用户名: 密码: 验证码:
具有多级结构的过渡金属化合物微/纳米材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有特殊形貌、尺寸和层次的微/纳米材料在基础科学研究和实际应用中具有重要的意义,已受到了人们广泛的关注。而由低维纳米材料作为初级结构单元组装的多级结构更是研究的重点。因此,设计和制备具有特殊形貌、尺寸的多级结构微/纳米材料,并研究材料的结构与性质关系是多级结构材料研究的重要课题之一。在众多多级结构微/纳米材料的控制合成策略中,以溶液过程为基础的“软化学”路线具有简单的工艺和丰富的调控性等而备受关注。其中,在液相中的聚集过程被认为是制备多级结构纳米材料的最有效的方法之一。本学位论文在反应体系设计的基础上,以合适的表面活性剂或有机小分子络合剂为辅助介质,通过简单的液相反应合成了多种具有多级结构的过渡金属化合物微/纳米材料。如发展了气泡模板和界面体系协同合成法,制备了一维项链状氢氧化镉中空纳米材料和三维氧化铜中空纳米球;将微乳液合成法应用于有机/无机杂化半导体材料的制备,合成了8-羟基喹啉锌多级微米片;以络合剂辅助合成策略制备了形貌丰富的氢氧化铟多级纳米材料和硫化镉多级纳米材料。
     具体的研究内容包括:
     1、以正辛醇/水两相乳液体系为反应介质,以微波辐照为加热方式,采用界面辅助的气泡为模板快速制备了一维项链状中空Cd(OH)2纳米结构和CuO多级中空纳米球。研究表明阴离子表面活性剂SDS可调节气泡和界面的性质,并可有效地控制产物和初级单元形貌。进一步研究发现,所制备的Cd(OH)2可以用于阴离子染料刚果红的吸附与分离,并且一维项链状中空Cd(OH)2纳米结构能提高对染料的吸附效率。另外,可见光催化降解研究表明多级中空CuO纳米球比非多级结构CuO纳米材料对罗丹明B具有更高的光催化降解性能。
     2、以简单的阳离子表面活性剂CTAB微乳液体系为反应介质,制备了具有自组装结构的二水合8-羟基喹啉锌(ZnQ2·2H2O)的多级结构,如微米片、三明治结构、六边形结构等。这些多级结构主要由于ZnQ2·2H2O分子的分子堆积和ZnQ2·2H2O初级单元的组装而成。通过反应条件的改变,可以实现初级单元形貌和最终产物形貌的控制。表面光电压结果显示ZnQ2·2H2O拥有p型半导体特性,具有良好的电荷—空穴分离能力。光谱研究表明ZnQ2·2H2O的光学性质与其尺寸和形貌密切相关。
     3、以络合剂辅助合成法控制合成了不同形貌的In(OH)3纳米材料。当以柠檬酸三钠为络合剂时,适当改变反应条件可以得到纳米粒子、单分散的多级纳米球、单分散的多级纳米立方体等结构的In(OH)3材料。通过络合剂种类、络合剂含量等反应条件的调控,可以进一步控制组装单元和最终产物的形貌及组装方式。进一步地以不同形貌的In(OH)3纳米材料为前驱物,通过焙烧等处理,可得到不同形貌的In2O3纳米材料,且所得到的In2O3纳米材料很好地保持了In(OH)3原始形貌。气敏性能研究表明多级结构In2O3的气敏性能优于In2O3纳米粒子的气敏性能,其中多级结构的In2O3纳米立方体对乙醇气体具有最高的选择性和灵敏性。
     4、以络合剂辅助合成法控制合成了一系列不同晶型和形貌的CdS纳米材料。系统考察了络合剂酸碱性、络合能力、分子结构等特性对产物晶型和形貌影响。通过络合剂的种类、浓度的改变不仅能够控制CdS的晶型(如立方闪锌矿和六方纤锌矿),还可以控制CdS纳米材料的形貌和组装形式(一维纳米棒组装的多级微球结构、纳米粒子组装的纳米片、纳米粒子组装的多级中空纳米球结构)。研究表明络合剂与Cd2+络合能力及CdS的生长速度对CdS晶型有重要影响,而络合剂与Cd2+所形成的络合物分子结构决定了产物的最终形貌,并对不同络合物体系中CdS的形成机理进行了研究。光催化性能研究表明立方闪锌矿结构CdS的光催化效率优于六方纤锌矿结构;一维纳米棒组装的多级结构CdS的光催化效率优于纳米粒子组装的多级中空纳米球结构。
The synthesis and self-organization of micro- and nanoscale inorganic materials with special morphology, size, and hierarchy have attracted considerable attention in the past few decades because of their importance in basic scientific research and potential technological applications. Hierarchical micro-/nanostructures, constructed by using various low dimensional nanomaterials as building blocks, may provide an effective strategy for the systematic study of structure-property relationships and improve the physical and chemical properties of the nanoscale materials with simple configurations. Recently, rational control over the morphology, crystalline structure, and size of hierarchical inorganic materials has commanded the attention of many research groups worldwide and efforts have focused on mastering the synthetic routes to afford a host of novel and diverse nano- and microstructured materials. Various synthetic methods have been devoted to the controlled synthesis of hierarchical inorganic materials with specific sizes and morphologies. On the other hand, solution-phase synthetic methods have many advantages, including relatively low reaction temperatures, convenience in handling, inexpensive reaction instruments, and ease in procedural control, making them very promising for the large-scale synthesis of materials. Furthermore, the aggregation-based solution approach is proved to be one of the most effective methods to obtain hierarchical or complex nano-/microstructures. In this thesis, we have successfully synthesized that ultra-long and flexible necklace-like nanostructures of Cd(OH)2 and CuO hierarchical hollow nanostructures through novel double-soft-template mechanism based on the synergistic effect of bubble-template and interface-template in the n-octanol/aqueous liquid system, hierarchically assembled ZnQ2·2H2O microstructures in CTAB microemulsion system, and hierarchical In(OH)3 and CdS architectures with various morphologies through tunable ligand-assisted synthesis.
     Detailed research contents are summarized as following:
     1. Ultra-long and flexible necklace-like nanostructures of Cd(OH)2 and CuO hierarchical hollow nanostructures were successfully prepared in the n-octanol/aqueous liquid system through the microwave heating approach, and a novel mechanism based on the synergistic effect of bubble-template and interface-assistance (SEBI) was proposed. Controlled experiments revealed that both bubble and interface play key roles in determining the self-assembly process of Cd(OH)2 and CuO hierarchical nanostructures, and the morphology/size of building blocks and final products could be readily tuned by adjusting reaction parameters. Further experiments evidenced that the hierarchical Cd(OH)2 and CuO nanostructures possessed superior separation performance on negatively charged dye and photocatalytic efficiency on RhB, respectively.
     2. Assembled ZnQ2·2H2O microstructures, such as microsheet, sandwich-like structure and hexangular microflake, have been successfully prepared in CTAB microemulsion system through the stacking of ZnQ2·2H2O molecules and oriented aggregation of ZnQ2·2H2O original building blocks. Controlled experiments demonstrated that the morphologies of building block and final product could be readily tuned by reaction parameters, and a formation mechanism, involving re-precipitation, growth and oriented aggregation process, has been proposed. The surface photovoltage revealed that the photogenerated charges of ZnQ2·2H2O could be separated distinctly and ZnQ2·2H2O possessed p-type semiconductor characteristics, respectively. Furthermore, UV-vis and PL spectra evidenced the optical properties of ZnQ2·2H2O were sensitive to its microstructure or morphology.
     3. In(OH)3 nanomaterials with different morphologies or hierarchical structures, such as nanoparticles, monodispersed hierarchical nanocubes and nanospheres, have been successfully synthesized via a ligand-assisted aqueous process. The shape and size of these as-prepared architectures can be tuned effectively by controlling the reaction conditions, such as the molar ratio of ligand/In3+ and different ligands. Furthermore, In2O3 nanoparticles and monodispersed hierarchical nanocubes and nanospheres with well-defined morphologies of the precursors can be also obtained by annealing the corresponding In(OH)3 samples. Gas sensing properties of the as-prepared In2O3 samples demonstrate that hierarchical In2O3 architectures exhibit a superior response to In2O3 nanoparticles, and the hierarchical In2O3 nanocubes have excellent selectivity and sensitivity to ethanol gas. Further more, XPS spectra and N2 adsorption-desorption isotherms achieve a deeper understanding for the effects of final product morphologies on their gas sensing properties.
     4. Various architectures of CdS were prepared by a ligand-assisted hydrothermal route, and a series of complexing agents were chosen as organic ligands to controlled synthesize CdS architectures, and some CdS nanostructures with hierarchical morphologies, such as hierarchical jointed microspheres assembled by one-dimensional nanoribbons, hierarchical nanoplates assembled by nanoparticles and hierarchical hollow nanospheres assembled by nanoparticles, were obtained. Furthermore, the crystal phase of the products, including hexagonal wurtzite phase and cubic zinc-blende phase, also can be tuned conveniently by adjusting the reaction conditions, including the sort of ligand, the concentration of ligand and reaction temperature. Finally, the photocatalytic activities of as-prepared CdS architectures with different phases and morphologies demonstrate that biodegradation based on one-dimensional building blocks have a better decolorization than those based on building blocks of nanoparticles, and biodegradation based on based on hierarchical nanoplates with cubic zinc-blende phase have a better response than those based on hierarchical nanoplates with hexagonal wurtzite phase.
引文
1.张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    2. A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews 1989, 89(8), 1861-1879.
