用户名: 密码: 验证码:
基于氟硼吡咯的多发色团FRET体系的构建及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光共振能量转移(FRET)在荧光染料分子的设计中起着举足轻重的作用,已成为有机化学在各个领域应用的不可或缺的重要桥梁。在FRET体系中,最重要也是最核心的部分就是供体和受体的选择。本文基于氟硼吡咯荧光团优异的光化学和光物理性质,采用其衍生物做为供体和受体部分设计并合成了多种FRET体系,并通过实验测试初步评估了其应用价值。
     1.设计并合成了一系列基于FRET机理的多种氟硼吡咯衍生物光捕集天线系统。其中首次实现了三种不同吸收波长的氟硼吡咯衍生物组合分子----光捕集天线A11。该分子利用不同取代基的氟硼吡咯衍生物作为FRET的供体和受体,使其不仅具有氟硼吡咯荧光团的强吸收性质,而且由于多氟硼吡咯衍生物的组合弥补了单个氟硼吡咯本身吸收谱带狭窄的缺陷,使其吸收光谱可覆盖300~700 nm这一太阳能的强辐射范围。在这个系统中,从供体到受体的能量转移可高达99%。“Click”化学反应在合成中的引用大大提高了反应的产率,简化了合成的难度,使这一系列光捕集天线的进一步应用成为可能。这个研究表明氟硼吡咯衍生物作为太阳能光捕集天线具有很好的实用性。
     2.分别构建了氟硼吡咯和罗丹明6G以及氟硼吡咯和罗丹明B的两种FRET体系BRB和BR6G,通过罗丹明隐色体部分与汞离子的高效专一反应来实现对FRET由“关”到“开”状态的逆转。在正常生理条件上,BRB探针和BR6G探针对汞离子具有高度的选择性,竞争性以及高度灵敏性。识别汞离子后可使BRB探针以及BR6G探针的荧光最大发射波长分别红移46 nm和75 nm,确保了比率识别的灵敏度。与此同时,荧光颜色从绿色荧光分别了变成红色荧光和黄色荧光,便于肉眼直接观察。值得一提的是,BRB检测极限甚至可达ppb级,达到了环境保护局(EPA)对汞离子的检测要求。在细胞荧光成像实验中,探针BR6G和BRB都显示出了非常好的汞离子比率检测性能,真正做到了实用性。
     3.设计并合成了以萘酰亚胺和氟硼吡咯衍生物作为FRET供体和受体的pH荧光探针C6,其在pH于2.07-3.68范围的强酸环境下可实现对pH的窄响应范围比率检测,斯托克位移可达近200 nm。荧光量子效率在强酸性条件下可比在中性条件下提高23倍。随着能量受体氟硼吡咯衍生物部分的质子化,其在567 nm处的荧光发射显著增强,而与此同时,供体萘酰亚胺的荧光发射光谱由于与受体氟硼吡咯部分的吸收光谱交盖程度更大,其在515 nm处的荧光发射则有下降趋势。这是FRET机理应用于探针设计的新思路,即通过与被识别对象的作用改变供体的发射光谱和受体的吸收光谱重叠程度,进而改变荧光共振能量转移效率,最后导致荧光光谱的变化实现识别过程。
Fluorescence resonance energy transfer (FRET) plays an important part in the design of fluorescent dyes and has become an essential bridge connecting organic chemistry and other fields. In the system based on FRET, the most importment part is the selectivity of donor and acceptor. In this paper, a few systems based on FRET were designed and synthesized, which adopted BODIPY fluorophore as donor or acceptor due to its excellent photophysical and photochemical properties.
     1. A series of light harvesting systems based on BODIPY derivatives were designed and synthesized. Among them, light harvesting system A11 first realized the combination of three kinds of BODIPY derivatives with different wavelengths. It has strong absorption covering 300-700 nm. Furthermore, the energy transfer efficiency from donor to acceptor can arrive to 99%. The introduction of "Click" chemistry simplied the difficulty of synthesis and made its application possible.
