用户名: 密码: 验证码:
大豆生育期的遗传变异、QTL定位和关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是典型的光温反应敏感作物,需培育多种类型的大豆品种以适应不同生态环境。中国作为栽培大豆的起源地,具有丰富的大豆种质资源。研究、鉴定和筛选优异的大豆种质资源,可以为大豆新品种培育提供基础材料。在前人对大豆的光温反应研究的基础上,进一步探讨大豆光温反应的衡量指标,筛选光温钝感材料,研究生育期性状的遗传机制,发掘特异等位变异,对广适应性大豆品种的培育具有重要的理论与实践意义。本研究进行了大豆光温反应的遗传变异研究、生育期性状的QTL定位和关联分析,主要研究结果如下:
     1.大豆光温反应的遗传变异研究选用来自中国六个生态区的388份地方品种和361份育成品种以及73份国外引进品种,采用分期播种,以不同播期下生育期天数间的变异系数(即光温反应值)作为衡量参试大豆资源光温反应的指标,进行大豆光温反应遗传变异的分析和钝感资源筛选。参试的国内外大豆品种资源的生育前期、生育后期和全生育期的光温反应均存在很大变异,光温反应值的变异范围分别为4.71%~52.81%、3.44%~44.56%和1.99%~37.54%。参试的三种资源类型中,我国育成品种和国外引进品种生育前期的光温反应值集中在8%~28%之间,分别占参试品种的91%和90%,我国地方品种生育前期的光温反应值主要集中在16%~48%之间,占参试品种的95%。以参试品种总数的5%为基准,从822份参试材料中遴选出生育前期、生育后期和全生育期光温反应钝感材料各41份。遴选到的生育前期光温钝感材料和全生育期光温钝感材料中,我国地方品种和育成品种主要来源于生态Ⅰ区和Ⅱ区。遴选到的生育后期光温钝感材料中,我国育成品种主要来源于生态Ⅰ区和Ⅱ区,而地方品种则在六个生态区中均有分布。
     2.生育期性状的QTL定位利用NJRIKY和NJRIWT两个重组系群体及其亲本为材料,应用WinQTL Cartographer Version2.5软件的复合区间作图法(CIM)对大豆生育期性状进行QTL定位。
     (1)NJRIKY群体的定位
     不同播期条件下生育期基本性状的定位4个播期条件下检测到的与生育期基本性状相关的QTL共11个,累计25位点(次),涉及LG A2、LG B1、LG C2、LG D1b、 LG F2、LG M和LGO7个连锁群。在4个播期条件下均检测到的主效QTL有两个,分别为qFD-O-1和qMD-O-1,且两者属于同一位点。位点qFD-O-1在4个播期中的贡献率分别为22.51%、21.37%、25.29%和13.44%,位点qMD-O-1在4个播期中的贡献率分别为24.19%、20.37%、22.15%和7.04%。位于LGM上的全生育期位点qMD-M-1在一期、二期和三期中均检测到,贡献率分别为12.26%、19.04%和9.90%。
     不同生育时期光温反应值的定位在NJRIKY群体中,3个生育时期检测到的与光温反应值相关的QTL位点共8个,涉及LG B1、LG C1、LG C2、LG D1b和LG O5个连锁群,贡献率的变幅为6.44%-22.31%。其中在连锁群O上的标记区间Satt331-GMKF082b内,检测到,一个在生育前期和全生育期均表达的QTL位点。
     (2) NJRIWT群体的定位
     不同播期条件下生育期基本性状的定位NJRIWT群体的定位结果显示,2年6个播期总计检测到7个与生育期性状相关的QTLs,累计21位点(次),涉及LG A2、 LG B11、LG D2、LG H、LG J、LG O6个连锁群。在春、夏和秋3个播季条件下均检测到的位点有3个,分别为2006年检测到的QTL位点qFD-O-1和qMD-O-1及2007年检测到的QTL位点qMD-D2-1。其中位点qFD-O-1和qMD-O-1属于同一位点。两年均检测到的位点有3个,分别为qFD-O-1、qMD-O-1和qMD-D2-1,且3个位点均是在春播条件下检测到的。
     不同生育时期光温反应值的定位在NJRIWT群体中,3个生育时期两年共检测到7个与光温反应值相关的QTLs位点,涉及LG A2、LG B11、LG D2、LG F和LG O5个连锁群,贡献率的变幅为6.57%-16.65%。其中,位点qVRPT_MD-D2-1在两年中均被检测到,2006和2007年的贡献率分别为6.57%和9.98%。
     3.生育期性状的关联分析选用来自中国的275份地方品种为材料,利用从大豆20个连锁群上筛选到的118个SSR标记,通过Structure软件进行群体结构分析,采用TASSEL软件进行生育期性状与SSR标记之间的关联分析。群体结构分析结果显示,275份中国地方大豆品种群体可分为5个亚群。生育期性状与SSR标记之间的关联分析结果显示,检测到与生育期性状显著关联的(p<0.01)的SSR位点40个,累计182位点(次)。其中,2006年和2007年均检测到的与生育期性状相关联的位点19个,累计108位点(次)。对两年中均检测到的位点进一步分析,结果如下:
     (1)不同播季条件下与生育期基本性状关联的SSR标记
     两年中均检测到的与生育期基本性状相关联的位点有19个,累计96位点(次)。
     春、夏、秋播均被检测到的与生育前期相关联的标记位点有5个,分别为Satt335(LG F)、Satt150(LG M)、BE806308(LG B1)、Satt440(LG I)和Satt445(LG O),与全生育期相关联的标记位点有4个,分别为Satt335(LG F)、Satt307(LG C2)、 Satt387(LG N)和Sat_174(LG I)。
     春播条件下特有的位点有1个,为Satt308(LG M)。夏播条件下特有的位点有2个,分别为Satt307(LG C2)和Satt387(LG M)。秋播条件下所特有的位点有3个,分别为Satt216(LG D1b)、Satt489(LG C2)和Satt102(LG K)。两年中均检测到的与全生育期关联的位点中,春播条件下所特有的位点有2个,分别为Satt496(LGI)和Satt434(LGH)。秋播条件下所特有的位点有3个分别为Satt286(LG C2)、Satt445(LG O)和Sat_312(LG C2).