    3. R. E. Cavicchi, R. H. Silsbee, Electronic heat capacity and susceptibility of small metal particles. Physical Review Letters 1971, 26(12), 707-711.
    4. D. L. Fedhein, C. D. Keating, Self-assembly of single electron transistors and related devices. Chemical Society Reviews 1998, 27, 1-12.
    5.张立德,牟季美,开拓原子和物质的中间领域—纳米微粒与纳米固体,物理,1992,21(3), 167-173.
    6.李玲,向航,功能材料与纳米技术,化学工业出版社,2002.
    7.倪星元,沈军,张志华,纳米材料的理化特性与应用,化学工业出版社,2006.
    8. C. Burda, X. B. Chen, Narayanan R, et al., Chemistry and properties of nanocrystals of different shapes. Chemical Reviews 2005, 105(4), 1025-1102.
    9. Y. D. Yin, P. Alivisators, Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664-670.
    10.王姗,张颖,房喻,纳米颗粒材料的制备及其组装,胶体与聚合物2003,21(2),33-38.
    11.刘欢,翟锦,江雷,纳米材料的自组装研究进展,无机化学学报2006,22(4),585-597.
    12. W. A. Lopes, H. M. Jaeger, Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 2001, 414, 735-738.
    13. O. Ikkala, G. T. Brinke, Hierarchical self-assembly in polymeric complexes: Towards functional materials. Chemical Communications 2004, 19, 2131-2137.
    14. K. Ariga, J. P. Hill, Q. M. Ji, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics 2007, 9(19), 2319-2340.
    15. J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan, Synthesis of hierarchically structured metal oxidesand their application in heavy metal ion removal. Advanced Materials 2008, 20(15), 2977-2982.
    16. L. Addadi, D. Joester, F. Nudelman, et al., Mollusk shell formation: a source for new concept for understanding biomineralization processes. Chemistry-A European Journal 2006, 12(4), 980-987.
    17. A. Lin, M. A. Meyers, Growth and structural in abalone shell. Materials Science and Engineering: A 2005, 390(1-2), 27-41.
    18. G. Mayer, Rigid biological systems as models for synthetic composites. Science 2005, 310(5751), 1144-1147.
    19. X. H. Chen, J. Xu, R. M. Wang, D. P. Yu, High-quality ultra-fine GaN nanowires synthesized via chemical vapor deposition. Advanced Materials 2003, 15(5), 419-421.
    20. T. T. Kang, X. L. Liu, R. Q. Zhang, W. G. Hu, G. W. Cong, F. A. Zhao, Q. S. Zhu, InN nanoflowers grown by metal organic chemical vapor deposition. Applied Physics Letters 2006, 89, 071113.
    21. W. Y. Chen, C. C. Chen, J. Hwang, C. F. Huang, Growth of 3C-SiC on Si(100) by low pressure chemical vapor deposition using a modified four-step process. Crystal Growth & Design 2009, 9(6), 2616-2619.
    22. S. Bhunia, T. Kawamura, Y. Watanabe, S. Fujikawa, K. Tokushima, Metalorganic vapor-phase epitaxial growth and characterization of vertical InP nanowires. Applied Physics Letters 2003, 83(16), 3371-3373.
    23. J. Y. Lao, J. G. Wen, Z. F. Ren, Hierarchical ZnO nanostructures. Nano Letters 2002, 2(11), 1287-1291.
    24. D. Moore, Y. Ding, Z. L. Wang, Hierarchical structured nanohelices of ZnS. Angewandte Chemie International Edition 2006, 45(31), 5150-5154.
    25. S. H. Sun, G. W. Meng, G. X. Zhang, J. P. Masse, L. D. Zhang, Controlled growth of SnO2 hierarchical nanostructures by a multistep thermal vapor deposition process. Chemistry-A European Journal 2007, 13(32), 9087-9092.
    26. G. Z. Shen, Y. Bando, C. C. Tang, D. Golberg, Self-organized hierarchical ZnS/SiO2 nanowire heterostructures. Journal of Physical Chemistry B 2006, 110(14), 7199-7202.
    27. J. Zhang, Y. D. Yang, F. H. Jiang, J. P. Li, B. L. Xu, X. C. Wang, S. M. Wang, Fabrication, structural characterization and photoluminescence of Q-1D semiconductor ZnS hierarchical nanostructures. Nanotechnology 2006, 17(10), 2695-2700.
    28.苏勉曾,谢高阳,申浮文等译,固体化学及其应用,复旦大学出版社,1989.
    29. M. G. Ma, J. F. Zhu, Solvothermal synthesis and characterization of hierarchically nanostructured hydroxyapatite hollow spheres. European Journal of Inorganic Chemistry 2009, 36, 5522-5526.
    30. C. L. Yan, D. F. Xue, Morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide. Journal of Physical Chemistry B 2006, 110(23), 11076-11080.
    31. Z. C. Wu, C. Pan, T. W. Li, G. J. Yang, Y. Xie, Formation of uniform flowerlike patterns of NiS by macrocycle polyamine assisted solution-phase route. Crystal Growth & Design, 2007, 7(12), 2454-2459.
    32. S. W. Cao, Y. J. Zhu, Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures. Journal of Physical Chemistry C 2008, 112(32), 12149-12156.
    33. H. Wen, M. H. Cao, G. B. Sun, W. G. Xu, D. Wang, X. Q. Zhang, C. W. Hu, Hierarchical three-dimensional cobalt phosphate microarchitectures: large-scale solvothermal synthesis, characterization, and magnetic and microwave absorption properties. Journal of Physical Chemistry C 2008, 112(41), 15948-15955.
    34. L. Liu, H. J. Liu, H. Z. Kou, Y. Q. Wang, Z. Zhou, M. M. Ren, M. Ge, X. W. He, Morphology control ofβ-In2S3 from chrysanthemum-like microspheres to hollow microspheres: synthesis and electrochemical properties. Crystal Growth & Design 2009, 9(1), 113-117.
    35. X. F. Song, L. Gao, Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties. Journal of Physical Chemistry C 2008, 112(39), 15299-15305.
    36. J. Lu, X. L. Jiao, D. R. Chen, W. Li, Solvothermal synthesis and characterization of Fe3O4 and gamma-Fe2O3 nanoplates. Journal of Physical Chemistry C 2009, 113(10), 4012-4017.
    37. Y. X. Zhou, H. B. Yao, Q. Zhang, J. Y. Gong, S. J. Liu, S. H. Yu, Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. InorganicChemistry 2009, 48(3), 1082-1090.
    38. X. Zhang, Z. H. Ai, F. L. Jia, L. Z. Zhang, Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres. Journal of Physical Chemistry C 2008, 112(3), 747-753.
    39. P. T. Zhao, J. M. Wang, G. E. Cheng, K. X. Huang, Fabrication of symmetric hierarchical hollow PbS microcrystals via a facile solvothermal process. Journal of Physical Chemistry B 2006, 110(45), 22400-22406.
    40. W. T. Yao, S. H. Yu, S. J. Liu, J. P. Chen, X. M. Liu, F. Q. Li, Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. Journal of Physical Chemistry B 2006, 110(24), 11704-11710.
    41. W. T. Yao, S. H. Yu, J. Jiang, L. Zhang, Complex wurtzite ZnSe microspheres with high hierarchy and their optical properties. Chemistry-A European Journal 2006, 12(7), 2066-2072.
    42. Y. H. Zheng, Y. Cheng, Y. S. Wang, L. H. Zhou, F. Bao, C. Jia, Metastableγ-MnS hierarchical architectures: synthesis, characterization, and growth mechanism. Journal of Physical Chemistry B 2006, 110(16), 8284-8288.
    43. L. Zheng, Y. Xu, Y. Song, C. Z. Wu, M. Zhang, Y. Xie, Nearly monodisperse CuInS2 hierarchical microarchitectures for photocatalytic H2 evolution under visible light. Inorganic Chemistry 2009, 48(9), 4003-4009.
    44. V. S. Maceira, M. Spasova, M. Farle, Water-stable, magnetic silica-cobalt/cobalt oxide-silica multishell submicrometer spheres. Advanced Functional Materials 2005, 15(6), 1036-1040.
    45. N. Kawahashi, C. Persson, E. Matijevic, Zirconium compounds as coatings on polystyrene latex and as hollow spheres. Journal of Materials Chemistry 1991, 1(4), 577-582.
    46. Y. D. Xia, R. Mokaya, Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells. Journal of Materials Chemistry 2005, 15(30), 3126-3131.
    47. H. P. Hentze, S. R. Raghavan, C. A. Mckelvey, E. W. Kaler, Silica hollow spheres by templating ofcatanionic vesicles. Langmuir 2003, 19(4), 1069-1074.
    48. C. E. Fowler, D. Khushalani, S. Mann, Interfacial synthesis of hollow microspheres of mesostructured silica. Chemical Communications 2001, 19, 2028-2029.
    49. J. X. Huang, Y. Xie, B. Li, Y. Liu, Y. T. Qian, S. Y. Zhang, In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres. Advanced Materials 2000, 12(11), 808-811.
    50. R. S. Yuan, X. Z. Fu, X. C. Wang, P. Liu, L. Wu, Y. M. Xu, X. X. Wang, Z. Y. Wang, Template synthesis of hollow metal oxide fibers with hierarchical architecture. Chemistry of Materials 2006, 18(19), 4700-4705.
    51. J. H. Sm?tt, C. Weidenthaler, J. B. Rosenholm, M. Lindén, Hierarchically porous metal oxide monoliths prepared by the nanocasting route. Chemistry of Materials 2006, 18(6), 1443-1450.