     2. Building two kinds of FRET systems BRB and BR6G with BODIPY as donor (Rhodamine 6G and Rhodamine B as acceptor respectively) and inspecting their application. BRB and BR6G can realize FRET from "off to "on" through an irreversible Hg~(2+)-promoted oxadiazole forming reaction of leuco Rhodamine derivatives. In the normal physiological conditions, BRB and BR6G showed highly selectivity and sensitivity for mercury ions. After detecting mercury ions, maximum fluorescence-emission made blue shift about 46 nm and 75 nm respectively. Meanwhile, fluorescent color changed from green to red and yellow respectively, which was readily detectable visually. One thing worthy of note is that the detection limit of BRB is at the parts per billion level, which can satisfy the requirement of Environmental Protection Agency (EPA). Fluorescent imaging experiments in animal cells show that BRB and BR6G can realize the fluorescent ratio detection of mercury ions.
     3. Fluorescent probe C6 for pH based on 1, 8-naphthalimide and BODIPY derivatives was designed and synthesized. It can realize pH detection in 2.07 - 3.68. Furthermore, stoke shift can arrive to 200 nm and fluorescence quantum efficiency can icrease 23 times as much. It indicated that fluorescent ratio detection of pH through change of overlapping spectra was possible.
引文
[1] Didenko V V. Fluorescent Energy Transfer Nucleic Acid Probes. New Jersey :Humana Press Inc, 2006.
    
    [2] 许金钩,王尊本.荧光分析法.北京:科学出版社,2006.
    
    [3] Forste T. Intramolecular energy migration and fluorescence. Ann Phys,1948, 2:55.
    [4] Dexter D L. A theory of sensitized luminescence in solid. J Chem Phy, 1953, 21 (5):836 - 850.
    [5] Balzani V, Ceroni P, Gestermann S, Kauffmann C, Gorka M, Vogtle F. Dendrimers as fluorescent sensors with signal amplification. Chem Commun, 2000,10:853-854.
    [6] Bignozzi C A, Argazzi R, Kleverlaan C J. Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes, Chem Soc Rev, 2000,29:87.
    [7] Ritz T, Damjanovic A, Schulten K. The Quantum Physics of Photosynthesis. Chemphyschem. 2002,3:243.
    [8] Wagner R W, Johnson T E, Lindsey J S. Soluble Synthetic Multiporphyrin Arrays. 1. Modular Design and Synthesis. J Am Chem Soc, 1996, 118 (45): 11166-11180.
    [9] Hsiao J Skrueger B P, Wagner R W, Johnson T E, Delaney J K, Mauzerall D C, Fleming G R, Lindsey J S, Bocian D F, Donohoe R J. Soluble Synthetic Multiporphyrin Arrays. 2. Photodynamics of Energy-Transfer Processes. J Am Chem Soc, 1996, 118 (45): 11181- 11193.
    [10] Lammi R K, Ambroise A, Balasubramanian T, Wagner R W, Bocian D F, Holten D, Lindsey J S. Structural Control of Photoinduced Energy Transfer between Adjacent and Distant Sites in Multiporphyrin Arrays. J Am Chem Soc, 2000, 122 (31): 7579-7591.
    
    [11] Seth J, Palaniappan V, Wagner R W, JohnsonTE, Lindsey J S, BocianDF. Soluble Synthetic Multiporphyrin Arrays. 3. Static Spectroscopic and Electrochemical Probes of Electronic Communication. J Am Chem Soc, 1996, 118 (45): 11194-11207.
    
    [12] Nishino N, Wagner R W, Lindsey J S. Synthesis of Linear Amphipathic Porphyrin Dimers and Trimers: An Approach to Bilayer Lipid Membrane Spanning Porphyrin Arrays. J Org Chem, 1996, 61 (21): 7534-7544.