     在春季、夏季和秋季3个播季条件下,均检测到的与生育前期关联的位点_等位变异有2个,分别为Satt335_159和BE806308_256。均检测到与全生育期关联的位点等位变异为Satt335_159。
     (2)不同生育时期与光温反应值关联的SSR标记
     两年中均检测到的与光温反应值相关联的位点有5个,累计12位点(次)。其中,与生育前期光温反应值关联的位点有3个,为Satt150(LGM)、Satt308(LG M)和Satt440(LG I);与生育后期光温反应值关联的位点仅有1个,为Satt440(LG I);与全生育期光温反应值关联的位点有2个,为AW310961(LG J)和Satt307(LG C2)。
     进一步分析两年均检测到的特异位点的等位变异,获得一批不同生育时期光温反应钝(敏)感的优异等位变异以及相应的载体材料,为大豆的光温反应研究提供了丰富的遗传信息和基础材料。
Soybean is one of the crops that sensitive to photoperiod and temperature. Thus, various soybean varieties are needed to adapt different environment. China, the origin of soybean [Glycine max (L.) Merr.], has diverse soybean germplasm resources to screen elite soybean germplasm for soybean cultivation. So far, a lot of studies on soybean response to photoperiod and temperature have been done, but more in-depth researches are still of theoretical and practical significance on the elite germplasm selection of lower sensitive to photoperiod and temperature and genetic mechanism of growth period. In this study, we have done three aspects works:(1) the elite germplasm identification and screening of lower sensitive to photoperiod and temperature,(2) QTL mapping of growth period traits, and (3) association analysis of growth period traits. The main results are as follows:
     1. A total of822accessions, including388landraces,361released cultivars from various ecological regions in China, and88released cultivars from abroad were tested in this study to characterize the genetic variability and screen lower sensitive resources of soybean to photoperiod and temperature. These accessions were sown in three dates in two years respectively. The result showed that there existed large variation of the value of soybean response to photoperiod and temperature (VRPT) among the tested accessions on their days to flowering (FD), days from flowering to maturity (FMD), days to maturity (MD). The variation range of VRPT of FD, FMD and MD was4.71%-52.81%,3.44%-44.56%and1.99%-37.54%, respectively in the tested accessions. There was91%released cultivars from China and abroad with the VRPT between8-28%and90%landraces from China with the VRPT between16%-48%. In this study,41elite accessions, of FD, FMD and MD respectively, were identified as lower sensitive response accessions to photoperiod and temperature by5%of822accessions. The elite released cultivars from China of FD, FMD, and MD were concentrated in the ecological regions Ⅰ and Ⅱ. The elite landraces of FD and MD concentrated in the ecological regions Ⅰ and Ⅱ, while the elite landraces of FMD distributed in all of the ecological regions. And all the elite accessions were of early flowering or maturity.
     2. Two RIL population, NJRIKY and NJRIWT, were used in the QTL mapping of growth period traits. The QTLs of growth period traits were mapped under composite interval mapping (CIM) procedure of the software Cartographer V.2.5according to Wang et al.(2005).
     The result of QTLs mapping in NJRIKY population showed that25loci of growth period traits were identified in7linkage group, LG A2, LG B1, LG C2, LG D1b, LG F2, LG M and LG O. Three QTLs were identified in more than three dates. The first was the QTL of qFD-O-1, which was identified in all the sowing dates, explained22.51%,21.37%,25.29%and13.44%of the phenotypic variation in the first, second, third and fourth sowing date respectively. The second was the QTL of qMD-M-1, which was identified in three sowing dates, explained12.26%,19.04%and9.9%of the phenotypic variation in the first, second and third sowing date respectively. The third was QTL of qMD-O-1, which was identified in all the sowing dates, explained24.19%,20.37%,22.15%and7.04%of the phenotypic variation in the first, second, third and fourth sowing date respectively. And two of the three QTLs, qFD-O-1and qMD-O-1, were with the same locus.
     The result of QTLs mapping in NJRIKY population also showed that8loci of VRPT were identified in5linkage group, LG B1, LG C2, LG C2, LG D1b and LG O. The variation range of loci explained was6.44%~22.31%. And the QTL identified between Satt331-GMKF082b was associated with FMD, as well as MD.
     The result of QTLs mapping in NJRIWT population showed that21loci of growth period traits were identified in6linkage group, LG A2, LG B11, LG D2, LG H, LG J and LG O. The QTL of qFD-O-2, which was identified in four sowing dates, explained27.17%,14.43%,32.33%and24.24%of the phenotypic variation in spring sowing date in2006, in summer sowing date in2006, in autumn sowing date in2006, and in spring sowing date in2007respectively. The QTL of qMD-O-2was identified in three sowing dates with a variation range of7.84%~10.72%of phenotypic variation. And the position of qFD-O-2and qMD-O-2showed that the two QTLs were on the same locus on LG O.
     The result of QTLs mapping in NJRIWT population also showed that7loci of VRPT were identified in5linkage group, LG A2, LG B11, LG D2, LG F and LG O. The variation range of loci explained was6.57%~16.65%. And the position of qVRPT_MD-D2-1was identified in both2006and2007, explained6.57%and9.88%respectively.
