用户名: 密码: 验证码:
无线传感器网络分布数据存储策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络集信息获取、处理和传输为一体,为人类研究物理世界、获取物理世界的数据,提供了一种有效的方式,其在环境监测、灾害预报等领域发挥着重要的作用,是目前计算机网络、微电子技术和生态环境科学等多个交叉学科研究中的热点问题。无线传感器网络是以数据为中心的网络,除了基于基站节点的实时数据采集模式,还存在针对非实时数据的分布式网内存储模式。
     无线传感器网络中分布式网内存储的目的是利用冗余节点来保存数据,以进一步提高数据的发现和查询的效率。它关系到网络的可用性和数据的可靠性,但是因为应用环境的复杂性、节点资源的稀缺性和网络拓扑的动态性等因素,分布式存储策略的研究面临许多限制和挑战。有效的分布式存储策略不仅能够满足数据发现的效率,而且能够达到各个存储节点的数据负载均衡。本课题重点关注节点位置已知的大规模网络和不依赖节点位置的大规模网络中的数据存储和发现技术,以及不依赖节点位置的稀疏网络中基于哈希函数的数据存储和路由技术,同时关注多个数据源节点在网络中如何均衡有效的分配存储节点的问题。本文的具体工作,从以下四个方面展开。
     传感器网络是一种资源受限的自组织网络,节点的能量和计算能力不足以支持复杂协议的设计。针对大规模网络中存在的对等节点数据交换,即随机产生的数据生产者和数据消费者相互之间如何进行数据发现的难点问题,本文借鉴光学中光的反射原理,提出了基于位置的振荡轨迹存储策略。在该策略中,生产者节点将感知到的数据或者数据摘要信息存储到经过该生产者节点的振荡轨迹上;同时将消费者节点的查询信息也存储到经过该消费者节点的振荡轨迹上。理论上,所有的振荡轨迹满足两两相交的特性,在两条振荡轨迹的相交节点上,消费者节点与数据生产者节点能够完成数据交换和数据发现,保证了数据查询成功率。振荡轨迹同时满足数据查询的距离有界性、存储的负载均衡性以及操作的局部性。模拟实验表明,振荡轨迹在多个性能上优于目前存在的double rulings和rumor路由策略。
     针对传感器节点在不能获得位置信息的情况下,随机产生的数据生产者和数据消费者节点仍然需要进行数据交换的问题,本文提出了基于连接的C-cast存储路由策略,该策略可以克服已有协议的位置敏感性。C-cast的核心思想是通过选择两个节点作为信标节点,在网络中构建两个独立的轮廓覆盖网络。轮廓是指到相应信标节点具有相同跳步数的所有节点集合,这些集合按照一定的顺序连接起来。对单独一个节点而言,它分别属于两个轮廓覆盖网中的轮廓。利用轮廓覆盖网,数据生产者和消费者可以将数据或者查询沿着轮廓进行分发和存储。在理想模型下,C-cast路由策略可以100%的保证数据消费者和生产者节点能够发现对方;在随机模型下,则能够保证以很大的概率发现对方。在性能上,C-cast可以达到基于位置信息的double rulings策略的性能和效果。
     贪婪路由是传感器网络中常用的数据转发策略,在分布数据存储的过程中也发挥着重要的作用。本文第一次对贪婪路由进行了总结和分类,将贪婪路由分成强贪婪和弱贪婪两种路由方式。已有的研究工作主要集中在基于地理坐标设计弱路由算法,或者在贪婪嵌入图上设计强路由算法。针对获取地理坐标和贪婪嵌入图都需要较多的能量开销,本文提出了一种轻量级的基于树网络嵌入图方法,在得到的基于树的网络嵌入图(TNEG)上设计了一种弱路由策略TGR。TGR在路径长度和网络负载平衡等性能上具有明显的优势。TGR可以应用于稀疏的无位置网络当中。在TNEG和TGR的基础上,可以设计基于节点标记的哈希函数,以满足轻量级的对等节点的数据存储和发现策略。
     传感器节点的存储容量是有限的,单独一个节点不能存储过多的数据。针对在基站不存在的情况,如何尽可能多的在网络中存储数据源节点产生的数据的问题,本文提出了网络存储节点的均衡划分方法。假设网络中存在k个数据源节点,n个存储节点,本文研究了以下问题:将n个存储节点划分为k组,分配给k个数据源节点作为各自的存储池节点,尽可能满足所有组具有等量多的节点,同时满足存储节点到相应的数据源节点的路径长度之和最小。本文将该问题规约为完全二部图的加权匹配问题。针对目前的算法不适合在传感器网络中应用,本文提出了随机贪婪划分算法和基于Voronoi单元划分算法。实验表明,基于Voronoi单元划分算法在性能优于随机贪婪划分算法,其存储路径开销也更接近最优值。
     综上所述,本文针对无线传感器网络中的基于位置,基于连接的数据存储发现策略,以及存储负载平衡等问题进行了研究,并提出了有效的解决方案,对于推动传感器网络的数据管理,实现数据的可靠性具有一定的理论和应用价值。
Wireless Sensor Networks can integrate information collection, processing and transmission together to support researching the physical world and retrieving data from it for researchers. It can play a significant role in environment monitoring, disaster forecasting, etc. It is a research hot spot and an interdiscipline of computer networking, microelectronic technology and ecological environment science, etc. Wireless Sensor networks are data centric network. Despite sink-based real time data collection model, distributed in-network storage for non-realtime data is another research issue.