    [13] Nakano A, Yamazaki T, Nishimura Y, Yamazaki L, Osuka A. Three-Dimensionally Arranged Windmill and Grid Porphyrin Arrays by Agl-Promoted meso-meso Block Oligomerization. Chem Eur J, 2000, 6(17): 3254 -3271.
    [14] Prathapan S, Johnson T E, Lindsey J S. Building-block synthesis of porphyrin light-harvesting arrays. J Am Chem Soc, 1993, 115(16): 7519-7520.
    [15] Li F, Yang S I, Ciringh Y, Seth J, Martin C H, Singh D L, Kim D, Birge R R, Bocian D F, Holten D, Lindsey J S. Design, Synthesis, and Photodynamics of Light-Harvesting Arrays Comprised of a Porphyrin and One, Two, or Eight Boron-Dipyrrin Accessory Pigments. J Am Chem Soc, 1998, 120(39): 10001-10017.
    [16] Plevoets M, Vogtle F, De Cola L, Balzani V. Supramolecular dendrimers with a [Ru(bpy)3]2+ core and naphthyl peripheral units. New. J. Chem. 1999, 23:63-69.
    [17] Adronov A, Gilat S L, Frechet J M J, Ohta K, Neuwahl F V R, Fleming G R. Light Harvesting and Energy Transfer in Laser-Dye-Labeled Poly (aryl ether) Dendrimers. J Am Chem Soc, 2000, 122(6) :1175-1185.
    [18] Sylvain L. Gilat, Alex Adronov, Jean M. J. Frechet. Light Harvesting and Energy Transfer in Novel Convergently Constructed Dendrimers. Angew Chem Int Ed , 1999, 38(10):1422-1427.
    [19] Devadoss C, Bharathi B, Moore J S. Energy Transfer in Dendritic Macromolecules: Molecular Size Effects and the Role of an Energy Gradient. J Am Chem Soc , 1996,118:9635-9644.
    [20] Takakusa H, Kikuchi K, Urano Y, Higuchi T, Nagano T. Intramolecular Fluorescence Resonance Energy Transfer System with Coumarin Donor Included in a-Cyclodextrin. Anal Chem, 2001,73:939-942.
    [21] Soh N, Makihara K, Sakoda E, Imato T. A ratiometric fluorescent probe for imaging hydroxyl radicals in living cells. Chem Commun, 2004,4:496-497.
    [22] Bandichhor R, Petrescu A D, Vespa A, Kier A B, Schroeder F, Burgess K. Water-Soluble Through-Bond Energy Transfer Cassettes for Intracellular Imaging. J Am Chem Soc, 2006,128(33):10688-10689.
    [23] Ueyama H, Takagi M, Takenaka S. A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. J Am Chem Soc, 2002,124(48):14286-14287.
    [24] Hossain M A, Mihara H, Ueno A. Novel peptides bearing pyrene and coumarin u2 nits with or without β-cyclodextrin in their side chains exhibit intramolecular fluorescence resonance energy transfer. J Am Chem Soc, 2003,125(37): 11178-11179.
    [25] Albers A E, Okreglak V S, Chang C J. A FRET-Based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide. J. Am. Chem. Soc. 2006,128(30): 9640-9641.
    [26] Amendola V, Fabbrizzi L, Foti F, et al. Light-emitting molecular devices based on transition metals. Coordiation Chemistry Reviews, 2006, 250(3-4):273-299.
    [27] Lee M H, Wu J S, Lee J W, Jung J H, Kim J S. Highly Sensitive and Selective Chemosensor for Hg~(2+) Based on the Rhodamine Fluorophore. Org Lett, 2007, 9(13):2501-2504.
    [28] Coskun A, Akkaya E U. Ion Sensing Coupled to Resonance Energy Transfer: A Highly Selective and Sensitive Ratiometric Fluorescent Chemosensor for Ag(I) by a Modular Approach. J Am Chem Soc, 2005,127:10464-10465.
    [29] Prasher D C, Eckenrode V K, Ward W W, Prendergast F G, Cormier M J. Primary structure of the Aequorea Victoria green-fluorescent protein. Gene, 1992, 111:229-233.