    52. Z. Guo, J. Y. Liu, Y. Jia, X. Chen, F. L. Meng, M. Q. Li, J. H. Liu, Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres. Nanotechnology 2008, 19(34), 345704.
    53. N. Wang, Y. Gao, J. Gong, X. Y. Ma, X. L. Zhang, Y. H. Guo, L. Y. Qu, Synthesis of manganese oxide hollow urchins with a reactive template of carbon spheres. European Journal of Inorganic Chemistry 2008, 24, 3827-3832.
    54. Q. Gong, X. F. Qian, X. D. Ma, Z. K. Zhu, Large-scale fabrication of novel hierarchical 3D CaMoO4 and SrMoO4 mesocrystals via a microemulsion-mediated route. Crystal Growth & Design 2006, 6(8), 1821-1825.
    55. Q. Gong, X. F. Qian, H. L. Cao, W. M. Du, X. D. Ma, M. S. Mo, Novel shape evolution of BaMoO4 microcrystals. Journal of Physical Chemistry B 2006, 110(39), 19295-19299.
    56. N. Wang, X. Cao, L. Guo, Facile one-pot solution phase synthesis of SnO2 nanotubes. Journal of Physical Chemistry C 2008, 112(33), 12616-12622.
    57. S. Lee, D. F. Shantz, Zeolite growth in nonionic microemulsions: synthesis of hierarchically structured zeolite particles. Chemistry of Materials 2005, 17(2), 409-417.
    58. J. Yang, C. K. Lin, Z. L. Wang, J. Lin, In(OH)3 and In2O3 nanorod bundles and spheres:microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorganic Chemistry 2006, 45(22), 8973-8979.
    59. H. W. Zhang, X. Zhang, H. Y. Li, Z. K. Qu, S. Fan, M. yan, Hierarchical growth of Cu2O double tower-tip-like nanostructures in water/oil microemulsion. Crystal Growth & Design 2007, 7(4), 820-824.
    60. X. L. Gou, F. Y. Cheng, Y. H. Shi, L. Zhang, S. J. Peng, J. Chen, P. W. Shen, Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. Journal of the American Chemical Society 2006, 128(22), 7222-7229.
    61. Y. S. Han, M. Fuji, D. Shchukin, H. M?hwald, M. Takahashi, A new model for the Synthesis of hollow particles via the bubble templating method. Crystal Growth & Design 2009, 9(8), 3771-3775.
    62. X. K. Cheng, Q. J. He, J. Q. Li, Z. L. Huang, R. A. Chi, Control of pore size of the bubble-template porous carbonated hydroxyapatite microsphere by adjustable pressure. Crystal Growth & Design 2009, 9(6), 2770-2775.
    63. Y. C. Qiu, W. Chen, S. H. Yang, B. Zhang, X. X. Zhang, Y. C. Zhong, K. S. Wong, Hierarchical hollow spheres of ZnO and Zn1-xCoxO: directed assembly and room-temperature ferromagnetism. Crystal Growth & Design 2010, 10(1), 177-183.
    64. Z. C. Wu, M. Zhang, K. Yu, S. D. Zhang, Y. Xie, Self-assembled double-shelled ferrihydrite hollow spheres with a tunable aperture. Chemistry-A European Journal 2008, 14(17), 5346-5352.
    65. Q. Peng, Y. J. Dong, Y. D. Li, ZnSe semiconductor hollow microspheres. Angewandte Chemie International Edition 2003, 42(26), 3027-3030.
    66. X. X. Li, Y. J. Xiong, Z. Q. Li, Y. Xie, Large-scale fabrication of TiO2 hierarchical hollow spheres Inorganic Chemistry 2006, 45(9), 3493-3495.
    67. C. Z. Wu, Y. Xie, L. Y. Lei, S. Q. Hu, C. Z. OuYang, Synthesis of new-phased VOOH hollow“Dandelions”and their application in lithium-ion batteries. Advanced Materials 2006, 18(13), 1727-1732.
    68. Y. Zhao, X. Zhu, Y. Y. Huang, S. X. Wang, J. L. Yang, Y. Xie, Synthesis, growth mechanism, and work function at highly oriented {001} surfaces of bismuth sulfide microbelts. Journal of PhysicalChemistry C 2007, 111(33), 12145-12148.
    69. N. Wang, X. Cao, D. S. Kong, W. M. Chen, L. Guo, C. P. Chen, Nickel chains assembled by hollow microspheres and their magnetic properties. Journal of Physical Chemistry C 2008, 112(17), 6613-6619.
    70. D. B. Kuang, T. Brezesinski, B. Smarsly, Hierarchical porous silica materials with a trimodal pore system using surfactant templates. Journal of the American Chemical Society 2004, 126(34), 10534-10535.
    71. X. H. Guo, Y. H. Deng, B. Tu, D. Y. Zhao, Facile synthesis of hierarchically mesoporous silica particles with controllable cavity in their surfaces. Langmuir 2010, 26(2), 702-708.
    72. X. Gu, C. L. Li, X. H. Liu, J. W. Ren, Y. Q. Wang, Y. L. Guo, Y. Guo, G. Z. Lu, Synthesis of nanosized multilayered silica vesicles with high hydrothermal stability. Journal of Physical Chemistry C 2009, 113(16), 6472-6479.
    73. Y. G. Sun, Y. N. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176-2179.
    74. Y. D. Yin, R. M. Rioux, C. K. Erdonmez, et al., Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 2004 304, 711-714.
    75. Q. Gong, X. F. Qian, P. L. Zhou, X. B. Yu, W. M. Du, S. H. Xu, In situ sacrificial template approach to the synthesis of octahedral CdS microcages. Journal of Physical Chemistry C 2007, 111(5), 1935-1940.
    76. J. B. Fei, Y. Cui, X. H. Yan, W. Qi, Y. Yang, K. W. Wang, Q. He, J. B. Li, Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Advanced Materials 2008, 20(3), 452-456.
    77. J. Xu, Y. B. Tang, W. X. Zhang, C. S. Lee, Z. H. Yang, S. T. Lee, Fabrication of architectures with dual hollow structures: arrays of Cu2O nanotubes organized by hollow nanospheres. Crystal Growth & Design 2009, 9(10), 4524-4528.
    78. L. Ye, C. Z. Wu, W. Guo, Y. Xie, MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties. Chemical Communications2006, 45, 4738-4740.
    79.张立德,牟季美,纳米结构自组装和分子自组装体系,物理,1999,28(1),22-26.
    80. J. Wang, Y. J. Wu, Y. J. Zhu, Fabrication of complex of Fe3O4 nanorods by magnetic-field-assisted sovothermal process. Materials Chemistry and Physics 2007, 106(1), 1-4.
    81. H. L. Hu, K. Sugawara, Magnetic-field-assisted synthesis of Ni nanostructures: selective control of particle shape. Chemical Physics Letters 2009, 477(1-3), 184-188.
    82. H. Li, S. J. Liao, Preparation of large Co nanosheets with enhanced coercivity by a Magnetic-field-assisted solvothermal approach free of surfactants, complexants or templates. Journal of Magnetism and Magnetic Materials 2009, 321(17), 2566-2570.
    83. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, R. G. Osifchin, Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 1996, 273, 1690-1693.
    84. V. Patil, K. S. Mayya, S. D. Pradhan, M. Sastry, Evidence for novel interdigitated bilayer formation of fatty acids during three-dimensional self-assembly on silver colloidal particles. Journal of the American Chemical Society 1997, 119(39), 9281-9282.
    85. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607-609.
    86. A. K. Boal, V. M. Rotello, Fabrication and self-optimization of multivalent receptors on nanoparticle scaffolds. Journal of the American Chemical Society 2000, 122(4), 734-735.
    87. F. Caruso, A. S. Susha, M. Giersig, H. M?hwald, Magnetic core-shell Particles: preparation of magnetite multilayers on polymer latex microspheres. Advanced Materials 1999, 11(11), 950-953.
    88. H. C?lfen, S. Mann, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie International Edition 2003, 42(21), 2350-2365.
    89. Y. Xing, H. J. Zhang, S. Y. Song, J. Feng, Y. Q. Lei, L. J. Zhao, M. Y. Lia, Hydrothermal synthesis and photoluminescent properties of stacked indium sulfide superstructures. Chemical Communications 2008, 12, 1476-1478.
    90. Y. J. Zhang, S. W. Or, X. L. Wang, T. Y. Cui, W. B. Cui, Y. Zhang, Z. D. Zhang, Hydrothermalsynthesis of three-dimensional hierarchical CuO butterfly-like architectures. European Journal of Inorganic Chemistry 2009, 1, 168-173.
    91. L. S. Zhang, W. Z. Wang, L. Zhou, H. L. Xu, Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small 2007, 3(9), 1618-1625.
    92. Y. Y. Li, J. P. Liu, X. T. Huang, G. Y. Li, Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Crystal Growth & Design 2007, 7(7), 1350-1355.
    93. J. Yang, C. X. Li, Z. W. Quan, C. M. Zhang, P. P. Yang, Y. Y. Li, C. C. Yu, J. Lin, Self-assembled
    3D flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures: ethylene glycol-mediated hydrothermal synthesis and luminescent properties. Journal of Physical Chemistry C 2008, 112(33), 12777-12785.
    94. N. Zhang, W. B. Bu, Y. P. Xu, D. Y. Jiang, J. L. Shi, Self-assembled flowerlike europium-doped lanthanide molybdate microarchitectures and their photoluminescence properties. Journal of Physical Chemistry C 2007, 111(13), 5014-5019.