     Distributed data storage in sensor networks does matter with network availability and data reliability. Because of the environment complexity, node resource scarcity and network topology dynamics, etc, researching on distributed storage strategies are faced with too many limitations and challenges. Effective and efficient distributed storage strategies do not only satisfy data discovery, but also achieve load balance. This thesis focuses on data storage and discovery for both location-aware and location-free large scale sensor networks, and Hash storage and routing protocol for location-free sparse network. The contributions include four aspects as following.
     Sensor networks are resource limited networks, so the energy and computation of single node cannot support complicated protocols. In sensor networks, random generated data producers and data consumers compose of peer-to-peer networks. In order to address how to make a producer and a consumer discover each other, this thesis borrows the idea of light reflection theory and proposes a bouncing track storage strategy. In this strategy, the producer can disseminate its data along its own bouncing track; meanwhile the consumer can disseminate its query along its own bouncing track. In theory, every two bouncing track can intersect with each other in ideal case. At the intersecting node, consumers and producers can exchange data. The bouncing track strategy satisfies data retrieval distance-bounded, storage load balance and operation locality. The simulation shows that the performance of bouncing track is better than double rulings and rumor routing.
     In order to make the consumers and producers discovery each other in the case that the sensor nodes cannot obtain their location, this thesis proposes C-cast storage routing strategy. This strategy does not need location information, rather than it needs to select only two beacons to establish two contour overlay networks in the network. A contour includes all the nodes that have same hop number to one beacon. For a single node, it belongs to two contours in the network. By using contour overlay networks, producers and consumers can disseminate data along contours. In ideal model, it can guarantee that any producer and consumer pair can discover each other 100%. In random model, it is high probability. The C-cast can achieve similar performance and result as the double rulings, which is location-based.
     Greedy routing is significant for the data transmission and distributed storage in sensor networks. This thesis classifies the greedy routing into strong greedy routing and weak greedy routing firstly. The existing works are mainly on designing weak routing on geographic coordinate, or designing strong routing on greedy embedding graph. However, these two approaches need too much energy for obtaining geographic coordinate or greedy embedding graph. This thesis proposes a light weight tree-based network embedding (TNEG) method. Based on TNEG, a new weak routing strategy is designed, called TGR. TGR can achieve good performance on path stretch factor and load balance. TGR can be used in sparse location-free network. Based on TNEG and TGR, label-based Hash function can be designed for light weight peer-to-peer data storage and discovery strategies.
     The storage capacity of a single sensor node is limited. This thesis proposes a new method for dividing storage nodes into balancing groups for many data resource nodes in order to maintain as much as possible data in the network. It is assumed that there are k data resource nodes and n storage nodes in the network. The objective of this thesis is dividing the n storage nodes into k group, and each group responds for storage data for one data resource node, while the sum path length of storage node to data resource node is minimal. This thesis proves that this problem can be reduced to maximum weight bipartite matching problem. As the existing algorithms are not applicable for sensor networks, this thesis proposes random greedy algorithm and Voronoi-based algorithm. The simulation shows the performance of Voronoi-based algorithm is better than the random greedy algorithm and its storage path cost is near the optimal one.
     To sum up, this thesis researches location-based, location-free data storage and discovery strategy and load balance storage problems, while proposes solutions for them. This thesis has the theory and application value to improve the data management, data reliability, etc.
引文
[1] P. Bonnet, J. Gehrke and P. Seshadri. Querying the physical world[J]. IEEE Personal Communications, 2000,7(5): 10~15.
    [2] Cui Li, Ju Hailing, Miao Yong, Li Tianpu, Liu Wei, Z. Ze. Overview of Wireless Sensor Networks[J]. Computer Research and Development, 2005,42(1): 163~1745.
