用户名: 密码: 验证码:
中上扬子北缘中—晚二叠世沉积相与古地理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对中上扬子北缘地区中晚二叠世地层剖面的野外勘测、室内碳酸盐岩薄片粒度和成分统计分析,碳酸盐岩微相分析,以及碳酸盐岩同位素地球化学、烧失量、碎屑岩地球化学等的综合研究,得出如下结论:
     研究区中晚二叠世的岩石类型包括碳酸盐岩、碎屑岩、硅岩和煤四类,其中以碳酸盐岩为主,碎屑岩、硅质岩次之,煤较少。碳酸盐岩主要为石灰岩,其次是白云岩。石灰岩包括颗粒灰岩、泥粒灰岩、粒泥灰岩、灰泥石灰岩、礁灰岩、砾屑灰岩。根据微相特征,碳酸盐岩进一步分为生物碎屑颗粒灰岩、团块颗粒灰岩、核形石颗粒灰岩、含生物碎屑灰泥灰岩、生物碎屑粒泥灰岩、生物碎屑泥粒灰岩、鲕粒灰岩、砂屑生物碎屑、泥晶粉屑灰岩。白云岩包括泥-粉晶白云岩和细-中晶白云岩。碎屑岩包括砂岩、粉砂岩和泥页岩。硅岩包括薄层硅岩、似层状硅岩、透镜状和团块状硅岩。
     通过碳酸盐岩定量分析,赋予平均粒径、簸选率和颗粒/基质比权值后得出的水动力指数能反映灰岩沉积时的水动力强弱程度。根据簸选率和水动力指数的相关性,并参照前人的研究结果将水动力条件划分为五类:I、II类水动力指数<4.90,为未簸选或簸选很差;III类在4.90~6.37之间,为略有簸选;IV类在6.37~9.01之间,为簸选较强;V类>9.01,为簸选强。
     研究区中晚二叠世沉积相类型主要为碳酸盐岩台地相、碳酸盐陆棚相、碳酸盐斜坡相、盆地相和滨岸碎屑岩相。碳酸盐台地主要发育于陕西镇安西口剖面三里冲组、石门垭组、垭子组、熨斗滩组、龙洞川组,陕西汉中梁山剖面栖霞组-长兴组大部分层位,四川广元上寺剖面栖霞组-吴家坪组的部分层位,重庆华蓥山剖面长兴组以及栖霞组-吴家坪组的部分层位;碳酸盐陆棚主要发育于陕西镇安西口剖面水峡口组和西口组,四川广元上寺剖面栖霞组-吴家坪组的大部分层位;碳酸盐斜坡主要发育于陕西汉中梁山剖面茅口组-吴家坪组部分层位,四川广元上寺剖面吴家坪组-长兴组的部分层位,重庆华蓥山剖面栖霞组-茅口组的部分层位;盆地主要发育于四川广元上寺剖面长兴组的部分层位,重庆华蓥山剖面吴家坪组部分层位;滨岸碎屑岩主要发育于陕西汉中梁山剖面吴家坪组底部,四川广元上寺剖面栖霞组和吴家坪组底部,重庆华蓥山剖面栖霞组和吴家坪组底部。
     根据碳酸盐岩薄片定量分析结果,二叠纪栖霞期和吴家坪期生物因素对沉积厚度的控制作用大于水动力因素,茅口期和长兴期水动力因素和生物因素对沉积厚度的控制作用相似。陕西镇安西口二叠系灰岩巨大的沉积厚度可能是与特殊的古地理位置和区域构造背景密切相关的。
     陕西镇安西口剖面碳酸盐岩碳氧同位素计算出的古盐度结果显示其均为海相灰岩,与沉积环境的研究结论一致。二叠纪古海水温度范围为13.4℃~35.1℃,平均22.3℃,基本属二叠纪正常海水温度。该地区在整个二叠纪期间,生物碳酸盐岩加工厂生产力较高但存在波动,古海水盐度变化不大,古海水温度、水动力条件和洋流强度存在变化,有机质埋藏速率也存在变化。δ13C平均值明显超过了Keith和Weber总结的海相碳酸盐岩δ13C值变化范围-0.99-2.11‰的上界,表明二叠系碳酸盐岩相对富含13C。镇安西口地区二叠系碳同位素总体呈现的持续高值现象为地史上碳同位素的演化规律作了重要的补充。
     研究区砂岩碎屑组分物源分析表明,物源具多源性,构造背景以再旋回造山带为主,但不排除弧和俯冲带的可能性。地球化学数据显示源岩风化程度低到中等,碎屑岩沉积旋回和分选程度低,成熟度不高,为陆源碎屑组分的低等重组,源岩主要为中酸性长英质火山岩,也可能含有其它复杂成分,物源主要来自上部大陆壳。非迁移性微量元素和稀土元素显示碎屑岩的构造背景主要为大陆岛弧-活动大陆边缘,但不排除抬升基底和构造高地的影响。
By field reconnaissance, grain size and composition statistic on thin sections, carbonate microfacies, isotope geochemistry, loss of ignition, geochemistry of calstic rocks on middle and later Permian sections in the northern margin of middle and upper Yangtze region, followed results has been educed:
     Middle and late Permian rock styles in studied area can be divided into four categories, with carbonate rocks being the major component, clastic rocks and siliceous rocks being subordinate, and coal being the least. Carbonate rocks include limestones and dolostones, with former being the main composition. Limestones include grainstone, packstone, wackstone, mudstone, reef limestone, calcirudite. By characteristics of microfacies, carbonate rocks could further be compartmentalized as followed categories: bioclastic mudstone, bioclastic wackstone, bioclastic packstone, bioclastic grainstone, peloid grainstone, oncoid grainstone, oolitic grainstone, detritus-bioclastic sparite, reef limestone, micrite calcisiltite. Dolostones include mud-silt-sized crystalline dolostone and fine-medium-sized crystalline dolostone. Clastic rocks includes sandstone, siltstone, mudstone and shale. Siliceous rocks include thin-bedded siliceous rocks, stratoid siliceous rocks and lenticular, nodular siliceous rocks.
