5-38
    Shinozaki K. Dennis E S. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,2003,6(5):441-445
    Stienstra A W. Nitrate accumulation and growth of Aster tripolium L. with a continuous and intermittent nitrogen supply. Plant, Cell and Environment,1986,9:307-313
    Storey R, Schachtman D P, Thomas M R. Root structure and cellular chloride, sodium and potassium distribution in salinised grapevines. Plant, Cell and Environment,2003,26:769-800
    Sudhir P, Murthy S D S. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 2004,42 (4):481-486
    Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany,1999,42:211-220
    Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot,2000,68:15-28
    Werner A, Stelzer R. Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant, Cell and Environment,1990,13:243-255
    Xiong L, Zhu J K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ, 2002,25:131-139
    Yang C W, Chong J N, Kim C M, Li C Y, Shi D C,Wang D L. Osmotic adjustment and ion balance traits of analkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil,2007,294:263-276
    Zhu J K. Regulation of ion homeostasis under salt stress. Curr Opin Plant B iol,2003,6:1-5
    陈庆诚,孙仰文,张国梁.疏勒河中下游植物群优势种生态形态解剖特征的初步研究.兰州大学学报,1961(3):62-69
    仇硕,黄苏珍.镉胁迫对黄菖蒲不同部位组织结构的影响.江苏农业科学,2008(1):109-111第四章第二节
    公维昌,庄丽,赵文勤,田中平.两种盐生植物解剖结构的生态适应性.生态学报,2009,29(8):6764-6771
    贾思振,房伟民,陈发棣,陈素梅,杨雪萌.高温下5个夏菊品种开花特性、叶片组织结构与光合特性的比较.南京农业大学学报,2009,32(3):151-156
    李妮亚.两种红树幼苗离子平衡及活性氧调控与耐盐性研究.北京林业大学博士学位论文,2008
    李瑞梅,周广奇,符少萍,胡新文,郭建春.盐胁迫下海马齿叶片结构变化.西北植物学报,2010,30(2):0287-0292
    王秀丽.海滨木槿耐盐机理的研究.上海交通大学硕士学位论文,2010
    许高娟.部分菊花近缘属植物黑斑病苗期抗性及hrf基因转化菊花的研究.南京农业大学博士学位论文.2009.6
    许瑛,陈煜,陈发棣,陈素梅.菊花耐寒特性分析及其评价指标的确定.中国农业科学,2009,42(3):974-981
    杨超,梁宗锁,陕北撂荒地上优势蒿类叶片解剖结构及其生态适应性.生态学报,2008,10(28):4732-4741
    赵可夫,李法曾,樊守金,冯立田.中国的盐生植物.植物学通报,1999,16(3):201-207
    赵可夫,植物对盐渍逆境的适应.生物学通报,2002,37(6):6-9
    赵可夫,周三,范海.中国的盐生植物.植物学通报,2002,19(5):611-613
    赵勐,范海,赵可夫NaCI,KCI和NaNO3对盐地碱蓬生长以及植物体内离子组成和分布的效应.植物生理学通讯,2008,44(2):263-267
    郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响.植物生理学报,2001,(27)4:325-330
    Cavusoglu K, Kilic S, Kabar K. Some morphological and anatomical observations during alleviation of salinity (NaCl) stress on seed germination and seedling growth of barley by polyamines. Acta Physiologiae Plantarum,2007,29(6):551-557
    Amtmann A, Laurie S, Leigh R, Sanders D. Multiple inward currents provide flexibility in Na+/K+ discrimination at the plasma membrane of suspension cells. Journal of Experimental Boanyt,1997, 48:481-497
    Asish Kumar Parida, Bhavanath Jha. Salt tolerance mechanisms in mangroves:a review. Trees,2010,24: 199-217
    Baranova E N, Gulevich A A, Polyakov V Yu and Kharchenko P N. Comparative analysis of anatomic structure of cotyledons for determining salt and osmotic tolerance of modified plants. Russian Agricultural Sciences,2007,33(4):236-238
    Chen Z, Pottosin Ⅱ, Cuin T A, Fuglsang A T, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren
    Cram J W, Torr P G, Rose D A. Salt allocation during leaf development and leaf fall in mangroves. Trees, 2002,16:112-119
    Davenport R J, TesterM. AweaklyVoltage-dependent, nonselective cation channelmediates toxic sodium influx inwheat. Plant Physiol,2000,122:826-834