    [30] Lewis J C, Daunert S. Dual detection of peptides in a fluorescence binding assay by employing genetically fused GFP and BFP mutants. Anal Chem, 1999, 71(19) :4321 - 4327.
    [31] Heim R, Tsien R Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol, 1996, 6:178-182.
    [32] Miyawaki A, Llopis J, Heim R, McCaffery J M, Adams J A, Ikurak M, Tsien R Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997, 388: 882-887.
    [33] Truong K, Ikura M. The use of FRET imaging microscopy to detect protein - protein interactions and protein conformational changes in vivo. Curr Opin Struc Biol, 2001, 11 (5): 573 - 578.
    [34] Heim R, Prasher D C, Tsien R Y. Wavelength mutations and post translational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA , 1994 , 91 (26):12501 - 12504.
    [35] Heim R, Tsien R Y. Engineering green fluorescent protein for improved brightness , longer wavelengths and fluorescence resonance energy transfer. Curr Biol, 1996, 6(2): 178 -182.
    [36] Mizuno H, Sawano A, Eli P, Hama H, Miyawaki A. Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer. Biochemistry, 2001, 40(8):2502 - 2510.
    [37] Selvin P R. The renaissance of fluorescence resonance Na. Struct Biol, 2000, 7(9):730 - 734.
    [38] Wu L, Burgess K. Syntheses of Highly Fluorescent GFP-Chromophore Analogues. J Am Chem Soc, 2008, 130(12) :4089-4096.
    [39] Mathis G. Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem. 1995, 41(9):1391 - 1397.
    [40] Parkhurst K M, Parkhurst L J. Kinetic Studies by Fluorescence Resonance Energy Transfer Employing a Double-Labeled Oligonucleotide: Hybridization to the Oligonucleotide Complement and to Single-Stranded DNA. Biochemistry, 1995, 34(1): 285 - 292.
    [41] Wolfe M S, Xia W, Moore C L, Leatherwood D D, Ostaszewski B, Rahmati T, Donkor I O, Selkoe D J. Peptidomimetic Probes and Molecular Modeling Suggest That Alzheimer's γ-Secretase Is an Intramembrane-Cleaving Aspartyl Protease. Biochemistry, 1999, 38 (15): 4720-4727.
    [42] Matsurnoto C, Hamasaki K, Mihara H, Ueno A. a high-throughput screening utilizing intramolecular fluorescence resonance energy transfer for the discovery of the molecules that bind hiv-l tar rna specifically.Bioorg Med Chem Lett. 2000. 10(16):1857-1861.
    [43] Wories H J, Koek J H, Lodder G, Lugtenburg J, Fokkens R, Driessen O, Mohn G R. Recl Trav Chim Pays-Bas, 1985,104:288.
    [44] Li L, Han J, Nguyen B, Burgess K. Syntheses and Spectral Properties of Functionalized, Water-Soluble BODIPY Derivatives. J Org Chem, 2008, 73 (5):1963 - 1970.
    [45] Shah M, Thangaraj K, Soong M L, Wolford L T, Boyer J H, Politzer I R, Pavlopoulos T G. Pyrromethene-BF2 complexes as laser dyes. Heteroat Chem, 1990, 1(5):389-399.
    [46] Suzuki T, Tanaka T, Higashiguchi I, Oda A. Organic electroluminescent device elements. JP Patent 11176572, 1999.
    [47] Takuma K, Misawa T, Sugimoto K, Nishimoto T, Tsukahara H, Tsuda T, Imai G, Kogure H. Visible light-curable resin compositions and their use in inks. JP Patent 10273504, January 29,1998.
    [48] Yogo T, Urano Y, Ishitsuka Y, Maniwa F, Nagano T. Highly Efficient and Photostable Photosensitizer Based on BODIPY Chromophore. J Am Chem Soc, 2005,127(35): 12162-12163.