    [3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam. Wireless Sensor Networks: A Survey [J]. Computer Networks, 2002, 38(4): 393~422.
    [4]孙利民,李建中,陈渝,朱红松.无线传感器网络[M].清华大学出版社, 2005.
    [5] Kevin Yuen, Baochun Li, and B. Liang. Distributed Data Gathering in Multi-Sink Sensor Networks with Correlated Sources[C]. In Proceedings of IFIP NETWORKING, 2006: 868~879.
    [6] A. Das,D. Dutta. Data Acquisition in Multiple-sink Sensor Networks[C]. In Proceedings of the 2nd international conference on Embedded networked sensor systems, 2005: 271~272.
    [7] G. Anastasi, M. Conti, M. Di Francesco. Data collection in sensor networks with Data Mules: an integrated simulation analysis[C]. In Proceedings of the 13rd IEEE Symposium on Computers and Communications (ISCC), 2008: 1096~1102.
    [8] Micaz. http://www.xbow.com/Products/Wireless_Sensor_Networks.htm
    [9]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报. 2003,14(7):1282~1291.
    [10]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报, 2003,14(10): 1717~1727.
    [11] Primo? ?kraba, Hamid Aghajan and A. Bahai. Cross-Layer Optimization for High Density Sensor Networks: Distributed Passive Routing Decisions. Ad-Hoc, Mobile, and Wireless Networks[J]. Lecture Notes in Computer Science, 2004, 3158/2004(630): 266~279.
    [12] BWRC. http://bwrc.eecs.berkeley.edu
    [13] WEBS. http://webs.cs.berkeley.edu/
    [14] CENS. http://research.cens.ucla.edu/
    [15] WINS. http://www.janet.ucla.edu/WINS/
    [16] NMS. http://nms.csail.mit.edu/
    [17] AMPS. http://www-mtl.mit.edu/researchgroups/icsystems/uamps/
    [18] WSNL. http://wsnl.stanford.edu/tutorial.php
    [19] Code Blue. http://www.eecs.harvard.edu/~mdw/proj/codeblue/
    [20] RESL. http://www.robotics.usc.edu/robomote/
    [21] SCADDS. http://www.robotics.usc.edu/~embedded/
    [22] ExScal. http://www.cast.cse.ohio-state.edu/exscal/
    [23] BWN. http://www.ece.gatech.edu/research/labs/bwn/WMSN/
    [24] WINGS. http://www.wings.cs.sunysb.edu/
    [25] INDEX. http://lion.cs.uiuc.edu/
    [26] MANTIS. http://mantis.cs.colorado.edu/index.php/tiki-index.php
    [27] ESP. http://projects.cerias.purdue.edu/esp/
    [28] ENALAB. http://www.eng.yale.edu/enalab/
    [29] Zurich. http://www.zurich.ibm.com/sys/communication/sensors.html
    [30] Intel. http://www.intel.com/research/exploratory/wireless sensors.htm
    [31] Micorsoft. http://research.microsoft.com/nec/
    [32] Moteiv. http://www.moteiv.com
    [33] Intel Mote. http://www.intel.com/research/exploratory/motes.htm
    [34] Pico Node. http://bwrc.eecs.berkeley.edu/Research/Pico_Radio/Default.htm
    [35] MedusaMK-2. http://nesl.ee.ucla.edu/projects/ahlos/
    [36] TinyOS. http://www.tinyos.net/
    [37] SOS. http://nesl.ee.ucla.edu/projects/sos/
    [38] Feng Hong, Hongwei Chu, Zongke Jin, Tijiang Shan, Zhongwen Guo.无线传感器网络应用系统最新进展综述[C].CWSN, 2010.
    [39] Stuart Kininmonth, Scott Bainbridge, Ian Atkinson, EricGill, Laure Barral, and Romain Vidaud. Sensor Networking the Great Barrier Reef[J]. Spatial Sciences Qld, 2004:34~38.
    [40] Matt Heavner, Rob Fatland, Eran Hood, et al. SensorWebs in Digital Earth: Monitoring Climate Change Impacts[C]. In Proceedings of the 3rd National Conference on Environmental Science and Technology, 2007: 12~14.
    [41] SeaMonster. http://robfatland.net/seamonster
    [42] Kirk Martinez, Jane K.Hart and Royan Ong. Deploying a wireless sensor network in Iceland[C]. In Proceedings of the 3rd International Conference on GeoSensor Networks, 2009: 131~137.