     3. Based on linkage disequilibrium of pairwise loci and population structure analysis by STRUCTURE software, the genotyping data of118simple-sequence repeat (SSR) markers with phenotypic data of growth period traits were used in association analysis by using TASSEL software. The result of association analysis showed that32loci were identified (p<0.01) in two years, among which21loci were identified in both years. And five markers associated with days to flowering, Satt335(F), Satt150(M), BE806308(B1), Satt440(I), Satt445(O), were identified in all the sowing dates, spring sowing date, summer sowing date and autumn sowing date. Moreover, four markers associated with days to maturity, Satt335(F), Satt307(C2), Satt387(N), Sat_174(I), were identified in all the sowing dates. Among the identified markers, the marker of Satt335(F) was the only one that was identified both associated with days to flowering and days to maturity in all the sowing dates. It is noteworthy that the positive effect of the Locus_Allele of Satt335_159associated with all the three growth period traits ranked first or second in all the Locus_Allele.
     The result of association analysis about VRPT showed that five loci associated with VRPT were identified (p<0.01) in two years. Among which three markers, Satt150(LG M)、Satt308(LG M)and Satt440(LG I), were associated with VRPT_FD. One marker, Satt440(LG I),was associated with VRPT_FMD. And two markers, AW310961(LG J) and Satt307(LG C2), were associated with VRPT_MD. A number of elite locus_allele and materials were obtained by further analysis. These elite locus_allele and materials attributed to the study of response to photoperiod and tempratrue of soybean.
引文
1. Abe J, Xu D, Miyano A, et al. Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci[J]. Crop Sci.,2003,43:130-1304
    2. Akkaya M S, Shoemaker R C and Specht J E. Integration of simple sequence repeat DNA markers into a soybean linkage map[J]. Crop Sci.,1995,35:1439-1445
    3. Apuya N, Frazier B, Keim P, et al. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merrill[J]. Theor Appl Genet.,1988,75:889-901
    4. Basnet B, Mader E L and Nickel C D. Influence of Altitude on Seed Yield and Other Characters of Soybeans Differing in Maturity in Sikkim (Himalayan Kingdom)[J]. Agron. J.,1974,66:531-533
    5. Bernard R L. Two major genes for time of flowering and maturity in soybeans[J]. Crop Sci.,1971, 11:242-244
    6. Bonato E R and Vello N A. E6, A Dominant Gene Conditioning Early Flowering and Maturity in Soybeans[J]. Genet. Mol. Biol.,1999,22:1415-4757
    7. Borthwich H A and Parker M W. Influence of photoperiods upon the differentiation of meristems and the blossoming of biloxisoybeans[J]. Bot.Gaz.,1938,99:825-839
    8. Breseghello F, Sorrells M S. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) Cultivars[J]. Genetics,2006,172:1165-1177
    9. Brown D M and Owen C W. Effect of photoperiod on soybean development[J]. Soybean Dig.,1961, 21:14-16
    10. Brown D M. Soybean ecology. I.Development-temperature relationships from controlled environment studies[J].Agron.J.,1960,52:493-496
    11. BucklerE S, Thornsberry J M. Plant molecular diversity and applications to genomics. Current Opinion in Plant[J]. Biology,2002,5:107-111
    12. Buzell R I and Voldeng H D. Inheritance of insensitivity to long daylength[J]. Soybean Genet. Newsl[J].1980,7:26-29
    13. Buzell R I and Voldeng H D. Inheritance of insensitivity to long daylength[J]. Soybean Genet. Newsl[J].,1980,7:26-29
    14. Buzell R I. Inheritance of soybean flowering response to fluorescent-daylength conditions[J]. Can. J. Genet. Cytol.,1971,13:703-707
    15. Byth D E. Comparative photoperiodic responses for several soya bean varieties of tropical and temperature origin[J]. Aust. J. Agr. Res.,1968,19:879-890
    16. Carpentieri-Pipolo V, Almeida L A, Kiihl R A S, et al. Inheritance of long juvenile period under short day conditions for the br80-6778 soybean (Glycine max (L.)Merrill) line. Euphytica,2000, 112:203-209
    17. Carter T E, Nelson R L, Sheller C H, et al. Genetic diversity in soybean [M]. In:Boerma H R, James E S (eds) Soybeans:improvement, production, and uses,3rd edn. ASA, CSSA and SSSA, Madison, Wisconsin,2004:309-310
    18. Chanock S J, Manolio T, Boehnke M, et. al. Replicating genotype-phenotype associations[J]. Nature,2007,447:655-660
    19. Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin J M, Doussinault G. A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat [J].Theor Appl Genet.,2001,103:962-971
    20. Ching A, Caldwell K S, Jung M, DolanM, et. al. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines [J]. BMC Genet.,2002,3:19
    21. Choi, I Y, Hyten D L, Matukumalli L K, et. al. A soybean transcript map:gene distribution, haplotype and single-nucleotide polymorphism analysis[J]. Genetics,2007,176:685-696
    22. Churchill G A,Doerge R W. Empirical threshold values for quantitative trait mapping [J]. Genetics, 1994,138 (3):963-971
    23. Cober E R, Molnar S J, Charette M. A new locus for early maturity in soybean[J]. Crop Sci.,2010, 50:524-527
    24. Cober E R, Tanner J W and Voldeng H D. Soybean photoperiod sensitivity loci respond differentially to light quality [J]. Crop Sci.,1996,36:606-610
    25. Cober E R, Stewart D W, Voldeng H D. Photoperiod and temperature responses in early-maturing near-isogenic soybean lines[J]. Crop Sci.,2001,41:721-727