    95. L. W. Qian, J. Zhu, Z. Chen, Y. C. Gui, Q. Gong, Y. P. Yuan, J. T. Zai, X. F. Qian, Self-assembled heavy lanthanide orthovanadate architecture with controlled dimensionality and morphology. Chemistry-A European Journal 2009, 15(5), 1233-1240.
    96. M. Yang, H. P. You, Y. H. Song, Y. J. Huang, G. Jia, K. Liu, Y. H. Zheng, L. H. Zhang, H. J. Zhang, Synthesis and luminescence properties of sheaflike TbPO4 hierarchical architectures with different phase Structures. Journal of Physical Chemistry C 2009, 113(47), 20173-20177.
    97. W. Y. Yin, X. Chen, M. H. Cao, C. W. Hu, B. Q. Wei,α-Fe2O3 nanocrystals: controllable SSA-assisted hydrothermal synthesis, growth mechanism, and magnetic properties. Journal of Physical Chemistry C 2009, 113(36), 15897-15903.
    98. F. Zuo, S. Yan, B. Zhang, Y. Zhao, Y. Xie, L-cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures. Journal of Physical Chemistry C 2008, 112(8), 2831-2835.
    99. J. Pan, S. L. Xiong. B. J. Xi, J. F. Li, J. Y. Li, H. Y. Zhou, Y. T. Qian, Tartatric acid and L-cysteine synergistic-assisted synthesis of antimony trisulfide hierarchical structures in aqueous solution. European Journal of Inorganic Chemistry 2009, 35, 5302-5306.
    100. S. K. Im, Y. T. Lee, B. Wiley, Y. Xia, Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodisperity. Angewandte Chemie International Edition 2005, 44(14), 2154-2157.
    101. T. Herricks, J. Chen, Y. Xia, Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Letters 2004, 4(12), 2367-2371.
    102. T. Xia, Q. Li, X. D. Liu, J. Meng, X. Q. Cao, Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. Journal of Physical Chemistry B 2006, 110(5), 2006-2012.
    103. M. H. Kim, B. Lim, E. P. Lee, Y. Xia, Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology. Journal of Materials Chemistry 2008, 18(5), 4069-4093.
    104. P. Yu, X. Zhang, D. L. Wang, L. Wang, Y. W. Ma, Shape-Controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Crystal Growth & Design 2009, 9(1) 528-533.
    105. Z. J. Gu, T. Y. Zhai, B. F. Gao, X. H. Sheng, Y. B. Wang, H. B. Fu, Y. Ma, J. N. Yao, Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. Journal of Physical Chemistry B 2006, 110(47), 23829-23836.
    106. P. Umek, A. Gloter, M. Pregelj, R. Dominko, M, Jagodi?, Z. Jagli?i?, A. Zimina, M. Brzhezinskaya, A. Poto?nik, C. Filipi?, A. Levstik, D. Ar?on, Synthesis of 3D hierarchical self-assembled microstructures formed fromγ-MnO2 nanotubes and their conducting and magnetic properties. Journal of Physical Chemistry C 2009, 113(33), 14798-14803.
    1. H. C?lfen, S. Mann, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie International Edition 2003, 42(21), 2350-2365.
    2. G. J. de A. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews 2002, 102(11), 4093-4138.
    3. Z-R. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. F. Xu, Hierarchical and self-similar growth of self-assembled crystals. Angewandte Chemie International Edition 2003, 42(4), 413-417.
    4. X. D. Chen, A. L. Rogach, D. V. Talapin, H. Fuchs, L. F. Chi, Hierarchical luminescence patterning based on multiscaled self-assembly. Journal of the American Chemical Society 2006, 128(30), 9592-9593.
    5. (a) H. Spillmann, A. Dmitriev, N. Lin, P. Messina, J. V. Barth, K. Kern, Hierarchical assembly of two-dimensional homochiral nanocavity arrays. Journal of the American Chemical Society 2003, 125(35), 10725-10728; (b) J. F. Wang, C. K. Tsung, W. B. Hong, Y. Y. Wu, J. Tang, G. D. Stucky, Synthesis of mesoporous silica nanofibers with controlled pore architectures. Chemistry of Materials 2004, 16(24), 5169-5181.
    6. (a) D. Moore, Y. Ding, Z. L. Wang, Hierarchical structured nanohelices of ZnS. Angewandte Chemie International Edition 2006, 45(31), 5150-5154; (b) J. B. Gao, A. P. Yu, M. E. Itkis, E. Bekyarova, B. Zhao, S. Niyogi, R. C. Haddon, Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. Journal of the American Chemical Society 2004, 126(51), 16698-16699; (c) D. B. Kuang, T. Brezesinski, B. Smarsly, Hierarchical porous silica materials with a trimodal pore system using surfactant templates. Journal of the American Chemical Society 2004, 126(34), 10534-10535.
    7. (a) S. J. Hurst, E. K. Payne, L. D. Qin, C. A. Mirkin, Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angewandte Chemie International Edition 2006, 45(17), 2672-2692; (b) M. C. Gutierrez, M. Jobbagy, N. Rapun, M. L. Ferrer, F. D. Monte, A new techniquefor controllably producing branched or encapsulating nanostructures in a vapor-liquid-solid process. Advanced Materials 2007, 19(3), 386-390.
    8. D. H. Wang, R. Kou, Z. L. Yang, J. B. He, Z. Z. Yang, Y. F. Lu, Hierachical mesoporous silica wires by confined assembly. Chemical Communications 2005, 141, 2, 166-167.
    9. J. H. Sm?tt, S. Schunk, M. Lindén, Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chemistry of Material 2003, 15(12), 2354-2361.
    10. W. A. Lopes, H. M. Jaeger, Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 2001, 414, 735-738.
    11. D. H. Wang, H. M. Luo, R. Kou, M. P. Gil, S. G. Xiao, V. O. Golub, Z. Z. Yang, C. J. Brinker, Y. F. Lu, A general route to macroscopic hierarchical 3D nanowire networks. Angewandte Chemie International Edition 2004, 43(45), 6169-6173.
    12. (a) Y. Vasquez, A. K. Sra, R. E. Schaak, One-Pot Synthesis of hollow superparamagnetic CoPt nanospheres. Journal of the American Chemical Society 2005, 127(36), 12504-12505; (b) B. D. Korth, P. Keng, I. Shim, S. E. Bowels, C. B. Tang, T. Kowalewski, K. W. Nebesny, J. Pyun, Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. Journal of the American Chemical Society 2006, 128(20), 6562-6563; (c) J. H. Gao, B. Zhang, X. X. Zhang, B. Xu, Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide. Angewandte Chemie International Edition 2006, 45(8), 1220-1223; (d) J. Zeng, J. L. Huang, W. Lu, X. P. Wang, B. Wang, S. Y. Zhang, J. G. Hou, Necklace-like noble-Metal hollow nanoparticle chains: synthesis and tunable optical properties. Advanced Materials 2007, 19(16), 2172-2176.
    13. (a) Q, Peng, Y. J. Dong, Y. D. Li, ZnSe semiconductor hollow microspheres. Angewandte Chemie International Edition 2003, 42(26), 3027-3030; (b) X. X. Li, Y. J. Xiong, Z. Q. Li, Y. Xie, Large-Scale Fabrication of TiO2 Hierarchical Hollow Spheres. Inorganic Chemistry 2006, 45(9), 3493-3495.
    14. (a) H. Z. Zhong, Y. C. Li, Y. Zhou, C. H. Yang, Y. F. Li, Controlled synthesis of 3D nanostructured Cd4Cl3(OH)5 templates and their transformation into Cd(OH)2 and CdS nanomaterials. Nanotechnology 2006, 17(3) 772-777; (b) W. D. Shi, C. Wang, H. S. Wang, H. J. Zhang, Hexagonalnanodisks of cadmium hydroxide and oxide with nanoporous structure. Crystal Growth & Design 2006, 6(4) 915-918; (c) J. J. Miao, R. L. Fu, J. M. Zhu, K. Xu, J. J. Zhu, H. Y. Chen, Fabrication of Cd(OH)2 nanorings by ultrasonic chiselling on Cd(OH)2 nanoplates. Chemical Communications 2006, 28, 3013-3015; (d) H. Zhang, X. Y. Ma, Y. J. Ji, J. Xu, D. R. Yang, Synthesis of cadmium hydroxide nanoflake and nanowisker by hydrothermal method. Materials Letters 2005, 59(1), 56-58.
    15. (a) S. Motupally, M. Jain, V. Srmivasan, J. W. Waidner, The role of oxygen at the second discharge Plateau of nickel hydroxide. Journal of the Electrochemical Society 1998, 145(1), 34-39; (b) D. Singh, Characteristics and effects ofγ-NiOOH on cell performance and a method to quantify it in nickel electrodes. Journal of the Electrochemical Society 1998, 145(1), 116-120.
    16. (a) M. F. Ye, H. Z. Zhong, W. J. Zheng, R. Li, Y. F. Li, Ultralong cadmium hydroxide nanowires: synthesis, characterization, and transformation into CdO nanostrands. Langmuir 2007, 23(17), 9064-9068; (b) I. Ichinose, K. Kurashima, T. Kunitake, Spontaneous formation of cadmium hydroxide nanostrands in water. Journal of the American Chemical Society 2004, 126(23), 7162-7163; (c) Y. H. Luo, J. G. Huang, I. Ichinose, Bundle-like assemblies of cadmium hydroxide nanostrands and anionic dyes. Journal of the American Chemical Society 2005, 127(23), 8296-8297; (d) I. Ichinose, J. G. Huang, Y. H. Luo, Electrostatic trapping of double-stranded DNA by using cadmium hydroxide nanostrands. Nano Letters 2005, 5(1), 97-100.