    [49] Wan C W, Burghart A, Chen J, Bergstrom F, Johansson L B, Wolford M F, GyumKim T, Topp M R, Hochstrasser R M, Burgess K. Anthracene-BODIPY Cassettes: Syntheses and Energy Transfer. Chem Eur J, 2003,9:4430-4441.
    [50] Rurack K, Kollmannsberger M, Daub J. A highly efficient sensor molecule emitting in the near infrared (NIR): 3, 5-distyryl-8-(p-dimethylaminophenyl)difluoroboradiaza-s-indacene . New J Chem,2001, 25,289-292.
    [51] Coskun A, Akkaya E U. Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions. Tetrahedron Lett, 2004, 45(25):4947-4949.
    [52] Baruah M, Qin W, Flors, C. ; Hofkens, J. ; Vallee, R. A. L. ;Beljonne, D. ; Van, der Auweraer, M. : De Borggraeve, W. M. ; Boens, N. Solvent and pH Dependent Fluorescent Properties of a Dimethylaminostyryl Borondipyrromethene Dye in Solution. J Phys Chem. A, 2006, 110(18): 5998-6009.
    [53] Rurack K, Kollmannsberger M, Daub J. Molecular Switching in the Near Infrared (NIR) with a Functionalized Boron-Dipyrromethene Dye. Angew Chem Int Ed, 2001, 40(2):385-387.
    [54] Yu Y H, Descalzo A B, Shen Z, Rohr H, Liu Q, Wang Y W, Spieles M, Li Y Z, Rurack K, You X Z. Mono-and Di(dimethylami.no)styryl-Substituted Borondipyrromethene and Borondiindomethene Dyes with Intense Near-Infrared Fluorescence. Chem Asian J, 2006, 1: 176-187.
    [55] Zhao W L, Carreira E M. Conformationally Restricted Aza-BODIPY: Highly Fluorescent Stable Near-Infrared Absorbing Dyes. Chem Eur J, 2006, 12:7254-7263.
    [56] Ulrich G, Goze C, Guardigli M, Roda A, Ziessel R. Pyrromethene Dialkynyl Borane Complexes for "Cascatelle" Energy Transfer and Protein Labeling. Angew Chem Int Ed, 2005, 44 (24):3694-3698.
    [57] Prathapan S, Johnson T E, Lindsey J S. Building-block synthesis of porphyrin light-harvesting arrays. J Am Chem Soc, 1993, 115(16):7519-7520.
    [58] Flamigni L, Ventura B, You C C, Hippius C, Wurthner F. Photophysical Characterization of a Light-Harvesting Tetra Naphthalene Imide/Perylene Bisimide Array. J Phys Chem, 2007, 111 (2):622-630.
    [59] Yilmaz M D, Bozdemir A, Akkaya E U. Light Harvesting and Efficient Energy Transfer in aBoron-dipyrrin (BODIPY) Functionalized Perylenediimide Derivative. Org Lett, 2006, 8(13):2871-2873.
    [60] Hippius C, Schlosser F, Vysotsky M O, Bohmer V, Würthner F. Energy Transfer in Calixarene-Based Cofacial-Positioned Perylene Bisimide Arrays. J Am Chem Soc,2006, 128(12):3870-3871.
    [61] Ziessel R, Ulrich G, Harriman A. The chemistry of Bodipy: A new El Dorado for fluorescence tools. New J Chem, 2007, 31: 496-501.
    [62] Coskun, A. ; Akkaya, E. U. Ion Sensing Coupled to Resonance Energy Transfer: A Highly Selective and Sensitive Ratiometric Fluorescent Chemosensor for Ag(I) by a Modular Approach . J Am Chem Soc,2005, 127(30):10464-10465.
    [63] Burghart A,Thoresen L H, Chen J, Burgess K, Bergstrom F, Johansson L B-A. Energy transfer cassettes based on BODIPY dyes. Chem Commun,2000, 22:2203-2204.
    [64] Harriman A, Mallon L J, Goeb S, Ziessel R. A near-IR emitting Bodipy-based dye fitted with ancillary light harvesting units. PhysChemChemPhys,2007, 9:5199-5201.