    26. Cober E R, Voldeng, H D,and Morrison, M J. Maturity and pubescence color are associated in short-season soybean[J]. Crop Sci.,1997,37:424-427
    27. Cregan, P B, Jarvic T, Bush A L, et. al. An integrated genetic map of the soybean genome[J]. Crop Sci.,1999,39:1464-1490
    28. Criswell J G and Hume D J. Variation in Sensitivity to Photoperiod Among Early Maturing Soybean Strains[J]. Crop Sci.,1972,12 (5):657-660
    29. Destro, D, Carpentieri-Pipolo V, deSouza Kiihl R.A, et al. Photoperiodism and genetic control of the long juvenile period in soybean[J]. Crop Breed. Appl. Biotechnol,2001,1:72-92
    30. Devlin B, Risch N. A comparison of linkage disequilibrium measures for fine scale mapping[J]. Genomics,1995,29:311-322
    31. Diers B, Keim P, Fehr W, et al. RFLP analysis of soybean seed protein and oil content[J]. Theor Appl Genet.,1992,83:608-612
    32. Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character [J]. Genetics,1996,142 (1):285-294
    33. Doyle J J, Doyle J I. Isolation of plant DNA from fresh tissue[J]. Focus,1990,12:149-151
    34. Edward Buckler Lab. Maize Diversity Research:http://www.maizegenetics.net/bioinformatics/
    35. Emerson, B N and Minor H C. Response of soybean to high temperature during germination[J]. Crop Sci.,1979,19:553-556
    36. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure:a simulation study[J]. Molecular Ecology,2005,14:2611-2620
    37. Farnir F, Coppieters W, Arranz J J, et al. Extensive Genome-wide Linkage Disequilibrium in Cattle[J]. Genome Res.,2000,10:220-227
    38. Feaster C V. Influence of planting date on yield and other characteristics of soybeans grown in southeast Missouri[J]. Agron.J.,1949,41:57-62
    39. Fehr R W and Caviness C E. Stagesof Soybean development. Special Reports 80 Cooperative Extention Service. IowaSta. Uni.,1980
    40. Fehr W R and Caviness C E. Stages of Soybean Development. Agriculture and Home Economics, Experiment Station and Cooperative Extension Service, Iowa State University, Ames, IA 1977 Special Report,80. pp 1-11
    41. Flint-Garcia S A, Thornsberry J M, BucklerlV E S. Structure of linkage disequilibrium in plants[J]. Annu Rev Plant Biol.,2003,54:357-374
    42. Flint-Garcia S A, Thornsberry J M, Edwards B. Structure of linkage disequilibrium in plants[J]. Annu Rev Plant Biol.,2003,54(1):357-374
    43. Flint-Garcia S A, Thuillet A, Yu J, et al. Maize association population:A high resolution platform for QTL dissection [J]. Plant J.,2005,44:1054-1064
    44. Flint-Garcia S A, Thuillet A, Yu J, et al. Maize association population:A high resolution platform for QTL dissection [J]. Plant J.,2005,44:1054-1064
    45. Fukui J. Classification and ecological studies on crop varieties with special reference to Japanese soybean varieties [J]. Jap. J. Breeding,1961,11:67-69
    46. Funatsuki H, Ohnishi S. Recent Advances in Physiological and Genetic Studieson Chilling Tolerance in Soybean [J].JARQ,2009,43:95-101
    47. Garner W W and Allard H A. Effect of relative length of day and night and other factors of the environment of growth and reproduction in plants [J]. Arg. Res.,1920,18:553-606
    48. Garner W W and Allard H A. Photoperiodic response of soybeans in relation to temperature and other environment factors [J]. Agric. Res.,1930,41:719-735
    49. Garner W W and Allard H A. The response of the plant to relative length of day and night [J]. Agric. Res.,1923,23:871-920
    50. Gaut B S and Long A D.The lowdown on linkage disequilibrium [J].-Plant Cell,2003,15: 1502-1506
    51. Githiri S M, Yang D, Khan N A, et al. QTL analysis of low temperature-induced browning in soybean seed coats [J].Hered.,2007,98:360-366
    52. Green D E, Cavanaugh L E and Williams L E. Effece of planting date and maturing date on soybean seed quality [J]. Agron. J.,1965,57:165-168
    53. Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants:Present status and future prospects [J]. Plant Mol Biol.,2005,57:461-485
    54. Hagenblad J, Nordborg M. Sequence variation and haplotype structure surrounding the flowering Time Locus FRI in Arabidopsis thaliana [J]. Genetics Society of America,2002,161:289-298
    55. Han T, Wu C, Tong Z, et al. Post flowering photoperiod regulates vegetative growth and reproductive development of soybean [J]. Environ Exp Bot.,2006,55:120-129
    56. Hartwig E E, Kiihl R A S. Identification and utilization of a delayed flowering character in soybean for short-day conditions [J]. Field Crop Res.,1979,2:145-151
    57. Hartwig E E. Varietal development In B. E. Caldwell(ed.) Soybeans:Improvement, Production, and Uses. Agronomy,1973,16:187-210
    58. Herbert. The Encyclo Pedia Americana [M].2006. Scholastic Library Publishing
    59. Hinson K. Use of a long juvenile trait in cultivar development. In:Pascale AJ, ed. World soyabean research conference IV. Buenos Aires, Argentina:Asociacion Argentina de la Soja,1989,983-987
    60. Howell R W. Heat, drouth and soybeans [J].Soybean Dig.1956,16(10):14-17
    61. Jansen R C, Van Ooijen J W, Stam P, et al. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci [J]. Theor Appl Genet.,1995,91:33-37
    62. Johnson H W, Borthwick H A and Leffel R C. Effects of photoperiod and time of planting of rates of development of the soybean in various stages of the life cycle [J]. Bot.Gaz.,1960,122:77-95.