    17. C. Hanch, T. Fujita, A study of the decomposition of 3,3,3-triphenylpropanoyl peroxide. Journal of the American Chemical Society 1964, 86(6), 1616-1619.
    18. P. Ghosh, Coalescence of air bubbles at air-water interface. Chemical Engineering Research and Design 2004, 82(7), 849-854.
    19. J. Rudloff, H. C?lfen, Superstructures of temporarily stabilized nanocrystalline CaCO3 particles: morphological control via water surface tension variation. Langmuir 2004, 20(3), 991-996.
    20. Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, T. P. Russell, Nanoparticle assembly and transport at liquid-liquid interfaces. Science 2003, 299, 226-229.
    21. K. Malysa, M. Krasawska, M. Krzan, Influence of surface active substances on bubble motion and collision with various interfaces. Advances in Colloid and Interface Science 2005, 114-115, 205-225.
    22. Z. Q. Li, Y. Ding, Y. J. Xiong, Q. Yang, Y. Xie, One-step solution-based catalytic route to fabricate novelα-MnO2 hierarchical structures on a large scale. Chemical Communications 2005, 7, 918-920.
    23. H. X. Dong, Z. H. Chen, L. X. Sun, L. Zhou, Y. J. Ling, C. Z. Yu, H. H. Tan, C. Jagadish, X. C. Shen, Nanosheets-based rhombohedral In2O3 3D hierarchical microspheres: synthesis, growth mechanism, and optical properties. Journal of Physical Chemistry C 2009, 113(24), 10511-10516.
    24. Y. Wang, Q. S. Zhu, H. G. Zhang, Fabrication of Ni(OH)2 and NiO hollow spheres by a facile template-free process Chemical Communications 2005, 41, 5231-5233.
    25. M. W. Xu, L. B. Kong, W. J. Zhou, H. L. Li, Hydrothermal synthesis and pseudocapacitance properties ofα-MnO2 hollow spheres and hollow urchins. Journal of Physical Chemistry C 2007, 111(51), 19141-19147.
    26. H. G. Zhang, Q. S. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Advanced Functional Materials 2007, 17(15), 2766-2771.
    27. X. F. Song, L. Gao, Facile Synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties. Journal of Physical Chemistry C 2008, 112(39), 15299-15305.
    28. D. Chen, J. H. Ye, Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Advanced Functional Materials 2008, 18(13), 1922-1928.
    29. S. W. Cao, Y. J. Zhu, M. Y. Ma, L. Li, L. Zhang, Hierarchically nanostructured magnetic hollow spheres of Fe3O4 andγ-Fe2O3: preparation and potential application in drug delivery. Journal of Physical Chemistry C 2008, 112(6), 1851-1856.
    30. A. M. Cao, J. S. Hu, H. P. Liang, L. J. Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angewandte Chemie International Edition 2005, 44(28), 4391-4395.
    31. X. W. Lou, L. A. Archer, Z. C. Yang, Hollow micro-/nanostructures: synthesis and applications. Advanced Materials 2008, 20(21), 3987-4019.
    32. V. Salgueirino-Maceira, M. Spasova, M. Farle, Water-stable, magnetic silica-cobalt/cobaltoxide-silica multishell submicrometer spheres. Advanced Functional Materials 2005, 15(6), 1036-1040.
    33. N. Kawahashi, C. Persson, E. Matijevic, Zirconium compounds as coatings on polystyrene latex and as hollow spheres. Journal of Materials Chemistry 1991, 1(4), 577-582.
    34. Y. D. Xia, R. Mokaya, Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells. Journal of Materials Chemistry 2005, 15 (30), 3126-3131.
    35. H. P. Hentze, S. R. Raghavan, C. A. Mckelvey, E. W. Kaler, Silica hollow spheres by templating of catanionic vesicles. Langmuir 2003, 19(4), 1069-1074.
    36. C. E. Fowler, D. Khushalani, S. Mann, Interfacial synthesis of hollow microspheres of mesostructured silica. Chemical Communications 2001, 19, 2028-2029.
    37. J. X. Huang, Y. Xie, B. Li, Y. Liu, Y. T. Qian, S. Y. Zhang, In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres. Advanced Materials 2000, 12(11), 808-811.
    38. Z. C. Wu, M. Zhang, K. Yu, S. D. Zhang, Y. Xie, Self-assembled double-shelled ferrihydrite hollow spheres with a tunable aperture. Chemistry-A European Journal 2008, 14(17), 5346-5352.
    39. P. Umek, A. Gloter, M. Pregelj, R. Dominko, M. Jagodi?, Zvonko Jagli?i?, A. Zimina, M. Brzhezinskaya, A. Poto?nik, C. Filipi?, A. Levstik, D. Ar?on, Synthesis of 3D hierarchical self-assembled microstructures formed fromγ-MnO2 nanotubes and their conducting and magnetic properties. Journal of Physical Chemistry C 2009, 113(33), 14798-14803.
    40. L. Du, H. Y. Song, S. J. Liao, Tuning the morphology of mesoporous silica by using various template combinations. Applied Surface Science 2009, 255(23), 9365-9370.
    41. S. G. Zhang, L. Xu, H. C. Liu, Y. F. Zhao, Y. Zhang, Q. Y. Wang, Z. X. Yu, Z. M. Liu, A dual template method for synthesizing hollow silica spheres with mesoporous shells. Materials Letters 2009, 63(2), 258-259.
    42. X. Gu, C. L. Li, X. H. Liu, J. W. Ren, Y. Q. Wang, Y. L. Guo, Y. Guo, G. Z. Lu, Synthesis of nanosized multilayered silica vesicles with high hydrothermal stability. Journal of Physical ChemistryC 2009, 113(16), 6472-6479.
    43. H. M. Lin, G. S. Zhu, J. J. Xing, B. Gao, S. L. Qiu, Polymer-mesoporous silica Materials templated with an oppositely charged surfactant/polymer system for drug delivery. Langmuir 2009, 25(17), 10159-10164.
    44. T. D. Ewers, A. K. Sra, B. C. Norris, R. E. Cable, C. H. Cheng, D. F. Shantz, R. E. Schaak, Spontaneous hierarchical assembly of rhodium nanoparticles into spherical aggregates and superlattices. Chemistry of Material 2005, 17(3), 514-520.
    45. H. G. Yang, H. C. Zeng, Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites. Angewandte Chemie International Edition 2004, 43(44), 5930-5933.
    46. M. H. Cao, C. W. Hu, Y. H. Wang, Y. H. Guo, C. X. Guo, E. B. Wang, A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chemical Communications 2003, 15, 1884-1885.
    47. J. P. Liu, X. T. Huang, Y. Y. Li, K. M. Sulieman, X. He, F. L. Sun, Self-assembled CuO monocrystalline nanoarchitectures with controlled dimensionality and morphology. Crystal Growth & Design 2006, 6(7), 1690-1696.
    48. Y. Chang, H. C. Zeng, Controlled synthesis and self-Assembly of single-crystalline CuO nanorods and nanoribbons. Crystal Growth & Design 2004, 4(2), 397-402.
    49. X. G. Wen, Y. T. Xie, C. L. Choi, K. C. Wan, X. Y. Li, S. H. Yang, Copper-based nanowire materials: templated syntheses, characterizations, and applications. Langmuir 2005, 21(10), 4729-4737.
    50. G. F. Zou, H. Li, D. W. Zhang, K. Xiong, C. Dong, Y. T. Qian, Well-aligned arrays of CuO nanoplatelets. Journal of Physical Chemistry B 2006, 110(4), 1632-1637.
    51. H. W. Hou, Y. Xie, Q. Li, Large-scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons. Crystal Growth & Design 2005, 5(1), 201-205.
    52. S. Y. Gao, S. X. Yang, J. Shu, S. X. Zhang, Z. D. Li, K. Jiang, Green fabrication of hierarchical CuO hollow micro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries. Journal of Physical Chemistry C 2008, 112(49), 19324-19328.
    53. B. Liu, H. C. Zeng, Mesoscale organization of CuO nanoribbons: formation of“dandelions”. Journal of the American Chemical Society 2004, 126(26), 8124-8125.
    54. C. Z. Wu, Y. Xie, L. Y. Lei, S. Q. Hu, C. Z. Yang, Synthesis of new-phased VOOH hollow“dandelions”and their application in lithium-ion batteries. Advanced Materials 2006, 18(13), 1727-1732.
    55. D. Fan, P. J. Thomas, P. O’Brien, Pyramidal lead sulfide crystallites with high energy {113} facets. Journal of the American Chemical Society 2008, 130(33), 10892-10894.
    56. S. N. Mlondo, P. J. Thomas, P. O’Brien, Facile deposition of nanodimensional ceria particles and their assembly into conformal films at liquid-liquid interface with a phase transfer catalyst. Journal of the American Chemical Society 2009, 131(17), 6072-6073.
    57. Y. Lin, H. Skaff, A. Boker, A. D. Dinsmore, T. Emrick, T. P. Russell, Ultrathin cross-linked nanoparticle membranes. Journal of the American Chemical Society 2003, 125(42), 12690-12691.
    58. U. K. Gautam, M. Ghosh, C. N. R. Rao, Template-free chemical route to ultrathin single-crystalline films of CuS and CuO employing the liquid-liquid interface. Langmuir 2004, 20(25), 10775-10778.