     By assigning weights to mean grain size, winnowing ratio and grain/matrix in quantitative analysis of carbonate rocks, we obtain the index of hydrodynamatic force which could reflect the hydrodynamatic condition of limestone during its deposition time. Combining former research and correlation between winnowing ratio and the index, the conditions could be divided into five categories, with I、II<4.90 being no or poor winnowing, 4.90     The types of Middle and late Permian sedimentary facies in the studied area were carbonate platform facies, shelf facies, slope facies, basin facies, littoral facies. Carbonate platform facies mainly developed in Sanlichong Formation, Shimenya Formation, Yazi Formation, Yundoutan Formation, Longdongchuan Formation of Xikou section in Zhen’an county, Shanxi province, parts of Qixia-Wujiaping Formation of Shangsi section in Guangyuan county, Sichuan province, parts of Qixia-Wujiaping Formation and Changxing Formation of Huayingshan section in Chongqing county; Shelf facies mainly developed in Shuixiakou Formation and Xikou Formation of Xikou section in Zhen’an county, Shanxi province, majority parts of Qixia-Wujiaping Formation of Shangsi section in Guangyuan county, Sichuan province; Slope facies mainly developed in parts of Maokou-Wujiaping Formation of Liangshan section in Hanzhong county, Shanxi province, parts of Wujiaping -Changxing Formation of Shangsi section in Guangyuan county, Sichuan province, parts of Qixia-Maokou Formation of Huayingshan section in Chongqing county; Basin facies mainly developed in parts of Changxing Formation of Shangsi section in Guangyuan county, Sichuan province, parts of Wujiaping Formation of Huayingshan section in Chongqing county; Littoral facies mainly developed in base of Wujiaping Formation of Liangshan section in Hanzhong county, Shanxi province, base of Qixia Formation and Wujiaping Formation of Shangsi section in Guangyuan county, Sichuan province, base of Qixia Formation and Wujiaping Formation of Huayingshan section in Chongqing county.
     Research has shown that the controlling factor on sedimentary thickness might be biology more than hydrodynamatic condition in Qixia Formation and Wujiaping Formation, while they were similar in Makou Formation and Changxing Formation. Contrast to the other three sections, the Permian carbonates rocks of Xikou section in Zhen’an county, Shanxi province were huge thick and might relate to its special geographical location and regional tectonic background.
     Paleosalinity of Xikou section in Zhen’an county, Shanxi province calculated by oxygen and carbon stable isotopes showed that these carbonates deposited in marine environment, which agreed with the result of the sedimentary environment. The paleotemperatures of the seawater, which the carbonate deposited, were in the range of 13.4℃~35.1℃with mean value being 22.3℃within Permian normal scope. Combining LOI, oxygen and carbon stable isotopes, paleotemperatures, paleosalinity, and quantitative analysis stratigraphic distribution curve, it was thought that biologic carbonate plant had higher productivity with variation in paleotemperatures, hydrodynamatic condition, ocean currents intensity and organic matter buried rate, with gentle fluctuation in paleosalinity and productivity itself. The mean value ofδ13C surpassing upper limit of -0.99-2.11‰of marine carbonate rocks summarized by Keith and Weber indicated that Permian carbonates enriched 13C. The persistent high value ofδ13C of Permian carbonate rocks in Xikou section in Zhenan county made a supplement to the evolving regulation during geological time.
     Detrital model of studied area showed the provenances were diverse and tectonic settings were dominantly orogenic recycling source, with arc orogenic belt source and subduction mixing zone source should not be ruled out. Geochemistry showed parent rocks had low to moderate weathering degree, low degree of recycling and sorting of souce materials, low maturity and low reworking degree of terrigenous clastic rocks. Souce rocks were mainly acid and intermediate felsic volcanic rocks with other complex components should not be ruled out, and might derived mainly from upper continental crust. Immobile trace elements and REE showed that the tectonic settings was dominantly continental island-arc--active continental margins, with uplift base and tectonic highland should not be ruled out.