    63. Jun T H, Van K. Kim M, et al. Association analysis using SSR markers to find QTL for seed protein content in soybean [J]. Euphytica,2008,162:179-191
    64. Kabelka E A, Diers B W, Fehr W R et al. Putative Alleles for Increased Yield from Soybean Plant Introduction [J]. Crop Sci.,2004,44:784-791
    65. Kantolic A G and Slafer G A. Photoperiod sensitivity after flowering and seed number determination in indeterminate soybean cultivars [J]. Field Crops Res.,2001,72:109-118
    66. Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci [J]. Genetics,1999,152:1203-1216
    67. Keim P, Diem B W, Olson T C et al. RFLP mapping in soybean:association between marker loci and variation in quantitative traits [J]. Genetics,1990,126:735-742
    68. Keim P, Schupp J, Travis S, Clayton K, Zhu T, Shi L, Ferreira A and Webb D. A high-density soybean genetic map based on AFLP markers[J]. Crop Sci.,1997.37(2):537-543
    69. Kerem B, Rommensj M, Buchanan J A, et. al. Identification of the cystic fibrosis gene:genetic analysis [J]. Science,1989,245:1073-1080
    70. Kiihl H A. Strategies for cultivar development in the tropics. Proceed of world soybean research confer Ⅲ,1984:301-304
    71. Knowler W C, Willms R C, Pettitt D J, et. al. Gm3; 5,13,14 and type 2 diabetes mellitus:an association in American Indians with genetic admixture [J]. American Journal of Human Genetics, 1988,43:520-52
    72. Kolhe S and Hussain S M. On-line soybean germplasm information system[C] Qiu L, Guan R, Jin J, Song Q, Guo S, Li W, Wang,Y, Han T, Liu X, Yu D, Jiang L and Peng D. Developing a Global Soy Blueprint for a Safe Secure and Sustainable Supply. Abstracts for oral presentations and posters of the World Soybean Research Conference VIII, Beijing, China,10-15 August 2009. The Chinese Academy of Agricultural Sciences, Beijing, China, pp,48-49
    73. Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121:185-199
    74. Lark K G, Orf J, Mansur M L. Epistatic expression of quantitative trait loci (QTL) in soybean [Glycine max (L.) Merr.] determined by QTL association with RFLP alleles [J]. Theor. Appl. Genet., 1994,88:486-489
    75. Lark K, Weisemann J, Matthews B, et al. A genetic map of soybean (Glycine max L.) using an intraspecific cross of two cultivars:'Minosy'and'Noir 1'[J]. Theor Appl Genet.,1993,86:901-906
    76. Lawn R J and Byth D E. Response of soya beans to planting date in south-eastern Queensland. I: Influence of photoperiod and temperature on phasic development patterns [J]. Aust. J. Agric. Res., 1973,24:67-80
    77. Lee S H, Bailey M A, Mian M A R, et al. Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit [J]. Theor. Appl. Genet., 1996a,92:516-523
    78. Lee S H, Bailey M A, Mian M A R, et al. Molecular markers associated with soybean plant height, lodging, and maturity across locations [J]. Crop Sci.,1996b,36:728-735
    79. Li W X, Zheng D H, Van K V, et al. QTL Mapping for Major Agronomic Traits across Two Years in Soybean (Glycine max L. Merr.)[J]. Crop Sci. Biotech,2008,11:171-190
    80. Liu B H, Abe J. QTL Mapping for Photoperiod Insensitivity ofaJapanese Soybean Landrace Sakamotowase [J]. J Hered.,2010,101:251-256
    81. Liu W X, Kim M Y, Van K V, et al. Identification of Population-Specific QTLs for Flowering in soybean [J]. Crop Sci. Biotech,2010,13:213-218
    82. Mackay I, Powel W. Methods for linkage disequilibrium mapping in crops [J]. Trends Plant Sci,. 2006,12:57-63
    83. Major D J, Johnson D R, Tanner J W, et al. Effects of daylength and temperature on soybean development [J].Crop Sci.,1975,15:174-179
    84. Mansur L M, Lark K G, Kross H et al. Interval mapping of quantitative trait loci for reproductive morphological, and seed traits of soybean (Glycine max (L.) Merr.) [J]. Theor. Appl. Genet., 1993a,86:907-913
    85. Mansur L M, Orf J H, Chase K, et al. Genetic mapping of agronomic traits using recombinant inbred lines of soybean [J]. Crop Sci.,1996,36:1327-1336
    86. Mansur L M, Orf J, Lark K G. Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant inbreds of soybean (Glycine max L. Merr.) [J]. Theor Appl Genet.,1993b,86:914-918
    87. Matsumura H, Liu B L, Abe J, et al. AFLP Mapping of Soybean Maturity Gene E4 [J]. J Hered., 2008,99:193-197
    88. McBlain B A and Bernard R L. A new gene affecting the time of flowering and maturity in soybeans [J]. Hered.,1987,78:160-162
    89. Molnar S J, Rai S, Charette M, et al. Simple sequence repeat (SSR) markers linked to El, E3, E4, and E7 maturity genes in soybean [J]. Genome,2003,46:1024-1036
    90. Neale D B and Savolainen O. Association genetics of complex traits in conifers. Trends Plant Sci., 2004,9:325-330
    91. Nelson R.. Collection, conservation and evaluation of soybean germplasm. Qiu L, Guan R., Jin J, Song Q, Guo S, Li W, Wang Y, Han T, Liu X, Yu D, Jiang L and Peng D (eds) Developing a Global Soy Blueprint for a Safe Secure and Sustainable Supply. Abstracts for oral presentations and posters of the World Soybean Research Conference VIII, Beijing, China,10-15 August 2009. The Chinese Academy of Agricultural Sciences, Beijing, China, pp5-6
    92. Nnadozie C O. Association Mapping in Plants[M].The Horticulture and Food Research Institute of New Zealand Ltd (HortResearch) Havelock North, New Zealand.,2006, pp:57-67
    93. Nordborg M, Borevitz J O, Bergelson J, Berry C C, Chory J, Hagenblad J, Keitman M, Maloof J N, Noyes T.Oefner P, Stahl E A, Weige 1 D. The extent of linkage disequilibrium in Arabidopsis thaliana [J]. Nature Genetie,2002,30:190-193