    59 Z. Zhuang, Q. Peng, B. Zhang, Y. Li, Controllable Synthesis of Cu2S Nanocrystals and Their Assembly into a Superlattice. Journal of the American Chemical Society 2008, 130(32), 10482-10483.
    60. H. Xu, F. L. Jia, Z. H. Ai, L. Z. Zhang, A general soft interface platform for the growth and assembly of hierarchical rutile TiO2 nanorods spheres. Crystal Growth & Design 2007, 7(7), 1216-1219.
    1. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials 2003, 15(5), 353-389.
    2. X. J. Xu, Y. Liao, G. Yu, H. You, C. Di, Z. Su, D. Ma, Q. Wang, S. Li, S. Wang, J. Ye, Y. Liu, Charge carrier transporting, photoluminescent, and electroluminescent properties of zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex. Chemistry of Material 2007, 19(7), 1740-1748.
    3. X. Su, J. W. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, A. A. Berlin, Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Letters 2005, 5(1), 49-54.
    4. X. J. Zhang, X. H. Zhang, K. Zou, C. S. Lee, S. T. Lee, Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules. Journal of the American Chemical Society 2007, 129(12), 3527-3532.
    5. H. B. Fu, B. H. Loo, D. B. Xiao, R. M. Xie, X. H. Ji, J. N. Yao, B. W. Zhang, Q. L. Zhang, Multiple emissions from 1,3-Diphenyl-5-pyrenyl-2-pyrazoline nanoparticles: evolution from molecular to nanoscale to bulk materials. Angewandte Chemie International Edition 2002, 41(6), 962-967.
    6. D. B. Xiao, L. Xi, W. S. Yang, H. B. Fu, Z. G. Shuai, Y. Fang, J. N. Yao, Size-tunable emission from 1,3-Diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. Journal of the American Chemical Society 2003, 125(22), 6740-6745.
    7. V. V. Volkov, T. Asahi, H. Masuhara, A. Masuhara, H. Kasai, H. Oikawa, H. Nakanishi, Size-dependent optical properties of polydiacetylene nanocrystal. Journal of Physical Chemistry B 2004, 108(23), 7674-7680.
    8. H. B. Liu, Y. L. Li, S. Q. Xiao, H. Y. Gan, T. G. Jiu, H. M. Li, L. Jiang, D. B. Zhu, D. P. Yu, B. Xiang, Y. F. Chen, Synthesis of organic one-dimensional nanomaterials by solid-phase reaction. Journal of the American Chemical Society 2003, 125(36), 10794-10795.
    9. Y. L. Liu, H. X. Li, D. Y. Tu, Z. Y. Ji, C. S. Wang, Q. X. Tang, M. Liu, W. P. Hu, Y. Q. Liu, D. B. Zhu, Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays. Journal of the American Chemical Society 2006, 128(39), 12917-12922.
    10. H. B. Fu, J. N. Yao, Size effects on the optical properties of organic nanoparticles. Journal of the American Chemical Society 2001, 123(7), 1434-1439.
    11. L. N. Sun, Q. R. Guo, X. L. Wu, S. J. Luo, W. L. Pan, K. L. Huang, J. F. Lu, L. Ren, M. H. Cao, C. W. Hu, Synthesis and photoluminescent properties of strontium tungstate nanostructures. Journal of Physical Chemistry C 2007, 111(2), 532-537.
    12. H. W. Zhang, X. Zhang, H. Y. Li, Z. K. Qu, S. Fan, M. Y. Ji, Hierarchical growth of Cu2O double tower-tip-like nanostructures in water/oil microemulsion. Crystal Growth & Design 2007, 7(4), 820-824.
    13. X. J. Zhang, X. H. Zhang, W. S. Shi, X. M. Meng, C. S. Lee, S. T. Lee, Morphology-controllable synthesis of pyrene nanostructures and its morphology dependence of optical properties. Journal of Physical Chemistry B 2005, 109(40), 18777-18780.
    14. T. K. Sharma, S. Kumar, K. C. Rustagi, Frequency and intensity dependence of the sub-band-gap features observed in the surface photovoltage spectrum of semi-insulating GaAs. Journal of Applied Physics 2002, 92(10), 5959-5965.
    15. V. Donchev, K. Kirilov, Ts. Ivanov, K. Germanova, Surface photovoltage phase spectroscopy-a handy tool for characterisation of bulk semiconductors and nanostructures. Materials Science and Engineering B 2006, 129(1-3), 186-192.
    16. J. Zhang, D. J. Wang, T. S. Shi, B. H. Wang, J. Z. Sun, T. J. Li, Photovoltaic properties of porphyrin solid films with electric-field induction. Thin Solid Films 1996, 284-285, 596-599.
    17. T. F. Xie, D. J. Wang, L. J. Zhu, C. Wang, T. J. Li, Application of surface photovoltage technique to the determination of conduction types of azo pigment films. Journal of Physical Chemistry B 2000, 104(34), 8177-8181.
    18. Z. X. Zhao, C. T. Poon, W. K. Wong, W. Y. Wong, H. L. Tam, K. W. Cheah, T. F. Xie, D. J. Wang, Synthesis, photophysical characterization, and surface photovoltage spectra of windmill-shaped phthalocyanine-porphyrin heterodimers and heteropentamers. European Journal of Inorganic Chemistry 2008, 2008(1), 119-128.
    19. L. Q. Jing, S. D. Li, S. Song, L. P. Xue, H. G. Fu, Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity. Solar energy materials and solar Cells 2008, 92(9), 1030-1036.
    20. Y. H. Lin, D. J. Wang, Q. D. Zhao, M. Yang, Q. L. Zhang, A Study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy. Journal of Physical Chemistry B 2004, 108(10), 3202-3206.
    21. L. L. Merritt, R. T. Cady, B. W. Mundy, The crystal structure of zinc 8-hydroxyquinolinate dehydrate. Acta Crystallographica 1954, 7, 473-476.
    22. B. S. Xu, Y. Y. Hao, H. Wang, H. F. Zhou, X. G. Liu, M. W. Chen, The effects of crystal structure on optical absorption/photoluminescence of bis(8-hydroxyquinoline)zinc. Solid State Communications 2005, 136(6), 318-322.
    23. W. Chen, Q. Peng, Y. D. Li, Luminescent bis-(8-hydroxyquinoline) cadmium complex nanorods. Crystal Growth & Design 2008, 8(2), 564-567.
    24. T. Gavrilko, R. Fedorovich, G. Dovbeshko, A. Marchenko, A. Naumovets, V. Nechytaylo, G, Puchkovska, L. Viduta, J. Baran, H. Ratajczak, FTIR spectroscopic and STM studies of vacuum deposited aluminium (III) 8-hydroxyquinoline thin films. Journal of Molecular Structure 2004, 704(1-3), 163-168.
    25. N. Khaorapaponga, K. M. Ogawab, In situ formation of bis(8-hydroxyquinoline) zinc(II) complex in the interlayer spaces of smectites by solid–solid reactions. Journal of Physics and Chemistry of Solids 2008, 69(4), 941-948.
    26. F. Kim, S. Kwan, J. Akana, P. D. Yang, Langmuir-blodgett nanorod assembly. Journal of the American Chemical Society 2001, 123(18), 4360-4361.
    27. V. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos, Synthesis of hcp-Co nanodisks. Journal of the American Chemical Society 2002, 124(43), 12874-12880.
    28. F. Li, Y. Ding, P. X. Gao, X. Q. Xin, Z. L. Wang, Single-crystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism. Angewandte Chemie International Edition 2004, 43(39), 5238-5242.
    29. Y. S. Zhao, W. S. Yang, D. B. Xiao, X. H. Sheng, X. Yang, Z. G. Shuai, Y. Luo, J. N. Yao, Single crystalline submicrotubes from small organic molecules. Chemistry of Material 2005, 17(25), 6430-6435.
    30. K. S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, Designing PbSe nanowires and nanorings through Oriented Attachment of nanoparticles. Journal of the American Chemical Society 2005, 127(19), 7140-7147.
    31. B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews 2004, 104(9), 3893-3946.
    32. X. Xia, J. Lu, H. Li, S. Yao, L. Wang, Zn(II) based mixed complex with 8-hydroxyquinoline end group functionalized PSt and the study of fluorescent properties. Optical Materials 2005, 27(8), 1350-1357.
    33. T. A. Hopkins, K. Meerholz, S. Shaheen, M. L. Anderson, A. Schm-idt, B. Kippelen, A. B. Padias, H. K. Hall, J. N. Peyghambarian, N. R. Armstrong, Substituted aluminum and zinc quinolates with blue-shifted absorbance/luminescence bands: synthesis and spectroscopic, photoluminescence, and electroluminescence characterization. Chemistry of Material 1996, 8(2) 344-351.
    1. (a) D. E. Williams, Semiconducting oxides as gas-sensitive resistors. Sensors and Actuators B 1999, 57(1-3), 1-16; (b) N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to? Sensors and Actuators B 2007, 121(1), 18-35.
    2. E. Comini, Metal oxide nano-crystals for gas sensing. Analytica Chimica Acta 2006, 568(1-2), 28-40.
    3. (a) N. Yamazoe, Toward innovations of gas sensor technology. Sensors and Actuators B 2005, 108(1-2), 2-14; (b) I. Simona, N. Ba?rsanb, M. Bauera, U. Weimar, Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sensors and Actuators B 2001, 73(1), 1-26.
    4. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sensors and Actuators B 1991, 5(1-4), 7-19.