    Deng Y M, Chen S M, Lu A M, Chen F D, Tang F P, Guan Z Y, Teng N J. Production and characterization of the intergeneric hybrids between Dendranthema morifolium and Artemisia vulgaris exhibiting enhanced resistance to chrysanthemum aphid (Macrosiphoniella sanbourni). Planta,2009,231:693-703
    Greenway H, MunnsR. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology,1980,31:149-190
    Hester M W, Mendelssohn I A,Mckee K L. Species and population variation to salinity stress in Panicum hemitomon,Spartina patens, and Spartina alterniflora:morphological and physiological constraints. Environmental and Experimental Botany,2001,46:277-297
    Konarska A. Effects of aluminum on growth and structure of red pepper (Capsicum annuum L.) leaves. Acta Physiologiae Plantarum,2010,32(1):145-151
    Lin H X, Zhu M Z, Yano M, Gao J P, Liang ZW, Su W A, Hu X H, Ren Z H, Chao D Y. QTLs for Na+ and K+uptake of the shoots and roots controlling rice salt tolerance.Theoretical and Applied Genetics,2004:108,253-260
    Loupassaki M H, Chartzoulakis K, Digalaki N, et al. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium and sodium in leaves, shoots and roots of six olive cultivars. Journal of Plant Nutrition,2002,25:2457-2482
    Lu H F, Jiang B, Shen Z G, Shen J B and Peng Q F, et al.Comparative leaf anatomy, FTIR discrimination and biogeographical analysis of Camellia section Tuberculata (Theaceae) with a discussion of its taxonomic treatments. Plant Systematics and Evolution,2008,274(3-4)L:223-235
    Meng F J, Wang Q Y, Yang C P and Liu J X. Investigation of anti-salt stress on tetraploid Robinia pseudoacacia. Frontiers of Forestry in China,2009,4(2):227-235
    Munns R. Genesand salt tolerance:bringing them together. NewPhytologist,2005,167:645-663
    Paliyavuth C, Barry Clough B, Patanaponpaiboon P. Salt uptake and shoot water relations in mangroves. Aquatic Botany,2004,78:349-360
    ParidaA K, DasA B, Mittra B. Effects of salt on growth, ion ac-cumulation, photosynthesis and leaf anatomy of themangrove, Bru-guiera parviflora. Trees,2004,18:167-174
    Rubio F, Gassmann W, Schroeder J I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science,1995,270:1660-1663
    Sandra M, Alvarenga G, Julio A L. Leaf anatomy as a contribution to the taxonomy of Salacioideae N.Halle ex Thome & Reveal (Celastraceae). Plant Systematics and Evolution,2010,289(1-2): 13-33
    Schubert S, Lauchli A. Sodium exclusionmechanisms at the root surface of twomaize cultivers. Plant Soil,1990,123:205-209
    Shi G R and Cai Q S. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biologia Plantarum,2009,53(2):391-394
    Tang F P, Chen S M, Chen F D, Teng N J, Fang W M. Intergeneric hybridization and relationship of genera within the tribe Anthemideae Cass. (I. Dendranthema crassum (kitam.) kitam.xCrossostephium chinense (L.) Makino). Euphytica,2009,169:133-140
    Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany,2003,91: 503-527
    Yin D M, Chen S M, Chen F D, Guan Z Y, Fang W M. Morphoanatomical and physiological responses of two Dendranthema species to waterlogging. Environmental and Experimental Botany,2010,68: 122-130.
    Zhu J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,2003,6: 441-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700