    94. Nordborg M, Hu T T, Ishino Y, Jhaveri J, Toomajian C, et al. The Pattern of Polymorphism in Arabidopsis thaliana [J]. PLoS Biology,2005,3:e196
    95. Orf J H., Chase K.s Jarvik T., et al. Genetics of soybean agronomic traits:I. comparison of three related recombinant inbred populations [J]. Crop Sci.,1999,39:1642-1651
    96. Palaisa K A, Morgante M M, Williams M et al. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci [J]. Plant Cell,2003, 15:1795-1806
    97. Palmer R G, Boerma H R, Specht J E, et al. Quantitative Genetics [M]. In H. Roger Boerma and James E. Specht (eds), Soybeans:Improvement, Production, and Uses. Third edition. USA. American Society of Agronomy. Inc.,2004:201-205
    98. Palmer R G, Kilen T C. Qualitative genetics and cytogenetics Soybeans:Improvement, production, and uses[J]. Agronomy,1987,16:135-209
    99. Palmer R. and Hedges B. Linkage map of soybean (Glycine max L. Merr.). Genetic Maps:Locus Mips of Complex Genomes.(ed. Brien, SJO)[J]. New York:Cold Spring Harbor Laboratory Press, 1993,6:139-146
    100. Palmer R. G.and Shoemaker R. C. Soybean genetics:Soybean Institute of Field and Vegetable Crops [M]. Hrustic. Novi Sad, Yugoslavia,1998,45-82
    101. Parker M W and Borthwick H A. Effect of photoperiod of development and metabolism of the Biloxi soybean [J]. Bot.Gaz.,1939,100:651-689
    102. Paterson A H,Lander E S, Hewitt J D, et al. Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map [J]. Nature,1988,335:721-726
    103. Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data [J]. Genetics,2000,155:945-959
    104. Rafalski A. Applications of single nucleotide polymorphisms in crop genetics [J]. Curr Opin Plant Biol.,2002,5:94-100
    105. Ray J D, Hinson J K, Mankono J. B. B. and Malo M. F. Genetic control of a long-juvenile trait in soybean [J]. Crop Sci.,1995,35:1001-1006
    106. Remington D L, Thornsberry JM, Matsuoka Y, et al.Structure of linkage disequilibriumand phenotypic associations in themaize genome[J]. Proc Natl Acad Sci USA,2001,98:11479-11484
    107. Remington D L, Thornsberry JM, Matsuoka Y, et al. Structure of linkage disequilibriumand phenotypic associations in themaize genome[J]. Proc Natl Acad Sci. USA,2001,98:11479-11484
    108. Ross J P and Brim C A. Resistance of soybeans to the soybean cyst nematode as determined by a double-row method[J]. Plant Disease Report,1957,41:923-924
    109. Saindon G, Voldeng H D, Beversdorf W D, et al. Genetic control of long day length response in soybean [J]. Crop Sci.,1989,29:1436-1439
    110. Salvi S and Tuberosa R. To clone or not to clone Plant QTLs:Present and future challenges [J]. Trends Plant Sci.,2005,10:297-304
    111. Schmutz J, Cannon S B, et al. Genome sequence of the palaeopolyploid soybean [J]. Nature,2010, 463:178-183
    112. Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increase seed protein concentration in soybean [J]. Crop Sci.,2000,40:1438-1444
    113. Shifman S, Kuypers J, Kokoris M, et al. Linkage disequilibrium patterns of the human genome across populations[J]. Hum Mol Genet.,2003,12:771-776
    114. Shoemaker R and Olson T. Molecular linkage map of soybean (Glycine max L. Merr.). Genetic maps:locus maps of complex genomes [J]. Edited by SJ O'Brian. Cold Spring Harbor Laboratory Press, Plainview, NY,1993,6131-6138
    115. Shoemaker R and Specht J. Integration of the soybean molecular and classical genetic linkage groups[J]. Crop Sci.,1995,35:436-446
    116. Sinclair T R, and Hinson K. Soybean flowering in response to the long-juvenile trait [J]. Crop Sci., 1992,32:1242-1248
    117. Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E and Cregan P B. A new integrated genetic linkage map of the soybean[J]. Theor Appl Genet.,2004, 109(1):122-128
    118. Specht J E, Chase K, Macrander M. Soybean response to water:A QTL analysis of drought tolerance [J]. Crop Sci.,2001,41:493-509.
    119. Symonds V V, Godoy A V, Alconada T, Botto J F, Juenger T E, Casal J J, Lloyd A M. Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density [J]. Genetics,2005,169:1649-1658
    120. Takahashi R and Abe J. Genetic and linkage analysis of low temperature-induced browning in soybean seed coats [J]. J. Hered.,1994,85:447-450
    121. Takahashi R., Benitez E R, Funatsuki H et al. Soybean maturity and pubescence color genes improve chilling tolerance [J]. Crop Sci.,2005,45:1387-1393
    122. Tasma I M, Lorenzen L L, Green D E, et al. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean [J]. Mol. Breed.,2001,8:25-35
    123. Tenaillon M I, Sawkins M C, Ankhony D, et al. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp mays L) [J]. Proc Natl Acad Sci.,2001,98:9161-9166
    124. Tucker D M, Griffey C A. Liu S, Brown-Guedira G,et al. Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations [J]. Euphytica,2007,155:1-13
    125. Van Schaik P H and Probst A H. Effects of some environmental factors on flower production and reproductive efficiency in soybeans[J]. Agron.,1958,50:192-197
    126. Wang D L, Zhu J, Li Z K, et al. Mapping QTLs with epistastic effects and QTL environment interactions by mixed linear model approaches [J]. Theor. Appl. Genet.,1999,99:1255-1264
    127. Wang D, Graef G L, Procopiuk A M, et al. Identification of putative QTL that underlie yield in interspecific soybean backcross populations [J]. Theor. Appl. Genet.,2004,108:458-467.