引文
[1]白斌,周立发,曹建科.镇安西口地区二叠纪-三叠纪地层格架与地层模型.沉积与特提斯地质, 2002, 22(4):44-49
    [2]程和琴.四川华蓥山天池-盐井地区中下三叠统嘉二段至雷一段沉积相研究.北京:中国地质大学,1989, 1-97
    [3]陈洪德,倪新锋,田景春,等.华南海相下组合层序地层格架与油气勘探.石油与天然气地质, 2006, 27(3): 370-377
    [4]丁培榛,金同安,孙秀芳.东秦岭陕西镇安西口地区二叠纪及动物群.西安地质矿产研究所所刊.西安:陕西科学技术出版社, 1989, 1-40
    [5]丁蕴杰,夏国英,李莉,等.东秦岭陕西镇安西口地区石炭系-二叠系界线及生物群.中国地质科学院天津地质矿产研究所所刊, 1991, (24): 1-202
    [6]杜远生.秦岭造山带泥盆纪沉积地质学研究.武汉:中国地质大学出版社,1997:1-130
    [7] Erik Flügel.碳酸盐岩微相-分析、解释及应用.马永生译.北京:地质出版社, 2006:628-695
    [8]冯增昭,何幼斌,吴胜和,等.中下扬子地区二叠纪岩相古地理.北京:地质出版社, 1994, 3-10
    [9]冯增昭,杨玉卿,金振奎等.中国南方二叠纪岩相古地理.东营:石油大学出版社, 1997
    [10]冯增昭.沉积岩石学(第二版)上册.北京:石油工业出版社, 1994
    [11]冯增昭等.滇黔桂地区二叠纪岩相古地理.北京:地质出版社, 2000
    [12]和政军,牛宝贵,任纪舜.陕南山阳地区刘岭群砂岩岩石地球化学特征及其构造背景分析.地质科学,2005,40(4):594-607
    [13]黄汲清,任纪舜,等.中国大地构造演化.北京:科学出版社, 1980
    [14]霍坎松.湖泊沉积学原理.北京:科学出版社, 1992, 63
    [15]吉让寿,秦德余,高长林等.东秦岭造山带与盆地.西安:西安地图出版社,1997:1-197
    [16]江纳言,贾蓉芬,王子玉,等.下扬子区二叠系古地理和地球化学特征.北京:石油工业出版社,1994,94-95
    [17]卡罗兹.碳酸盐岩实用分类及微相分析.杨承运译.北京:北京大学出版社, 1986:1-45
    [18]李怀坤,陆松年,陈志宏等.南秦岭耀岭河群裂谷型火山岩锆石U-PB年代学.地质通报,2003,22(10):775-781
    [19]李晋僧,曹宣铎,杨家禄等著.秦岭显生宙古海盆沉积和演化.北京:地质出版社,1994:1-206
    [20]李双应.大别造山带北缘中生代沉积学、盆地分析和构造演化.合肥工业大学博士学位论文,2003,129-130
    [21]李双应,李任伟,岳书仓,等.安徽肥西中生代碎屑岩地球化学特征及其对物源制约.岩石学报,2004,20(3):667-675
    [22]李双应,孟庆任,万秋,等.长江中下游地区二叠纪碳酸盐斜坡沉积及其成矿意义.岩石学报, 2008, 24(4):1733-1744
    [23]李双应,岳书仓.安徽巢湖二叠系栖霞组碳酸盐岩斜坡沉积.沉积学报,2002,20(1):7-12
    [24]李玉成,周忠泽.华南二叠纪末缺氧海水中的有毒气体与生物集群绝灭.地质地球化学,2002,30(1):57-63
    [25]李子舜,詹立培,戴进业,等.川北陕南二叠-三叠纪生物地层及事件地层学研究. 1989, 10-166
    [26]李子舜,詹立培,朱秀芳,等.古生代-中生代之交的生物绝灭和地质事件-四川广元上寺二叠系-三叠系界线和事件的初步研究.地质学报, 1986: 60(1):1-17
    [27]刘宝珺.沉积岩石学.北京:地质出版社, 1980:204-207
    [28]刘英俊,曹励明.元素地球化学导论.北京:地质出版社, 1987, 57-80
    [29]刘子亭,余俊清,张保华,等.烧失量分析在湖泊沉积与环境变化研究中的应用.盐湖研究, 2006, 14(2):67-71
    [30]吕炳全,瞿建忠.下扬子地区早二叠世海进和上升流形成的缺氧环境的沉积.科学通报, 1989: 34(22): 1721-1724
    [31]吕炳全,王红罡,胡望水,等.扬子地块东南古生代上升流沉积相及其与烃源岩的关系.海洋地质与第四纪地质, 2004, 24(4): 29-35
    [32]孟庆任,梅志超,于在平,等.南秦岭北缘镇安盆地晚泥盆世浊积岩系及盆地发展.沉积学报,1996,14:25-32
    [33]牟传龙,马永生,余谦,等.四川通江诺水河二叠纪-三叠纪界线地层牙形石的发现.地层学杂志,2005(29),4:372-373
    [34]牛宏建.东秦岭地区“刘岭群”的重新划分.地质科学,1995,30(4):313-320
    [35]欧阳建平,张本仁.秦岭造山带沉积物源地球化学研究及其构造意义.地球科学-中国地质大学学报,1996,21(5):464-468
    [36]任纪舜.中国大地构造及其演化.北京:科学出版社,1980:119-154
    [37] R.J.邓哈姆著,冯增昭译.碳酸盐岩的结构分类.地质资料汇编,科技文献出版社重庆分社,1962,3
    [38]陕西省地质矿产局.陕西省区域地质志.北京:地质出版社,1989
    [39]邵龙义,窦建伟,张鹏飞.西南地区晚二叠世氧碳稳定同位素的古地理意义.地球化学, 1996, 25(6): 575-581
    [40]四川省地质矿产局.四川省区域地质志.北京:地质出版社,1991
    [41]宋章强,王兴志,曾德铭.川西北二叠纪栖霞期沉积相及其与油气的关系.西南石油学院学报, 2005, 27(6):20-24
    [42]苏春乾,胡建民,李勇等.南秦岭地区存在两种不同构造属性的耀岭河群.矿物岩石学杂志,2006,25(4): 287-298
    [43]童崇光.四川盆地断褶构造形成机制.天然气工业. 1992, 12(5):1-7
    [44]王大锐,冯晓杰.渤海湾地区下古生界碳、氧同位素地球化学研究.地质学报, 2002, 76 (3):400-408
    [45]王大锐,许坤,吴炳伟,等.辽宁南部石炭-二叠系界线处同位素分析.石油学报, 2005, 26(2):58-64
    [46]王国莲.秦岭石炭-二叠纪有孔虫及其地质意义.地质学报, 1971, (2):131-171
    [47]王鸿祯,史晓颖,王训练,等.中国层序地层研究.广州:广东科技出版社, 2000:3-20
    [48]王鸿祯主编.中国古地理图集.北京:地图出版社, 1985
    [49]王训练,王雷,张海军,等.陕西镇安西口石炭系-二叠系界线剖面综合地层学研究.地学前缘(中国地质大学(北京);北京大学),2006, 13(6):291-301
    [50]王一刚,洪海涛,夏茂龙,等.四川盆地二叠-三叠系环海槽礁、滩富气带勘探.天然气工业, 2008, 28(1):22-29
    [51]王中刚,于学远,赵振华.稀土元素地球化学.北京:科学出版社,1989:90-93
    [52]王宗起,王涛,闫臻,等.秦岭晚古生代弧前增生的背驮型盆地体系.地质通报,2002, 21( 8~9):456-464
    [53]威尔逊J L.地质历史中的碳酸盐相.冯增昭译.北京:地质出版社, 1981, 1-80, 291-365
    [54]温俊君,刘建波.碳酸盐岩生屑颗粒定量研究-点计数法的理论分析与应用.古地理学报,2009,11(5):581-591.
    [55]校培喜,张俊雅,王洪亮.陕西凤太地区唐藏-黄柏塬构造带内各时代火山岩对比研究.陕西地质,1999,17(2):33-41