    [43] Glacs Web. http://envisense.org/glacsweb
    [44] Musaloiu-E, R. A. Terzis, Szlavecz, K., A. Szalay, J. Cogan, R, J.Gray. Life Under your Feet: A Wireless Soil Ecology Sensor Network[C]. In Proceedings of EmNets, 2006: 51~55.
    [45] LifeUnderYourFeet. http://lifeunderyourfeet.org
    [46] Hock Beng Lim, Keck Voon Ling, Wenqiang Wang, Yuxia Yao, Mudasser Iqbal, Boyang Li, Xiaonan Yin and Tarun Sharma. The National Weather Sensor Grid[C]. In Proceedings of the 5th international conference on Embedded networked sensor systems, 2007: 90~93.
    [47] NWSP. http://nwsp.ntu.edu.sg/nwsp
    [48] Péter V?lgyesi, András Nádas, Xenofon Koutsoukos andákos Lédeczi. Air Quality Monitoring with SensorMap[C]. In Proceedings of the International Conference on Information Processing in Sensor Networks, 2008: 529~530.
    [49] MAQUMON. http://www.isis.vanderbilt.edu/projects/maqumon
    [50] J. Wilson, V. Bhargava, A. Redfern, P. Wright. A Wireless Sensor Network and Incident Command Interface for Urban Firefighting[C]. In Proceedings of Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services (MobiQuitous), 2007:1~7.
    [51] Asis Nasipuri, Robert Cox, Hadi Alasti, Luke Van der Zel, et al. Demo Abstract: Wireless Sensor Network for Substation Monitoring: Design and Deployment[C]. In Proceedings of Sensys, 2008: 365~366.
    [52] Ivan Stoianov, Lama Nachman and Sam Madden. PIPENET: A Wireless Sensor Network for Pipeline Monitoring[C]. In Proceedings of the 6th international conference on Information processing in sensor networks, 2007: 264~273.
    [53] Ning Xu, Sumit Rangwala, Deepak Ganesan, Krishna Kant Chintalapudi, Alan Broad, Ramesh Govindan and Deborah Estrin. A Wireless Sensor Network For Structural Monitoring[C]. In Proceedings of the 4th international conference on Embedded networked sensor systems, 2006: 13~24.
    [54] Lionel M. Ni, Yunhao Liu and Yanmin Zhu. China’s National Research Project on Wireless Sensor Networks[J]. IEEE Wireless Communications Magazine, 2007, 14(6): 78~83.
    [55] GreenOrbs. http://greenorbs.org
    [56] Yuan He, Lufeng Mo, Jiliang Wang, Wei Dong, Wei Xi, et al. Why Are Long- Term Large-Scale Sensor Networks Difficult? Lessons Learned from GreenOrbs[C]. In Poster of ACM MobiCom, 2009: 20~25.
    [57] Zhongwen Guo, Feng Hong, Yuan Feng, Pengpeng Chen and Xiaohui Yang. OceanSense: Sensor Network of Realtime Ocean Environmental Data Observation and Its Development Platform[C]. in WUWNET2008, 2008.
    [58] Mingains. http://www.nbicc.com
    [59] SenSpire. http://eagle.zju.edu.cn/home/eos/senspire
    [60] C.Intanagonwiwat, R.Govindan and D. Estrin. Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks[C]. In Proceedings of the 6th ACM Annual International Conference on Mobile Computing and Networking (MobiCom), 2000: 56~67.
    [61] HE T, STANKOVIC J A and LU C. SPEED: a stateless protocol for real-time communication in sensor networks[C]. In Proceedings of the 23rd ICDCS, 2003: 46~55.
    [62] S.Tilak, N.B.Abu-Ghazaleh and W.Heinzelman. Collaborative storage management in sensor networks[J]. Int. J. Ad Hoc and Ubiquitous Computing, 2005,1(1/2):47~58.
    [63] I.Vasilescu, K.Kotay, D.Rus, M.Dunbabin and P.Corke. Data collection, storage, and retrieval with an underwater sensor network[C]. In Proceedings of the 3rd international conference on Embedded networked sensor systems, 2005: 154~165.
    [64] Yong Yao, J. Gehrke. The cougar approach to in-network query processing in sensor networks[M]. ACM SIGMOD Record, 2002,31(3): 9~18.
    [65] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein and W. Hong. TinyDB: an acquisitional query processing system for sensor networks[J]. ACM Transactions on Database Systems (TODS), 2003, 30(1):122~173.
    [66] S.-L. Peng, S.-S. Li, L. Chen, Y.-X. Peng and N. Xiao. Scalable base-station model-based multicast in wireless sensor networks[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2008, 23(5):780~791.