    128. Wang L, Guan R, Zhang X L, Chang R and Qiu L. Genetic Diversity of Chinese Cultivated Soybean Revealed by SSR Markers[J]. Crop Sci.,2006,46(3):1032-1038
    129. Watanabe S, Hideshima R, Tsubokura Y, et al. Map-based cloning of the gene associated with the soy bean maturity locus E3[J]. Genetics,2009,182:1251-1262
    130. Watanabe S, Tadjuddin T, Yamanaka N, et al. Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci.,2004,54:399-407
    131. Watanabe S, Xia Z J, Hideshima R, et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering [J]. Genetics,2010,188:395-407
    132. Whigham D K and Minor H C. Agronomic characteristics and environmental stress. In A. G. Norman, ed. Soybean physiology, agronomy, and utilization[J]. Academic Press Inc. pp.1978, 78-91
    133. Wu J Z, Maehara T, Shimokawa T, Yamarnoto S, et al. A comprehensive rice transcription map containing 6591 expressed sequence tag sites [J]. Plant Cell,2002,14:525-535
    134. Yamanaka N, Nagamura Y, Tsubokura Y, et al. Quantitative trait locus analysis of flowering time in soybean using a RFLP linkage map [J]. Breeding Sci.,2000,50:109-115
    135. Yamanaka N, Ninomiya S, Hoshi M, et al. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion [J]. DNA Res.,2001, 8:61-72
    136. Yamanaka N,Watanabe S,Toda K,et al.Fine mapping of the FTl locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line [J]. Theor Appl Genet., 2005,110:634-639
    137. Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations [J]. Bioinformatics,2007,23:1527-1536
    138. Yu JM. Buckler ES Genetie association mapping and genome organization of maize [J]. Curr Opin Biotech,2006,17:1-6
    139. Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics,1994,136:1457-1468
    140. Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers [J]. Theor Appl Genet., 2004,108:1131-1139
    141. Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping of ten agronomic traits on the soybean(Glycine max L. Merr.) genetic map and their association with EST markers [J]. Theor Appl Genet.,2004,108:1131-1139
    142. Zhu C, Gore M, Buckler E S, et al. Status and prospects of assoeiation mapping in plants [J]. Plant Genome,2008,1:5-20
    143. Zhu Y L, Song Q J, Hyten D L, et al. Single nueleotide Polymorphisms in soybean [J]. Genetics, 2003,163:1123-1134
    144.常汝镇.大豆成熟期基因作用的遗传分析[J].大豆科学,1992,11:127-132
    145.陈庆山,张忠臣,刘春燕,等.应用Charlestonx东农594重组自交系群体构建SSR大豆遗传图谱[J].中国农业科学,2005,38:1312-1316
    146.东北师范大学生物系.大豆生理[M].科学出版社.1981
    147.东北师范大学生物系.大豆生理[M].科学出版社.1981
    148.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].科学出版社,2001,10-20
    149.费志宏,吴存祥,孙洪波,等.以光周期处理与分期播种试验综合鉴定大豆品种的光温反应[J].作物学报,2009,35:1525-1531
    150.付三雄.大豆微卫星标记遗传图谱的构建及其在大豆抗病、虫基因定位中的应用[D].南京:南京农业大学博士学位论文,2006
    151.盖钧镒和汪越胜.中国大豆品种生态区域划分的研究[J].中国农业科学,2001,34:139-145
    152.巩鹏涛,木金贵,赵金荣,等.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合[J].分子植物育种,2006,4:309-316
    153.韩天富,盖钧镒,王金陵,等.大豆开花逆转现象的发现[J].作物学报,1998a,24:168-171
    154.韩天富,盖钧镒.大豆发育分期标准的补充[J].大豆通报,1998b,2:25
    155.贺道华,张献龙.数量性状由表型变异到基因发现的研究进展[J].遗传,2006,28:1613-1618
    156.林谦,毛孝强,杨德,等.QTL作图主要统计方法及主要作图群体[J].云南农业大学学报, 2004,19:121-127
    157.刘峰,陈受宜,庄炳昌.大豆基因组F连锁群高密度图谱的构建和基因定位[J].自然科学进展,2000,10:1012-1017