    [65] Rurack K, Kollmannsberger M, Daub J. Molecular Switching in the Near Infrared (NIR) with a Functionalized Boron-Dipyrromethene Dye. Angew. Chem., Int. Ed. 2001, 40(2): 85-387.
    [66] Coskun A, Akkaya E I. Signal Ratio Amplification via Modulation of Resonance Energy Transfer: Proof of Principle in an Emission Ratiometric Hg(II) Sensor. J Am Chem Soc,2006, 128(45): 14474-14475.
    [67] Atilgan S, Ekmekci Z, Dogan A L, Guc D, Akkaya E U. Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy. Chem Commun, 2006, 42:4398-4400.
    [68] Coskun A, Deniz E, Akkaya E U. Effective PET and ICT Switching of Boradiazaindacene Emission: A Unimolecular, Emission-Mode, Molecular Half-Subtractor with Reconfigurable Logic Gates. Org Lett, 2005, 7(23):5187-5189.
    [69] Kolb, H. C. ; Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug Discovery Today, 2003, 8(24): 1128-1137.
    [70] Lu F, Xiao S, Li Y, Liu H, Li H, Zhuang J, Liu Y, Wang N, He X, Li X, Gan L, Zhu D. Synthesis and Chemical Properties of Conjugated Polyacetylenes Having Pendant Fullerene and/or Porphyrin Units. Macromolecules, 2004, 37 (20):7444 - 7450.
    [71] Lutz J F. 1, 3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science. Angew Chem Int Ed, 2007, 46(7): 1018 -1025.
    [72] Gierlich J, Burley G A, Gramlich P M E, Hammond D M, Carell T. Click Chemistry as a Reliable Method for the High-Density Postsynthetic Functionalization of Alkyne-Modified DNA. Org Lett, 2006, 8(17): 3639-3642.
    [73] Such G K, Quinn J F, Quinn A, Tjipto E, Caruso F. Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry. J Am Chem Soc,2006,128(29): 9318 -9319.
    [74] Hahn U, Elhabiri M, Trabolsi A, Herschbach H, Leize E, Dorsselaer A V, Albrecht-Gary A M, Nierengarten J F. Supramolecular Click Chemistry with a Bisammonium-C60 Substrate and a Ditopic Crown Ether Host. Angew Chem Int Ed, 2005, 44: 5338 -5341.
    [75] Helms B, Mynar J L ,Hawker C J, Frechet M J . Dendronized Linear Polymers via "Click Chemistry". J Am Chem Soc, 2004,126(46): 15020-15021.
    [76] Englert B C, Bakbak S, Bunz U H F. Click Chemistry as a Powerful Tool for the Construction of Functional Poly(p-phenyleneethynylene)s: Comparison of Pre- and Postfunctionalization Schemes. Macromolecules, 2005,38: 5868-5877.
    [77] Speers A E, Adam G C, Cravatt B F. Activity-Based Protein Profiling in Vivo Using a Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition. J Am Chem Soc, 2003,125(16): 4686 -4687.
    [78] Speers A E, Cravatt B F.A Tandem Orthogonal Proteolysis Strategy for High-Content Chemical Proteomics. J Am Chem Soc, 2005,127(28)-.10018-10019.
    [79] Hassane F S , Frisch B , Schuber F. Targeted Liposomes: Convenient Coupling of Ligands to Preformed Vesicles Using "Click Chemistry" . Bioconjugate Chem. 2006,17(3): 849 -854.
    [80] Kolb H C, Sharpless K B. The growing impact of click chemistry on drug discovery . Drug Discovery Today, 2003, 8(24): 1128 -1137.
    [81] Mindt T L , Struthers H , Brans L, Anguelov T, Schweinsberg C, Maes V, Tourwe D, Schibli R. "Click to Chelate": Synthesis and Installation of Metal Chelates into Biomolecules in a Single Step. J Am Chem Soc, 2006,128(47): 15096 -15097.