    [56]徐立恒,陈践发,李玲,等.普光气藏长兴-飞仙关组碳酸盐岩C、O同位素、微量元素分析及古环境意义.地球学报, 2009, 30(1):103-110
    [57]颜佳新,赵坤.二叠-三叠纪东特提斯地区古地理、古气候和古海洋演化与地球表层多圈层事件耦合.中国科学(D辑), 2002, 23(9):751-759
    [58]闫臻,王宗起,王涛等.秦岭造山带泥盆系形成构造环境:来自碎屑岩组成和地球化学方面的约束.岩石学报,2007,23(5):1023-1042
    [59]杨志华等.边缘转换盆地的构造岩相与成矿.北京:科学出版社. 1991,1-228
    [60]业治铮等.石灰岩的结构分类.地质论评, 1964, 22(5):378-386
    [61]殷鸿福,吴顺宝,杜远生,等.华南是古特提斯多岛洋体系的一部分.地球科学, 1999, 24(1):112
    [62]殷鸿福.早古生代镇淅地块与秦岭多岛小洋盆的演化.地质学报, 1995, (69):193-204
    [63]余素玉.化石碳酸盐岩.北京:地质出版社, 1989, 1-167
    [64]曾勇,王茵,陈松,等.川渝地区中二叠世晚期腕足动物的灭绝.中国矿业大学学报,2008,37(1):5-8
    [65]曾允孚,夏文杰.沉积岩石学.北京:地质出版社, 1986, 165-169
    [66]张二朋,牛道韫,霍有光,等.秦巴及邻区地质-构造特征概论.北京:地质出版社, 1993, 71-84
    [67]张国伟,梅志超,李桃红.秦岭造山带南部被动大陆边缘.见:张国伟等《秦岭造山带的形成及其演化》.西安:西北大学出版社, l988:86-98
    [68]张国伟,程顺有,郭安林,等.秦岭-大别中央造山系南缘勉略古缝合带的再认识—兼论中国大陆主体的拼合.地质通报, 2004, 23(910): 846-853
    [69]张国伟,柳小明.关于“中央造山带”几个问题的思考.地球科学-中国地质大学. 1998, 23(5):443-448
    [70]张国伟,孟庆任,赖绍聪.秦岭造山带结构构造.中国科学(B辑), 1995, 25(9):994-100
    [71]张国伟,张本仁,袁学诚.秦岭造山带与大陆动力学.北京:科学出版社,2001:1-855
    [72]张海军,王训练,丁林,等.冰川型海平面变化控制下的台地碳酸盐岩成岩作用:以陕西镇安西口石炭-二叠系界线剖面为例.地球科学-中国地质大学学报,2007,32(3):329-337
    [73]张海军,王训练,丁林,等.陕西镇安西口石炭-二叠系界线剖面蜓类生物多样性与高频海平面变化.中国科学D辑地球科学, 2006, 36(3):233-241
    [74]张海军,王训练,夏国英,等.陕西镇安西口石炭系/二叠系界线剖面碳酸盐岩微相特征与沉积环境的研究.现代地质, 2003, 17(4):387-395
    [75]张海军,王训练,夏国英,等.陕西镇安石炭系-二叠系界线剖面层序地层和相对海平面变化研究.地质通报, 2004, 23(4):336-344
    [76]张景华,戴进业,田树刚.四川北部广元上寺晚二叠世-早三叠世的牙形石生物地层.国际交流地质学术论文集, 1984, (1):163-178
    [77]张宗清,刘敦一,付国民.北秦岭变质地层同位素年代研究.北京:地质出版社,1994:1-231
    [78]赵嘉明.四川北川、江油及陕西汉中二叠纪珊瑚化石.南京地质古生物研究所集刊.北京:地质出版社, 1981, 213-223
    [79]赵俊兴,李凤杰,刘琪,等.四川盆地东北部二叠系沉积相及其演化分析.天然气地球科学, 2008, 19(4):444-450
    [80]周炼,高山,刘勇胜,等.扬子克拉通北缘碎屑沉积岩地球化学特征及意义.地球科学—中国地质大学学报. 2007,32(1):29-38
    [81]朱井泉四川华蓥山下、中三叠统含盐碳酸盐岩的岩相、相序及沉积环境[D].北京:中国地质大学,1988, 1-119
    [82]左景勋,彭善池,朱学剑.扬子地台寒武系碳酸盐岩的碳同位素组成及地质意义.地球化学, 2008, 37(2):118-126
    [83]左景勋,童金南,邱海鸥,等.巢湖地区早三叠世碳氧同位素地层对比及其古生态环境意义.地质地球化学, 2003, 31(3):26-32
    [84] Amstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., et al. Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 2004, 74: 285-297
    [85] Arp, G., Reimer, A., Reitner, J.. Photosynthesis-induced biofilm calcification and calcium concentration in Phanerozoic oceans. Science, 2001,292, 1701-1704.
    [86] Asiedu, D.K., Dampare, S.B., Asmoah Sakyi, P., et al.. Geochemistry of Paleoproterozoic metasedimentary rocks from the Birim diamontiferous field, southern Ghana: implications for provenance and crustal evolution at the Archean-Proterozoic boundary. Geochemical Journal, 2004, 38: 215-228
    [87] Auclair, A.-C., Joachimski, M.M., Lécuyer, C.. Deciphering kinetic, metabolic and environmental controls on stable isotope fractionations between seawater and the shell of Terebratalia transversa (Brachiopod). Chemical Geology,2003,202:59-78
    [88] Barillé-Boyera A L , BarilléL, MasséH, et al. Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems. Estuarine,Coastal and Shelf Science, 2003, 58:147-153
    [89] Bauluz B, Mayayo MJ, Fernandez Nieto C, et al. Geochemistry of Precambrian and Paleozoic silicicalstic rocks from the Iberian Range (NE Spain): Implications for souce-area weathering, sorting, provenance and tectonic setting. Chemical Geology, 2000, 168:135-150
    [90] Beaudoin A. A comparison of two methods for estimating the organic matter content of sediments. J. Paleolim, 2003, 29:387-390