    158.栾晓燕,满为群,杜维广,等.大豆光钝感种质创新与光周期育种途径的研究[J].大豆科学,2004,3:196-199
    159.吕蓓,张丽霞,宛煜嵩,等.用AFLP标记饱和大豆SSR遗传连锁图[J].分子植物育种,2005,3:163-172
    160.吕世霖.我国大豆栽培区划的研讨[J].山西农业大学学报,1981,1:10-17
    161.莫惠栋.数量遗传学的新发展-数量性状基因图谱的构建和应用[J].中国农业科学,1996,29:8-16
    162.潘铁夫.东北地区农作物冷害发生规律的研究[J].吉林农业科学,1985,4:9-16
    163.邱丽娟,曹永生,常汝镇,等.中国大豆(Glycine max)核心种质构建Ⅰ取样方法研究[J].中国农业科学,2003,36:1442-1449
    164.任全兴,盖钧镒,马育华.我国大豆生育期生态特性研究[J].中国农业科学,1987,20:23-28
    165.阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展[J].植物学通报,2003,20:10-22
    166.山西农业大学.大豆生育期变化规律和分类问题探讨[C].大豆研究资料选编,1975,16-32
    167.邵启全,林章棋,周瑞敏.中国野生大豆光周期生态类型分析[J].作物学报,1980,6:45-50
    168.沈金雄,易斌,傅廷栋,等.植物数量性状基因定位研究概述[J].植物学通报,2003,20:257-263
    169.苏成付,卢卫国,赵团结,等.利用目标区段剩余杂合系进行大豆开花期QTL的验证和精细定位[J].科学通报,2010,55:332-341
    170.宛煜嵩,王珍,马俊奎,等.大豆重组自交系Jinf的构建及主要农艺性状和SSR基因型分析[J].分子植物育种,2003,1:157-177
    171.宛煜嵩,王珍,肖英华,等.一张含有227个SSR标记的大豆遗传连锁图[J].分子植物育种,2005,3(1):15-20
    172.汪越胜,盖钧镒.黄淮海春夏豆区大豆熟期组归属及地理分布概貌[J].北华大学学报(自然科学版),2001a,2154-157
    173.汪越胜,阚显照,盖钧镒.中国夏播大豆熟期组归属及地理分布概势研究[J].生态学杂志,2001b,20:1-3
    174.汪越胜.我国南方大豆品种生育期生态特性及生态类型的初步研究[D],南京农业大学硕士论文,1989
    175.汪越胜.中国大豆品种的熟期组、生态区域及光温反应遗传特性研究[D].南京农业大学,1998
    176.王海杰,杨存义,江炳志,等.大豆生育期性状QTL定位[J].中国油料作物学报,2010,32:362-368
    177.王金陵,武镛祥,吴和礼,等.中国南北地区大豆光照生态类型的分析[J].农业学报,1956,7:169-180
    178.王金陵.大豆的生态类型与大豆的栽培育种[J].中国农业科学,1961,1:24-27
    179.王金陵.大豆分类问题[J].植物分类学报,1976,14:22-30
    180.王金陵.大豆农艺性状的遗传传递规律与大豆的杂交育种[J].中国农业科学,1962,12:1-5
    181.王金陵.中国大豆栽培区划划分之初步研讨[J].农报,1943,8:25-30
    182.王金陵.中国南北地区大豆光照生态类型的分析[J].农业学报,1956,7:169-179
    183.王丽侠,关荣霞,常汝镇,等.中国栽培大豆核心种质的取样策略.中国粮食安全战略-第九十次中国科协青年科学家论坛文集,2004,119-129
    184.王荣焕,王天宇,黎裕.植物基因组中的连锁不平衡[J].遗传,2007,29:1317-1323
    185.王英,吴存祥,张学明,等.不同光周期条件下大豆生育期主基因的效应[J].作物学报[J].2008b,34:1160-1168
    186.王英.大豆生育期性状的遗传分析及相关基因的分子标记[D].北京:中国农业科学院.2008a:21
    187.王永军,吴晓雷,贺超英,等.大豆作图群体检验与调整后构建的遗传图谱[J].中国农业科学,2003,36:1254-1260
    188.王永军.大豆重组自交系群体的构建与调整及其在遗传作图、抗花叶病毒基因定位和农艺及品质性状QTL分析中的应用[D].南京农业大学博士学位论文,2001
    189.文自翔,赵团结,郑永战,等.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析Ⅱ.优异等位变异的发掘[J].作物学报,2008b,34:1339-1349
    190.文自翔,赵团结,郑永战,等.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析Ⅰ.群体结构及关联标记[J].作物学报,2008a,34:1169-1178
    191.吴晓雷,.贺超英,王永军,等.大豆重要农艺性状的QTL分析[J].遗传学报,2001,28:947-955
    192.邢光南,周斌,赵团结,喻德跃,邢邯,陈受宜,盖钧镒(2008).大豆抗筛豆龟蝽Megacota cribraria(Fabricius)的QTL分析.作物学报(03):361-368
    193.徐豹,路琴华.大豆生态研究Ⅰ.中国不同纬度野生大豆的光温生态分析[J].大豆科学,1983,2:155-168
    194.杨小红,严建兵,郑艳萍,等.植物数量性状关联分析研究进展[J].作物学报,2007,33:523-530
    195.杨永华,盖钧镒,马育华.春夏秋播种季节条件下大豆生育期遗传的差异表现[J].中国农业科学,1994,27:1-6
    196.杨喆,关荣霞,王跃强,等.大豆遗传图谱的构建和若干农艺性状的QTL定位分析[J].植物遗传资源学报,2004,5:309-314
    197.于海霞,肖静,田纪春,等.关联分析及其在植物中的应用[J].基因组学和应用生物学,2009,28:187-194
    198.张丹.大豆耐低磷相关基因GmAPt的图位克隆、关联分析及功能标记的开发[D].南京农业大学,2010
    199.张德水,董伟,惠东威,等.用栽培大豆与半野生大豆间的杂种F2群体构建基因组分子标记连锁框架图[J].科学通报,1997,42:1326-1330
    200.张军,赵团结,盖钧镒.大豆育成品种农艺性状QTL与SSR标记的关联分析[J].作物学报,2008,34:2059-2069
    201.张军,赵团结,盖钧镒.中国大豆育成品种群体遗传结构分化和亚群特异性分析[J].中国农业科学,2009b,42:1901-1910
    202.张磊,张宝石.植物数量性状基因的定位与克隆[J].植物学通报,2007,24:553-560
    203.张学勇,童依平,游光霞,等.选择牵连效应分析:发掘重要基因的新思路[J].中国农业科学,2006,39:1526-1535
    204.周斌,邢邯,陈受宜,等.大豆分子标记遗传图谱的整合及其应用[J].大豆科学,2009,28:557-565
    205.朱军.复杂数量性状基因定位的混合线性模型方法[C].王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998:11-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700