    [67] X.B. Wu, G. Chen and Sajal K. Das. Avoiding Energy Holes in Wireless Sensor Networks with Nonuniform Node Distribution[J]. IEEE Transactions on Parallel and Distributed Systems, 2008, 19(5): 710~720.
    [68] Scott Shenker, Sylvia Ratnasamy, Brad Karp, R. Govindan and D. Estrin. Data-centric storage in sensornets[J]. ACM SIGCOMM Computer Communication Review, 2003, 33(1): 137~142.
    [69] Abhishek Ghose, Jens Grossklags and J. Chuang. Resilient Data-Centric Storage in Wireless Ad-Hoc Sensor Networks[C]. In Proceedings of the 4th International Conference on Mobile Data Management, 2003: 45~62.
    [70]陈颖文,徐明,吴一.无线传感器网络网内数据处理节点的优化选取[J].软件学报, 2007, 18(12): 3104~3114.
    [71]付雄,王汝传,邓松.无线传感器网络中一种能量有效的数据存储方法[J].计算机研究与发展, 2009, 46(12): 2111~2116.
    [72] Ramesh Govindan, Joseph M. Hellerstein, Wei Hong, et al. The Sensor Network as a Database[R]. USC Technical Report No. 02-771, 2002.
    [73] Ryo Sugihara,R. K. Gupta. Improving the Data Delivery Latency in Sensor Networks with Controlled Mobility[C]. In Proceedings of the 4th IEEE international conference on Distributed Computing in Sensor Systems, 2008: 386~399.
    [74]俞建新,杨小虎.网络存储新技术评析[J].计算机工程, 2006, 32(20): 120~122.
    [75] S. Madden, M. J. Franklin, W. Hong and J. M. Hellerstein. TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks[C]. In Proceedings of the 5th Operating Systems Design and Implementation (OSDI), 2002: 171~182.
    [76] A.G. Dimakis, A.D. Sarwate and M. Wainwright. Geographic Gossip: Efficient Aggregation for Sensor Networks[C]. In Proceedings of the 5th International Symposium on Information Processing in Sensor Networks (IPSN), 2006: 69~76.
    [77] S.Boyd, A.Ghosh, B.Prabhakar and D.Shah. Gossip Algorithms: Design,Analysis, and Applications[C]. In Proceedings of IEEE INFOCOM, 2005:1653~1664.
    [78]林亚平,王雷,陈宇.传感器网络中一种分布式数据汇聚层次路由算法[J].电子学报, 2004,32(11): 1801~1805.
    [79] Jayaraman Prem Prakash, Zaslavsky Arkady and D. Jerker. Sensor Data Collection Using Heterogeneous Mobile Devices[C]. In Proceedings of IEEE International Conference on Pervasive Services, 2007: 161~164.
    [80]石高涛,廖明宏.传感器网络中具有负载平衡的移动协助数据收集模式[J].软件学报, 2007,18(9): 2235~2244.
    [81] Lei Ying, Zhen Liu, Don Towsley and C. H. Xia. Distributed Operator Placement and Data Caching in Large-Scale Sensor Networks[C]. In Proceedings of 27th IEEE INFOCOM, 2008: 977~985.
    [82] Minji Wu, Jianliang Xu, Xueyan Tang and W.-C. Lee. Top-k Monitoring in Wireless Sensor Networks[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2007,19(7): 962~976.
    [83] Neerja Bhatnagar, Kevin Greenan, Rosie Wacha, Ethan L. Miller and D. D. E. Long. Energy-Reliability Trade-offs in Sensor Networks[C]. In Proceedings of the Fifth Workshop on Embedded Networked Sensors (HotEmNets), 2008:.
    [84] Li Wan, Jianxin Liao and X.Zhu. A frequent pattern based framework for event detection in sensor network stream data[C]. In Proceedings of the International Conference on Knowledge Discovery and Data Mining, 2009: 87~96.
    [85] V. Rai, R. N. Mahapatra. Lifetime modeling of a sensor network[C]. In Proceedings of Design, Automation and Test in Europe, 2005: 202~203.
    [86] Hanhua Chen, Mo Li, Hai Jin, Yunhao Liu and L. M. Ni. MDS: Efficient Multi-dimensional Query Processing in Data-Centric WSNs[C]. In Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS), 2008: 355~364.
    [87] Abhinav Kamra, Vishal Misra, Jon Feldman and D. Rubenstein. Growth codes: maximizing sensor network data persistence[C]. In Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer communications, 2006: 255~266.