    [91] Bengtsson L, Enell. Chemical analysis. In Berglund E. Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester:John Wiley & Sons Ldt, 1986, 423-451
    [92] Berner, R.A.. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc. Natl. Acad. Sci., 2002, 99:4172-4177
    [93] Berner, R.A.. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 2006,70, 5653-5664.
    [94] Bhatia, M.R., Crook, A.W.. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 1986, 92: 181-193
    [95] Bhatia, M.R., Taylor, S.R.. Trace element geochemistry and sedimentary provinces: a study from the Tasman Geosyncline, Australia. Chemical Geology, 1981, 33:115-126
    [96] Bhatia, M.R.. Composition and classification of flysch mudrocks of Eastern Australia: implication in provenance and tectonic setting interpretation. Sedimentary Geology, 1985, 41:249-268
    [97] Bhatia, M.R. Plate tectonics and geochemical composition of sandstones. Journal of Geology, 1983, 92: 181-193
    [98] Buatois L A., Màngano M G. Sedimentary facies, depositional evolution of the Upper Cambrian-LowerOrdovician Santa Rosita formation in northwest Argentina.Journal of South American Earth Sciences, 2003, 16:343-363
    [99] Catalov, G.A. An attempt at energy index(EI) analysis of the Upper Anisian, Ladinian and Carnian carbonate rocks in the Teteven Anticlinorium(Bulgaria). Sedimentary Geology, 1972, 8: 159-175
    [100] Catherine Chagué-Goff. Chemical signatures of palaeotsunamis:A forgotten proxy? Marine Geology, 2010, 271:67-71
    [101] Cingolani, C.A., Manassero, M., Abre, P.. Composition, provenance and tectonic setting of Ordovician siliciclastic rocks in the San Rafael block: southern extension of the Precordillera crustal fragment, Argentina. Journal of South American Earth Sciences, 2003, 16:91-106
    [102] Cullers, R L. Implications of elemental concentrations for provenance, redox conditions and metamorphic studies of shales and limestones near Puerblo, Co, USA. Chemical Geology, 2002, 191:305-327
    [103] Dean, W. E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition:Comparison with other methods. J.Sed.Petrol, 1974, 44:242-248
    [104] Deenen M.H.L., Ruhl M., Bonis N.R.,et al. A new chronology for the end-Triassic mass extinction. Earth and Planetary Science Letters, 2010, 291:113-125
    [105] Dickens, G.R., Castillo, M.M., Walker, J.C.G.. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 1997, 25, 259-262
    [106] Dickinson WR. Interpreting provenance from detrital modes of sandstones. In: Zuffa GG (edited). Provenance of Arenites. Dordrecht, D. Reidel, 1985, 333-362
    [107] Feng R, Kerrich R. Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting. Geochimca et Cosmochimica Acta, 1990, 54:1061-1081
    [108] Fischer A G and Bottier D J. Orbital Forcing and Sedimentary Sequences, Journal of Sedimentary Petrology, 1991, 61:1063-1254
    [109] Floyd, P.A., Franke, W., Shail, R., et al.. Provenance and depositional environment of Thenohercynian synorogenic greywacke from the Giessen nappe, Germany. Geologische Rundschau, 1990, 79:611-626
    [110] Folk R. L. Practical petrographic classification of limestones. AAPG Bull, 1959, 43(1):1-38
    [111] Given R K, Lohmann K C. Isotopic evidence for the early meteoric diagenesis of the reef facies. Permian reef complex of West Texas and New Mexico. J Sediment Petrol, 1985, 183-193
    [112] Grabau,A. W. On the Classification of Sedimentary Rocks. The American Geologist, 1904, 228-247