    [82] Bonnet D , Ilien B , Galzi J L , Riche S, Antheaune C, Hibert M. A Rapid and Versatile Method to Label Receptor Ligands Using "Click" Chemistry: Validation with the Muscarinic Ml Antagonist Pirenzepine. Bioconjugate Chem. 2006, 17(6): 1618 -1623
    [83] Li J, Zheng M, Tang W, He P L, Zhu W, Li T, Zuo J, Liu H, Jiang H. Syntheses of triazole-modified zanamivir analogues via click chemistry and anti-AIV activities. Bioorg Med Chem Lett, 2006, 16(19): 5009-5013.
    [84] Kolb H C, Finn M G, Sharpless K B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed, 2001, 40(11): 2004 -2021.
    
    [85] Binder W H, Sachsenhofer R. 'Click' Chemistry in Polymer and Materials Science. Macromol Rapid Commun, 2007, 28(1): 15 -54.
    [86] Rostovtsev V V,Green L G, Fokin V V , Sharpless K B. A Stepwise Huisgen Cycloaddition Process: opper (I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes. Angew Chem Int Ed, 2002, 41(14): 2596 -2599.
    [87] Bock V D, Heimsha H , Morsteen J H V. Cu'-Catalyzed Alkyne-Azide "Click" Cycloadditions from a Mechanistic and Synthetic Perspective. Eur J Org Chem, 2006, 1:51- 68.
    [88] Himo F, Lovell T, Hilgraf R, Rostovtsev V V, Noodleman L, Sharpless K B, Fokin V V. Copper (I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J Am Chem Soc, 2005,127:210 -216.
    [89] Himo F, Demko, Z. P, Noodleman L, Sharpless K B. Mechanisms of Tetrazole Formation by Addition of Azide to Nitriles. J Am Chem Soc, 2002,124(41): 12210 -12216.
    [90] Forster!. Intramolecular energy migration and fluorescence. Ann. Phys. 1948, 2: 55275
    [91] Berberan-Santos M N, Choppinet P, Fedorov A, Jullien L, Valeur B. Multichromophoric Cyclodextrins. 8. Dynamics of Homo- and Heterotransfer of Excitation Energy in Inclusion Complexes with Fluorescent Dyes J Am Chem Soc, 2000, 122(48):11876-11886.
    [92] Yang Y K, Yook K J, Tae J, A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg~(2+) Ions in Aqueous Media. J Am Chem Soc, 2005, 127(48): 16760-16761.
    [93] Ko S K, Yang Y K, Tae J, Shin I. In Vivo Monitoring of Mercury Ions Using a Rhodamine-Based Molecular Probe. J Am Chem Soc, 2006, 128(43):14150-14155.
    [94] Chrtien J M, Zammattio F, Grognec E L, Paris M, Cahingt B, Montavon G, Quintard J P. Polymer-Supported Organotin Reagents for Regioselective Halogenation of Aromatic Amines. Org Chem, 2005, 70 (7):2870-2873.
    [95] Ishizaki M, Hoshino O. Unprecedented Cesium and Potassium Fluorides Catalyzed Trialkylsilylation and Tributylstannylation of Terminal Alkynes with Triuoromethyl Trialkylsilanes and Tributylstannane. Tetrahedron, 2000, 56:8813-8819.
    [96] Yang X F, Guo X Q, Zhao Y B. Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. Talanta, 2002, 57(5):883-890.
    [97] Lavis L D, Chao T Y, Raines R T. Fluorogenic label for biomolecular imaging. Acs Chemical Biology. 2006, 1(4):252-260.
    [98] Valeur B. Molecular Fluorescence: Principles and Applications. Wiley-Vch Verlag GmbH,2001.
    [99] Dost Z, Atilgan S, Akkaya E U. Distyryl-boradiazaindacenes: facile synthesis of novel near IR emitting fluorophores. Tetrahedron. 2006, 62: 8484-8488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700