    5. (a) L. Chen, S. C. Tsang, Ag doped WO3-based powder sensor for the detection of NO gas in air. Sensors and Actuators B 2003, 89(1-2), 68-75; (b) N. Du, H. Zhang, X. Y. Ma, D. R. Yang, Homogeneous coating of Au and SnO2 nanocrystals on carbon nanotubes via layer-by-layer assembly: a new ternary hybrid for a room-temperature CO gas sensor. Chemical Communications 2008, 46, 6182-6184; (c) M. Matsumiya, W. Shin, N. Izu, I. Matsubara, N. Murayama, S. Kanzaki, Thermoelectric CO gas sensor using thin-film catalyst of Au and Co3O4. Journal of the Electrochemical Society 2004, 151(1), 7-10.
    6. J. T. Zhang, J. F. Liu, Q. Peng, X. Wang, Y. D. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chemistry of Materials 2006, 18(4), 867-871.
    7. X. Q. Wang, M. F. Zhang, J. Y. Liu, T. Luo, Y. T. Qian, Shape- and phase-controlled synthesis of In2O3 with various morphologies and their gas-sensing properties. Sensors and Actuators B 2009, 137(1), 103-110.
    8. (a) X. W. Zhao, U. J. Lee, K. H. Lee, Synthesis of hierarchical carbon nanostructures functionalized with metal nanoparticles. Journal of Physical Chemistry C 2008, 112(26), 9539-9543; (b) L. Z. Zhang, J. C. Yu, A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalyticactivity. Chemical Communications. 2003, 16, 2078-2079; (c) D. Moore, Y. Ding, Z. L. Wang, Hierarchical Structured Nanohelices of ZnS. Angewandte Chemie International Edition 2006, 45(31), 5150-5154; (d) C. L. Yan, D. F. Xue, Morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide. Journal of Physical Chemistry B 2006, 110(23), 11076-11080; (e) N. Wang, X. Cao, L. Guo, Facile one-pot solution phase synthesis of SnO2 nanotubes. Journal of Physical Chemistry C 2008, 112(33), 12616-12622.
    9. C. L. Zhou, Y. Zhao, T. C. Jao, C. Wu, M. A. Winnik, Effect of concentration on the photoinduced aggregation of polymer nanoparticles. Journal of Physical Chemistry B 2002, 106(37), 9514-9521.
    10. B. P. Jia, L. Gao, Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field. Journal of Physical Chemistry C 2008, 112(3), 666-671.
    11. (a) Y. Zhao, Y. Xie, S. Yan, X. Zhu, Surfactant-assisted etching in biomimetic mineralization of ferric phosphate. Chemistry of Materials 2008, 20(12), 3959-3964; (b) B. Liu, H. C. Zeng, Salt-assisted deposition of SnO2 onα-MoO3 nanorods and fabrication of polycrystalline SnO2 nanotubes. Journal of Physical Chemistry B 2004, 108(19), 5867-5874; (c) Y. D. Yin, Y. Yu, B. Gates, Y. N. Xia, Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. Journal of the American Chemical Society 2001, 123(36), 8718-8729; (d) H. S. Qian, S. H. Yu, J. Y. Gong, L. B. Luo, L. F. Fei, High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22(8), 3830-3835.
    12. (a)V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, Fibre-optical features of a glass sponge. Nature 2003, 424, 899-900; (b) Y. Politi, T. Arad, E. Klein, S. Weiner, L. Addadi, Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase. Science 2004, 306, 1161-1164; (c) J. Aizenberg, G. J. Hendlen, Designing efficient microlens arrays: lessons from Nature. Journal of Materials Chemistry 2004, 14(14), 2066-2072; (d) J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, P. Fratzl, Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale. Science 2005, 309, 275-278.
    13. C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, J. Lin, Shape-controllable synthesis and upconversion Properties of lutetium fluoride (doped with Yb3+/Er3+) microcrystals by hydrothermal process. Journal of Physical Chemistry C 2008, 112(35), 13395-13404.
    14. C. L. Wang, H. Zhang, S. H. Xu, N. Lv, Y. Liu, M. J. Li, H. Z. Sun, J. H. Zhang, B. Yang, Sodium-citrate-assisted synthesis of aqueous CdTe nanocrystals: giving new insight into the effect of ligand shell. Journal of Physical Chemistry C 2009, 113(3), 827-833.
    15. F. Zuo, S. Yan, B. Zhang, Y. Zhao, Y. Xie, L-cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures. Journal of Physical Chemistry C 2008, 112(8), 2831-2835.
    16. (a) C. Li, D. Zhang, S. Han, X. Liu, T. Tang, C. Zhou, Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Advanced Materials 2003, 15(2), 143-146; (b) W. S. Seo, H. H. Jo, K. Lee, J. T. Park, Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Advanced Materials 2003, 15(10), 795-797; (c) Y. P. Fang, X. G. Wen, S. H. Yang, Hollow and tin-filled nanotubes of single-crystalline In(OH)3 grown by a solution-liquid-solid-solid route. Angewandte Chemie International Edition 2006, 45(28), 4655-4658.
    17. (a) L. Y. Chen, Z. D. Zhang, Biomolecule-assisted synthesis of In(OH)3 hollow spherical nanostructures constructed with well-aligned nanocubes and their conversion into C-In2O3. Journal of Physical Chemistry C 2008, 112(48), 18798-18803; (b) J. Yang, C. K. Lin, Z. L. Wang, J. Lin, Biomolecule-assisted synthesis of In(OH)3 hollow spherical nanostructures constructed with well-aligned nanocubes and their conversion into C-In2O3. Inorganic Chemistry 2006, 45(22), 8973-8979; (c) H. Zhu, X. L. Wang, Z. J. Wang, C. Yang, F. Yang, X. R. Yang, Self-assembled 3D microflowery In(OH)3 architecture and its conversion to In2O3. Journal of Physical Chemistry C 2008, 112(39), 15285-15292; (d) D. W. Chu, Y. P. Zeng, D. L. Jiang, J. Q. Xu, Tuning the phase and morphology of In2O3 nanocrystals via simple solution routes. Nanotechnology 2007, 18(43), 435605; (e) B. X. Li, Y. Xie, M. Jing, G. X. Rong, Y. C. Tang, G. Z. Zhang, In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 2006, 22(22), 9380-9385.
    18. (a) Q. Tang, W. J. Zhou, W. Zhang, S. M. Ou, K. Jiang, W. C. Yu, Y. T. Qian, Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes. Crystal Growth & Design 2005, 5(1), 147-150; (b) Z. B. Zhuang, Q. Peng, J. F. Liu, X. Wang, Y. D. Li, Indium hydroxides, oxyhydroxides, and oxides nanocrystals series. Inorganic Chemistry 2007, 46(13), 5179-5187; (c) J. H. Huang, L. Gao, Anisotropic growth of In(OH)3 nanocubes to nanorods and nanosheets via a solution-based seed method. Crystal Growth & Design 2006, 6(6), 1528-1532.
    19. (a) L. Y. Chen, Y. G. Zhang, W. Z. Wang, Z. D. Zhang, Tunable synthesis of various hierarchical structures of In(OH)3 and In2O3 assembled by nanocubes. European Journal of Inorganic Chemistry 2008, 2008(9), 1445-1451; (b) H. Zhu, X. L. Wang, F. Yang, X. R. Yang, Template-free, surfactantless route to fabricate In(OH)3 monocrystalline nanoarchitectures and their conversion to In2O3. Crystal Growth & Design 2008, 8(3), 950-956; (c) B. X. Li, Y. Xie, M. Jing, G. X. Rong, Y. C. Tang, G. Z. Zhang, In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 2006, 22(22), 9380-9385.
    20. J. J. Teo, Y. Chang, H. C. Zeng, Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 2006, 22(17), 7369-7377.
    21. A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, P. Siciliano, Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties. Chemistry of Materials 2003, 15(23), 4377-4383.
    22. (a) S. E. Lin, W. Cheng, J. Wei, Synthesis and Investigation of Submicrometer Spherical Indium Oxide Particles. Journal of the American Ceramic Society 2008, 91(4), 1121-1128; (b) H. L. Zhu, K. H. Yao, H. Zhang, D. R. Yang, InOOH hollow spheres synthesized by a simple hydrothermal reaction. Journal of Physical Chemistry B 2005, 109(44), 20676-20679; (c) C. H. Lee, M. Kim, T. Kim, A. Kim, J. S. Paek, J. W. Lee, S. Y. Choi, K. Kim, J. B. Park, K. Lee, Ambient pressure syntheses of size-controlled corundum-type In2O3 nanocubes. Journal of the American Chemical Society 2006, 128(29), 9326-9327; (d) A. Narayanaswamy, H. F. Xu, N. Pradhan, M. Kim, X. G. Peng, Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. 2006, 128(31), 10310-10319.
    23. (a) E. J. H. Lee, C. Ribeiro, E. Longo, E. R. Leite, Oriented attachment: an Effective mechanism in the formation of anisotropic nanocrystal. Journal of Physical Chemistry B 2005, 109(44), 20842-20846; (b) M. Niederberger, H. C?lfen, Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Physical Chemistry Chemical Physics 2006, 8(8), 3271-3287.
    24. H. R. Kim, S. B. Lee, D. Y. Kim, J. H. Lee, Growth mechanism of In(OH)3 nanocubes during hydrothermal reaction. Journal of Crystal Growth 2008, 310(16), 3896-3900.