    [113] Grossman, E.L.. The carbon and oxygen isotope record during the evolution of Pangea: Carboniferous to Triassic. Geol. Soc. Am. Spec. Pap, 1994, 207-228, 288
    [114] Grossman,E.L.,Yancey,T.E.,Jones,T.E., et al. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268:222-233
    [115] Gr?ger M., Henrich R., Bickert T.. Glacial-interglacial variability in lower North Atlantic deep water: inference from silt grain size analysis and carbonate preservation in the western equatorial Atlantic. Marine Geology, 2003, 201:321-332
    [116] Gu, X.X., Liu, J.M., Zheng, M.H.,et al.. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, south China: geochemical evidence. Journal of Sedimentary Research, 2002, 72:393-407
    [117] Handford C R and Loucks R G. Carbonate depositional sequences and systems tracts-responses of carbonate platforms to relative sea level changes. In:R G Loucks and J F Sarg. Carbonate Sequence Stratigraphy. Recent Developments and Applications. AAPG, Mem. 1994,57:3-39
    [118] Heckel P H. Recognition of ancient shallow marine environments, 1972, 226-296
    [119] Heiri O,Lotter A F,Lemcke G.Loss on ignition as a method for estimating organic and carbonate content insediments:reproducibility and comparability of results.Journal of Paleolimnology, 2001, 25:101-110
    [120] Hollister C D, Heezen B C. Geologic effects of ocean bottom currents. In: Gordon A L. Studies in Physical Oecanography. New York: Gordon & Breach, 1972: 37-66
    [121] Jenkyns, H.C., Gale, A.S., Corfield, R.M.. Carbon-and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geol. Mag., 1994, 131:1-34
    [122] Jenkyns, H.C.. Relative sea-level change and carbon isotopes: data from the Upper Jurassic (Oxfordian) of central and Southern Europe. Terra Nova, 1996, 8:75-85
    [123] Joachimski, M.M., Von Bitter, P.H., Buggish, W.. Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. Geology, 2006, 34:277-280
    [124] John F.Aitken, et al. High resolution sequence stratigraphy. Innovations, applications and future prospects, in High Resolution Sequence Publication, 1996, 104
    [125] John J.G. Reijmer, Nils Andresen. Mineralogy and grain size variations along two carbonate margin to basin transects (Pedro Bank, Northern Nicaragua Rise). Sedimentary Geology, 2007,198:327-350
    [126] Kaufman A J and Knoll A H.. Neoproterozoic variations in the Cisotope composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res., 1995, 73 (1-4) : 27-49
    [127] Kearsey T, Twitchett R J, Price G D, et al. Isotope excursions and palaeotemperature estimates from the Permian/Triassic boundary in the Southern Alps (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 279:29-40
    [128] Keith M.H., Weber j.N.. Isotopic composition and environmental classification of selected limestones andfossils.Geochimica Cosmochimica Acta, 1964, 28: 1787-1816.
    [129] Kidwell S M.. Preservation of species abundance in marine death assemblages. Science, 2001, 294(5544):1091-1094.
    [130] Kidwell S M.. Time-averaged molluscan death assemblages: Palimpsests of richness, snapshots of abundance. Geology, 2002a, 30(9):803-806.
    [131] Kidwell S M.. Mesh-size effects on the ecological fidelity of death assemblages: A meta-analysis of molluscan live-dead studies. GeobiosMém oir Spécia, 2002b, l24: 107- 119.