    [88] S. A. Aly, Z. Kong and E. Soljanin. Fountain Codes Based Distributed Storage Algorithms for Large-scale Wireless Sensor Networks[C]. In Proceedings of International Conference on Information Processing in Sensor Networks, 2008: 171~182.
    [89] Y. Lin, B. Liang and B. Li. Data persistence in large-scale sensor networks with decentralized fountain codes[C]. In Proceedings of 26th IEEE INFOCOM 2007: 1658~1666.
    [90] You-Chiun Wang, Yao-Yu Hsieh and Y.-C. Tseng. Compression and Storage Schemes in a Sensor Network with Spatial and Temporal Coding Techniques[C]. InProceedings of IEEE Vehicular Technology Conference, 2008: 148~152.
    [91]李贵林,高宏.传感器网络中基于环的负载平衡数据存储方法[J].软件学报, 2007, 18(5): 1173~1185.
    [92] W.-H. Liao, W.-C. Wu. Effective hotspot storage management schemes in wireless sensor networks[J]. Computer communication, 2008, 31(10): 2131~2141.
    [93] Kyungseo Park,R. Elmasri. Effects of Storage Architecture on Performance of Sensor Network Queries[C]. Information Networking Advances in Data Communications and Wireless Networks, 2006, 3961: 247~256.
    [94]陶孜谨,郦苏丹,徐金义,龚正虎.大规模无线传感器网络中面向ANY型查询的能量高效数据分发算法[J].国防科技大学学报, 2009,31(1): 64~69.
    [95] B. Karp, H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks[C]. In Proceedings of the 6th annual international conference on Mobile computing and networking (MobiCom), 2000:243-254.
    [96] B. K. Sylvia Ratnasamy, L Yin, F Yu, D Estrin, R Govindan and S. Shenker. GHT: A Geographic Hash Table for DataCentric Storage[C]. In Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications (WSNA), 2002: 78~87.
    [97] Zhaochun Yu, Bin Xiao and S. Zhou. Achieving optimal data storage position in wireless sensor networks[J]. Computer Communications, 2010, 33(1): 92~102.
    [98] R. Sarkar, X. Zhu and J. Gao. Double Rulings for Information Brokerage in Sensor Networks[C]. In Proceedings of the 12th annual international conference on Mobile computing and networking (MobiCom), 2006:23~29.
    [99] Q. Fang, J. Gao, L. Guibas, V. d. Silva and L. Zhang. GLIDER: Gradient landmark-based distributed routing for sensor networks[C]. In Proceedings of the 24th Conference of the IEEE Communication Society (INFOCOM), 2005: 339~350.
    [100] Huang Q, Liu X and Zhang Y. Combs , Needles , Haystacks : Balancing Push and Pull for Discovery in Large2scale Sensor Networks[C]. In Proceedings of ACM Sensys, 2004: 122~133.
    [101] O. Younis, S. Fahmy. Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach[C]. In Proceedings of the 23th Conference of the IEEE Communication Society (INFOCOM), 2004: 7~11.
    [102] H. Luo, F. Ye, J. Cheng, S. Lu and L. Zhang. TTDD: Two-Tier Data Dissemination in Large-Scale Wireless Sensor Networks[J]. Wireless Networks, 2005 ,11:161~175.
    [103] J. Bruck, J. Gao and A. A. Jiang. MAP: Medial Axis Based Geometric Routing in Sensor Network[C]. In Proceedings of the 11th annual international conference on Mobile computing and networking (MobiCom), 2005: 88~102.
    [104] D. Braginsky, D. Estrin. Rumor Routing Algorithm for Sensor Networks[C].In Proceedings of the 8th annual international conference on Mobile computing and networking (MobiCom), 2002:22~31.
    [105]彭绍亮,李姗姗,彭宇行,廖湘科,肖侬.无线传感器网络中一种实时高效的数据存储和查询方法[J].通信学报, 2008, 29(11): 128~138.
    [106] WESLEY W, KANGASHARJU J and LENG C. BubbleStorm: resilient, probabilistic, and exhaustive peer-to-peer search[C]. In Proceedings of SIGCOMM, 2007: 49~60.
    [107] T Moscibroda, R.O.Dell, M. Wattenhofer and R. Wattenhofer. Virtual coordinates for ad hoc and sensor networks[C]. In Proceedings of ACM DIALM-POMC Joint Workshop on Foundations of Mobile Computing, 2004: 8~16.
    [108] S. Chessa, A. Caruso, S. De and A. Urpi. GPS free coordinate assignment and routing in wireless sensor networks[C]. In Proceedings of the 24th IEEE Conference on Computer Communications (InfoCom), 2005: 150~160.