    [132] Kleypas, J.A., McManus, J.W., Menez, L.A.B.. Environmental limits to coral reef development: where do we draw the line? Am. Zool., 1999, 39:146-159
    [133] Knoll, A.H., Bambach, R.K., Canfield, D.E., et al. Comparative Earth history and Late Permian mass extinction. Science, 1996, 273:452-457
    [134] Korte C, Pande Ps, Kalia P, et al. Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. Journal of Asian Earth Sciences, 2010, 37:293-311
    [135] Korte, C., Jasper, T., Kozur, H.W., et al.δ18O andδ13C of Permian brachiopods: a record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005a, 224: 333-351
    [136] Korte,C.,Kozur,H.W.,Veizer,J..δ18O andδ13C values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005b,226, 287-306
    [137] Kump, L.R., Arthur, M.A.. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol, 1999, 161, 181-198
    [138] Levesque A J,Mayle F E,Walker I R, et al. A previously unrecognized late-glacial cold event in eastern North America. Nature, 1993, 361:623-626
    [139] Ma Z X, Yan J X, Xie X N, et al. Depositional and ecological features of Permian oxygen deficient deposits at Shangsi section, Northeast Sichuan in China. Joutnal of China University of Geosciences, 2008, 19(5):488-495
    [140] Ma Z W, Hu C Y, Yan J X, et al. Biogeochemical records at Shangsi section, Northeast Sichuan in China: the Permian paleoproductivity proxies. Joutnal of China University of Geosciences, 2008,19(5):461-470
    [141] Marshall, J.D.. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol. Mag., 1992, 129:143-160
    [142] Mattauer M, Matte P, Malavieille J et al. Teconics of the Qinling belt: Build-up and evolution of eastern Asia. Nature, 1985, 317: 496-500
    [143] Mcarthur J M, Walsh J N. Rare-earth geochemistry of phosphorites. Chem. Geol., 1984, 47:191-220
    [144] McLennan, S.M.. Rare earth elements in sedimentary rocks :influence of provenance and sedimentary processes. Reviews in Mineralogy, 1989, 21:169-200
    [145] Mclennan,S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems, 2001, 2: 109-200
    [146] Meyers,W.J., Lohmann, K.C.. Isotope geochemistry of regionally extensive calcite cement zones and marine components in Mississippian limestones, New Mexico. In: Schneidermann, N., Harris,P.M. (Eds.), Carbonate Cements. Special Publication. Society for Sedimentary Geology, Tulsa, OK, 1985, 36:223-239
    [147] Michael W. Rasser, Vienna. Coralline Red Algal Limestones of the Late Eocene Alpine Foreland Basin in Upper Austria: Component Analysis, Facies and Palecology. Facies, 2000, 42:59-92
    [148] Michels K H, Rogenhagen J, Kuhn G. Recognition of contour-current influence in mixed contourite-turbidite sequences of the westernWeddell Sea, Antarctica. Marine Geophysical Researches, 2001, 22: 465-485
    [149] Mitterer, R.M. Influence of organic matrix on skeletal and non-skeletal CaCO3 precipitation. Inter. Sed. Congress, Heidelberg, 1971, 8: 68
    [150] Nabbefeld B, Grice K, Twitchett R J., et al. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 2010, 291:84-96
    [151] Osleger D A and Tinker S W. Three-Dimensional Architecture of Upper Permian High-Frequency Sequences,Yates-Capitan Shelf Margin,Permian Basin,USA. In:Harris P.M.,Saller A.H.and Simo J.A. Advances in carbonate sequence stratigraphy:application to reservoirs,outcrops and models. SEMP Spec.Publ. 1999, 63:169-186
    [152] Parkinson, D., Curry, G.B., Cusack, M., et al. Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells. Chemical Geology, 2005, 219:193-235
    [153] Pierini C, Mizusaki A M, Pimentel N, et al. Paleoweathering features in the Sergi Formation (Jurassic-Cretaceous), northeastern Brazil, and implications for hydrocarbon exploration. Journal of South American Earth Sciences, 2010, 29: 412-426
    [154] Plumley, G. A. et al. Energy Index for Limestone Interpretation and Classification, 1962, 85-107
    [155] Pomar L, Hallock P. Carbonate factories: A conundrum in sedimentary geology. Earth-Science Reviews, 2008,87:134-169.