    [109] J.N Al-Karaki, A. E. Kamal. Routing techniques in wireless sensor networks: a survey[J]. IEEE Wireless Communications, 2004, 11(6): 6~28.
    [110] B. Krishnamachari, D. Estrin and S.Wicker. Modelling data-centric routing in wireless sensor networks[C]. In Proceedings of IEEE INFOCOM, 2002: 2~14.
    [111] K. Sakai, B. R. Hamilton, W.-S. Ku, M.-T. Sun and X. Ma. G-STAR: Geometric STAteless Routing for 3-D wireless sensor networks[J]. Ad Hoc Networks, 2010.
    [112]罗坤,王建新,赵湘宁.无线传感器网络的地理路由算法综述[J].计算机科学, 2008, 35(10): 28~32.
    [113] N. Ahmed, S. S. Kanhere and S. Jha. The Holes Problem in Wireless Sensor Networks: A survey[J]. ACM Sigmobile Mobile Computing and Communications Review (MC2R), 2005, 9(2): 4~18.
    [114] H. Frey, I. Stojmenovic. On delivery guarantees of face and combined greedy face routing in ad hoc and sensor networks[C]. In Proceedings of ACM MobiCom, 2006: 390~401.
    [115] A. Rao, C. Papadimitrou, S. Shenker and I. Stoica. Geographic routing without location information[C]. In Proceedings of the 9th Annual Internat. Conference on Mobile Computing and Networking, 2003: 96~108.
    [116] C. Papadimitriou,D. Ratajczak. On a conjecture related to geometric routing[J]. Theoretical Computer Science, 2005, 344(1): 3~14.
    [117] Tom Leighton,A. Moitra. Some Results on Greedy Embeddings in Metric Spaces[C]. In Proceedings of the 49th IEEE Annual Symposium on Foundations of Computer Science, 2008: 337~346.
    [118] R. Kleinberg. Geographic routing using hyperbolic space[C]. In Proceedings of the IEEE Computer and Communications Societies (INFOCOM ), 2007: 6~12.
    [119] Rik Sarkar, Xiaotian Yin, Jie Gao, Feng Luo and X. D. Gu. Greedy routing with guaranteed delivery using Ricci flows[C]. In Proceedings of the International Conference on Information Processing in Sensor Networks, 2009: 121~132.
    [120]刘明,龚海刚,毛莺池,陈力军,谢立.高效节能的传感器网络数据收集和聚合协议[J].软件学报, 2005, 16(12): 2106~2116.
    [121] Ivan Stojmenovic, X. Lin. Loop-Free Hybrid Single-Path/Flooding Routing Algorithms with Guaranteed Delivery for Wireless Networks[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2001, 12(10): 1023~1032.
    [122] J. Tsai,T. Moors. A Review of Multipath Routing Protocols: From Wireless Ad Hoc to Mesh Networks[C]. In Proceedings of ACoRN Early Career Researcher Workshop on Wireless Multihop Networking, 2006.
    [123]李姗姗,廖湘科,朱培栋,肖侬.基于网络编码的无线传感网多路径传输方法[J].软件学报, 2008, 19(10): 2638~2647.
    [124] Y. Wang, J. Gao and J.Mitchell. Boundary Recognition in Sensor Networks by Topological Methods[C]. In Proceedings of ACM MobiCom, 2006: 122~133.
    [125] Guang Tan, Marin Bertier and A.-M. Kermarrec. Convex Partition of Sensor Networks and Its Use in Virtual Coordinate Geographic Routing. In Proceedings of IEEE INFOCOM, 2009.
    [126] Tian He, Chengdu Huang, Brian M. Blum, John A. Stankovic and Tarek Abdelzaher. Range-free localization schemes for large scale sensor networks[C]. In Proceedings of the 9th annual international conference on Mobile computing and networking 2003: 81~95.
    [127] M. Li,Y. Liu. Rendered Path: Range-Free Localization in Anisotropic Sensor Networks with Holes[C]. In Proceedings of the 13th ACM Annual International Conference on Mobile Computing and Networking (MobiCom), 2007: 51~62.
    [128]王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报, 2005, 16(5):857~868.
    [129] Jinwon Choi, Jun-Sung Kang, Yong-Hwa Kim and S.-C. Kim. Modeling of Localization Error in Wireless Sensor Network[J]. IEICE Trans. Commun, 2009, E92-B: 628~631.
    [130] Horacio A.B.F. Oliveira, Eduardo F. Nakamura, Antonio A. F. Loureiro and A. Boukerche. Error analysis of localization systems for sensor networks[C]. In Proceedings of the 13th annual ACM international workshop on Geographic information systems, 2005: 71~78.