    [156] Qing Hairuo and Veizer J. Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater. Geochim Cosmochim Acta, 1994, 58(20): 4429-4442
    [157] Ratschbacher L, Hacker BR, Calvert A, et al. Tectonics of the Qinling (Central China): Tectonostratigraphy,geochronology, and deformation history. Tectonophysics, 2003, 366:1-53
    [158] Railsback, L.B.. Influence of changing deep ocean circulation on the Phanerozoic oxygen isotope record. Geochim. Cosmochim, Acta, 1990, 54:1501-1509
    [159] Rendle-Bqhring R.H., Reijmer J.J.G.. Controls on grain size patterns in periplatform carbonates: Marginal setting versus glacio-eustacy. Sedimentary Geology, 2005, 175:99-113
    [160] Renne, P.R., Zichao, Z., Richards, M.A.,et al.. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science, 1995, 269: 1413-1416
    [161] Richoz S, Krystyn L, Baud A, et al. Permian-Triassic boundary interval in the Middle East (Iran and N. Oman): Progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution. Journal of Asian Earth Sciences, 2010,(xxx):xxx-xxx
    [162] Robert L. Cullers. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 2002, 191:305-327
    [163] Roser, B.P., Korsch, R.J.. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 1986, 94:635-650
    [164] Sarg J F. Carbonate seguence stratigraphy. In: C. K.Wilgus, B. S.Hastings C .G. St.C.Kendall, H. W. Posamentier, C. A.Ross and J.C.Van Wagoner(Editors), Sea-Level Changes: An Integrated Approach. Soc. Econ. Paleontol. Mineral. Spec. Publ., 1988, 42:155-181
    [165] Schidlowski, M., Aharon, P.. Carbon cycle and carbon isotope record: geochemical impact of life over 3.8 Ga of Earth history. In: Schidlowski, M., et al., (Eds.), Early Organic Evolution:Implications for Mineral and Energy Resources. Springer, Berlin, 1992,147-175
    [166] Schlager W. Type 3 sequence boundaries.In:Harris P.M.,Saller A.H.and Simo J.A. Advances in carbonate seguence stratigraphy:application to reservoirs, outcrops and models. SEPM Spec, Publ. 1999, 63:35-46
    [167] Schvosbo, N.H.. The geochemistry of Lower Palaeozoic sediments deposited on the margins of Baltica. Bulletin Geological Society of Denmark, 2003, 50:11-27
    [168] Sercombe K N. Tracing provenance through the islope ages of littoral and sedimentary detrital zircons, Eastern Australia. Sedimentary Geology, 1999, 124: 47-67
    [169] Shackleton N J, Kennett J P. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation:Oxygen and carbon isotope analysis in DSDP sites 277,279 and 281. In:Kennett J P. et al.ed. Initial Reports of the Deep Sea Drilling Project 29 Washington D.C.:U.S.Government Printing Office.1975, 743-755
    [170] Shackleton, N.J.. Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In: Andersen, N.R., Malahoff, A. (Eds.), The Fate of Fossil Fuel CO2 in the Oceans.
    Plenum Press, New York, 1977, 401-421
    [171] Shackleton,N.J.,Opdyke,N.D. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238:oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat. Res,1973,3:39-55
    [172] Spalletti L A., Queralt I, Matheos S D, et al. Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquén Basin, western Argentina): Implications for provenance and tectonic setting. Journal of South American Earth Sciences, 2008, 25: 440-463
    [173] Stow D V A, Faugères J C, Vinan A, et al. Fossil contourites: a critical review. Sedimentary Geology, 1998, 115: 3-311
    [174] Taylor, S.R., McLennan, S.M.. The Continental Crust: Its Composition and Evolution. Blackwell, London, 1985,312
    [175] Todd, T. W. Petrogenetic Classification of Carbonate Rocks. Journal of Sedimentary Petrology, 1966, 36(2):317-340
    [176] Tucker M E. Sequence stratigraphy of carbonate-evaporate basins models and application to the Upper Permian (Zechstein) of North-east England and adjoining North Sea. Journal of the Geological Society of London, 1991, 148(6):1019-1036
    [177] Veizer, J., Ala, D., Azmy, K.,et al.. 87Sr/86Sr,δ13C andδ18O evolution of Phanerozoic seawater. Chem. Geol., 1999, 161:59-88
    [178] Veizer, J.. Chemical diagenesis of carbonates: theory and application of trace element technique. In: Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S. (Eds.), Stable Isotopes in Sedimentary Geology, Society of Economic Palaeontologists and Mineralogists Short Course, 1983a,10:3/1- 3/100 (Tulsa)
    [179] Veizer, J.. Trace elements and isotopes in sedimentary carbonates. In: Reeder, R.J. (Ed.), Carbonates: Mineralogy and Chemistry, Rev. Mineral., 1983b,11: 265-299
    [180] Waldbauer J R., Sherman L S., Sumner D Y., et al. Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Research, 2009,169:28-47
    [181] Weissert, H., Lini, A., F?llmi, K.B., et al. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeogr. Palaeoclimatol. Palaeoecol., 1998, 137:189-203
    [182] Williams D F. Isotope Chronostratigraphy:Theory and Methods. California: Academic Press, 1988, 39-68
    [183] Wynn T C, Read J F. Carbon-oxygen isotope signal of Mississippian slope carbonates, Appalachians, USA: A complex response to climate-driven fourth-order glacio-eustasy. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256: 254-272
    [184] Yan Jiaxin, Ma Zhixin, Xie Xinong, et al. Subdivision of Permian fossil communities and habitat types in North Sichuan, South China. Joutnal of China University of Geosciences, 2008,19(5):441-450
    [185] Yan Z B, Guo F S, Pan J Y, et al. Application of C, O and Sr isotope composition of carbonates in the research of paleoclimate and paleooceanic environment. Contributions to Geology and Mineral Resources Research, 2005, 20(1):53-56
    [186] Yilmaz I O, Altiner D, Tekin U K, et al. Cenomanian-Turonian Oceanic Anoxic Event (OAE2) in the Sakarya Zone, northwestern Turkey: Sedimentological, cyclostratigraphic, and geochemical records. Cretaceous Research, 2010, 31:207-226
    [187] Zürich A C. Facies Patterns of a Tectonically-Controlled Upper Triassic Platform-Slope Carbonate Depositonal System (Carnian Prealps, Northeastern Italy). Facies, 2002,47: 151-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700