    [131] Z. Yang, Y. Liu. Quality of Trilateration: Confidence-based Iterative Localization[C]. In Proceedings of the 28th international conference on Distributed Computing Systems (ICDCS), 2008: 446~453.
    [132]邹仕洪,邬海涛,程时端.一种移动自组网中简单高效的广播算法[J].软件学报, 2005, 16(6): 1104~1111.
    [133] R. W. Yeung, S.-Y. R. Li, N. Cai and Z. Zhang. Network Coding Theory[M]. now Publishers, 2005.
    [134] Prosenjit Bose, Pat Morin, Ivan Stojmenovic and J. Urrutia. Routing with guaranteed delivery in ad hoc wireless networks[C]. In Proceedings of the 3rd ACM International Workshop on discrete Algorithms and Methods for Mobile Computing and Communications (DIAL M 99), 1999: 48~55.
    [135] Fabian Kuhn, Roger Wattenhofer, Yan Zhang and A. Zollingern. Geometric ad-hoc routing: Of theory and practice[C]. In Proceedings of the 22nd ACM International Symposium on the Principles of Distributed Computing (PODC), 2003: 63~72.
    [136] Xian-Yang Li, Y. Wang. Wireless Sensor Networks and Computational Geometry[M]. In Handbook of Sensor Networks Compact Wireless and Wired Sensing Systems, CRC Press, 2005.
    [137] Andrej Cvetkovski, M. Crovella. Hyperbolic embedding and routing for dynamic graphs[C]. In Proceedings of IEEE INFOCOM, 2009: 1647~1655.
    [138] J. A. Gallian. A Dynamic Survey of Graph Labeling[J]. The Electronic Journal of Combinatorics, 2007, 14(6):1~180.
    [139] J. van Leeuwen, R. B. Tan. Compact routing methods: a survey[C]. In Proceedings of the 1st Internat. Coll. on Structural Information & Communication Complexity (SIROCCO), 1994: 99~110.
    [140] C. Gavoille. A survey on interval routing[J]. Theoretical Computer Science, 2000, 245(2): 217~253.
    [141] D. Peleg. Informative labeling schemes for graphs[J]. In Proceedings of the 25th Int. Symp. on Math. Foundations of Computer Science, 2000: 579~588.
    [142]杜治高,钱德沛,刘轶.无线传感器网络中的地址分配协议[J].软件学报,2009, 20(10): 2787~2798.
    [143] James Newsome, D. Song. Gem: Graph embed-ding for routing and datacentric storage in sensor networks without geographic information[C]. In Proceedings of SenSys, 2003: 76~88.
    [144] Yingqi Xu, Tao-Yang Fu, Wang-Chien Lee and J. Winter. Processing k nearest neighbor queries in location-aware sensor networks[J]. Signal Processing, 2007, 87(12): 2861~2881.
    [145] Fenghui Zhang, Anxiao Jiang and J. Chen. Robust Planarization of Unlocalized Wireless Sensor Networks[C]. In Proceedings of the 27th INFOCOM, 2008: 798~806.
    [146] C. Taddia, G. Mazzini. On the retransmission methods in wireless sensornetworks[C]. In Proceedings of IEEE 60th Vehicular Technology Conference, 2004: 4573~4577.
    [147] M. Berg, O. Schwarzkopf, M. Kreveld and M. Overmars. Computational Geometry: Algorithms and Applications, 2 ed[M]. Springer-Verlag, 2000.
    [148] Jiehui Chen, Chul-soo Kim and F. Song. A Distributed Clustering Algorithm for Voronoi Cell-Based Large Scale Wireless Sensor Network[C]. In Proceedings of International Conference on Communications and Mobile Computing (CMC), 2010: 209~213.
    [149] M. Bayati, D. Shah, M. Sharma. Maximum weight matching via max-product belief propagation[C]. In Proceedings of International Symposium on Information Theory, 2005:1763~1767.
    [150] P.-O. Fj?llstr?m. Algorithms for Graph Partitioning: A Survey[J]. Link?ping Electronic Articles in Computer and Information Science, 1998, 3.
    [151] Konstantin Andreev, H. R?cke. Balanced graph partitioning[C]. In the 6th annual ACM symposium on Parallelism in algorithms and architectures, 2004:120~124
    [152] Michael R. Garey, D. S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness[M]. W. H. Freeman & Co. New York, NY, USA, 1990.
    [153] Douglas B. West. Introduction to Graph Theory(Second edition)[M]. Prentice Hall, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700