    25. (a) L. S. Zhang, W. Z. Wang, L. Zhou, H. L. Xu, Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small 2007, 3, 1618-1625; (b) Y. Y. Li, J. P. Liu, X. T. Huang, G. Y. Li, Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Crystal Growth & Design 2007, 7(7), 1350-1355.
    26. (a) W. S. Kijlstra, E. K. Poels, A. Bliek, Characterization of Al2O3-supported manganese oxides by electron spin resonance and diffuse reflectance spectroscopy. Journal of Physical Chemistry B 1997, 101(3), 309-316; (b) B. M. Weckhuysen, R. A. Schoonheydt, Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts. Catalysis Today 1999, 49(4), 441-451; (c) Z. L. Wu, H. S. Kim, P. C. Stair, On the Structure of vanadium oxide supported on aluminas: UV and visible raman spectroscopy, UV-visible diffuse reflectance spectroscopy, and temperature-programmed reduction studies. Journal of Physical Chemistry B 2005, 109(7), 2793-2800.
    27. (a) J. L. Lu, K. M. Kosuda, D. RP. Van, P. C. Stair, Surface acidity and properties of TiO2/SiO2 catalysts prepared by atomic layer deposition: UV-visible diffuse reflectance, DRIFTS, and visible raman spectroscopy studies. Journal of Physical Chemistry C 2009, 113(28), 12412-12418; (b) K. Wei, W. S. Guo, C. Du, N. Zhao, X. Li, Preparation of PrxZn1-xO nanopowder with UV-visible light response. Materials Letters 2009, 63(21), 1781-1784.
    28. (a) J. Q. Xu, Y. P. Chen, Q. Y. Pan, Q. Xiang, Z. X. Cheng, X. W. Dong, A new route for preparing corundum-type In2O3 nanorods used as gas-sensing materials. Nanotechnology 2007, 18(21), 115615; (b) N. Du, H. Zhang, B. D. Chen, X. Y. Ma, Z. H. Liu, J. B. Wu, D. R. Yang, Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application forroom-temperature NH3 gas sensors. Advanced Materials 2007, 19(12), 1641-1645; (c) J. Q. Xu, X. H. Wang, J. N. Shen, Hydrothermal synthesis of In2O3 for detecting H2S in air. Sensors and Actuators B 2006, 115(2), 642-646; (d) M. Epifani, E. Comini, J. Arbiol, E. Pellicer, P. Siciliano, G. Faglia, J. R. Morante, Nanocrystals as very active interfaces: ultrasensitive room-temperature ozone sensors with In2O3 nanocrystals prepared by a low-temperature sol-gel process in a coordinating environment. Journal of Physical Chemistry C 2007, 111(37), 13967-13971; (e) D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, C. W. Zhou, Detection of NO2 down to ppb Levels using individual and multiple In2O3 nanowire devices. Nano Letters 2004, 4(10), 1919-1924.
    29. J. F. Liu, X.Wang, Q. Peng, Y. D. Li, Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Advanced Materials 2005, 17(6), 764-767.
    30. J. T. Hu, T. W. Odom, C. M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research 1999, 32(5), 435-455.
    31. (a) X. Q. Wang, M. F. Zhang, J. Y. Liu, T. Luo, Y. T. Qian, Shape- and phase-controlled synthesis of In2O3 with various morphologies and their gas-sensing properties. Sensors and Actuators B 2009, 137(1), 103-110; (b) E. Li, Z. X. Cheng, J. Q. Xu, Q. Y. Pan, W. J. Yu, Y. L. Chu, Indium oxide with novel morphology: synthesis and application in C2H5OH gas sensing. Crystal Growth & Design 2009, 9(5), 2146-2151; (c) X. F. Chu, C. H. Wang, D. L. Jiang, C. M. Chen, Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction. Chemical Physics Letters 2004, 399(4-6), 461-464; (d) J. Q. Xu, Y. P. Chen, J. N. Shen, Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods. Materials Letters 2008, 62(8-9), 1363-1365; (e) Z. Guo, J. Y. Liu, Y. Jia, X. Chen, F. L. Meng, M. Q. Li, J. H. Liu, Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres. Nanotechnology 2008, 19(34), 345704.
    32. G. Korotcenkov, A. Ceneavschi, V. Brinzari, A. Vasiliev, M. Ivanov, A. Conet, J. Morante, A. Cabot, J. Arbiol, In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors. Sensors and Actuators B 2004, 99(2-3), 297-303.
    33. Gurlo, M. Ivanovskaya, A. Pfau, U. Weimar, W. G?pel, Sol-gel prepared In2O3 thin films. Thin Solid Films 1997, 307(1-2), 288-293.
    34. (a) A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Barsan,W. G?pel, Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sensors and Actuators B 2000, 70(1-3), 87-100; (b) M.V. Vaishampayan, R. G. Deshmukh, P. Walke, I. S. Mulla, Fe-doped SnO2 nanomaterial: a low temperature hydrogen sulfide gas sensor. Materials Chemistry and Physics 2008, 109(2-3), 230-234.
    35. (a) M. E. Franke, T. J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2006, 2(1), 36-50; (b) P. Feng, T. H. Wang, Contact-controlled sensing properties of flowerlike ZnO nanostructures. Applied Physics Letters 2005, 87(21), 213111; (c) Y. Chen, C. L. Zhu, G. Xiao, Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology 2006, 17(18), 4537-4541.
    36. (a) N. Yamazoe, Toward innovations of gas sensor technology. Sensors and Actuators B 2005, 108(1-2), 2-14; (b) N. Yamazoe, G. Sakai, K. Shimanoe, Oxide Semiconductor Gas Sensors. Catalysis Surveys from Asia 2003, 7(1), 63-75.
    37. (a) G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golovanov, A. Cornet, J. Morante, A. Cabot, J. Arbiol, The influence of film structure on In2O3 gas response. Thin Solid Films 2004, 460(1-2), 315-323; (b) J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, Y. D. Li, High ethanol sensitive SnO2 microspheres. Sensors and Actuators B 2006, 113(2), 937-943.
    1. (a) C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian, J. Lin, Shape-controllable synthesis and upconversion properties of lutetium fluoride (Doped with Yb3+/Er3+) microcrystals by hydrothermal process. Journal of Physical Chemistry C 2008, 112(35), 13395-13404; (b) J. Yang, C. X. Li, Z. W. Quan, C. M. Zhang, P. P. Yang, Y. Y. Li, C. C. Yu, J. Lin, Self-assembled 3D flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures: ethylene glycol-mediated hydrothermal synthesis and luminescent properties. Journal of Physical Chemistry C 2008, 112(33), 12777-12785; (c) N. Zhang, W. B. Bu, Y. P. Xu, D. Y. Jiang, J. L. Shi, Self-assembled flowerlike europium-doped lanthanide molybdate microarchitectures and their photoluminescence properties. Journal of Physical Chemistry C 2007, 111(13), 5014-5019; (d) L. W. Qian, J. Zhu, Z. Chen, Y. C. Gui, Q. Gong, Y. P. Yuan, J. T. Zai, X. F. Qian, Self-assembled heavy lanthanide orthovanadate architecture with controlled dimensionality and morphology. Chemistry-A European Journal 2009, 15(5), 1233-1240; (e) L. Xu, J. M. Shen, C. L. Lu, Y. P. Chen, W. H. Hou, Self-assembled three-dimensional architectures of Y2(WO4)3:Eu: controlled synthesis, growth mechanism, and shape-dependent luminescence properties. Crystal Growth & Design 2009, 9(7), 3129-3136; (f) M. Yang, H. P. You, Y. H. Song, Y. J. Huang, G. Jia, K. Liu, Y. H. Zheng, L. H. Zhang, H. J. Zhang, Synthesis and luminescence properties of sheaflike TbPO4 hierarchical architectures with different phase Structures. Journal of Physical Chemistry C 2009, 113(47), 20173-20177.
    2. W. Y. Yin, X. Chen, M. H. Cao, C. W. Hu, B. Q. Wei,α-Fe2O3 nanocrystals: controllable SSA-assisted hydrothermal synthesis, growth mechanism, and magnetic properties. Journal of Physical Chemistry C 2009, 113(36), 15897-15903.
    3. H. Xue, Z. H. Li. H. Dong, L. Wu, X. X. Wang, X. Z. Fu, 3D Hierarchical architectures of Sr2Sb2O7: hydrothermal syntheses, formation mechanisms, and application in aqueous-phase photocatalysis. Crystal Growth & Design 2008, 8(12), 4469-4475.
    4. F. Zuo, S. Yan, B. Zhang, Y. Zhao, Y. Xie, L-cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures. Journal of Physical Chemistry C 2008, 112(8), 2831-2835.
    5. J. Pan, S. L. Xiong. B. J. Xi, J. F. Li, J. Y. Li, H. Y. Zhou, Y. T. Qian, Tartatric acid and L-cysteine synergistic-assisted synthesis of antimony trisulfide hierarchical structures in aqueous solution. European Journal of Inorganic Chemistry 2009, 2009(35), 5302-5306.
    6. R. Agarwal, C. J. Barrelet, C. M. Lieber, Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters 2005, 5(5), 917-920.
    7. (a) T. Y. Zhai, X. S. Fang, Y. Bando, B. Dierre, B. D. Liu, H. B. Zeng, X. J. Xu, Y. Huang, X. L. Yuan, T. Sekiguchi, D. Golberg, Characterization, cathodoluminescence, and field-Emission properties of morphology-tunable CdS micro/nanostructures. Advanced Functional Materials 2009, 19(15), 2423-2430; (b) Y. X. Li, Y. F. Hu, S. Q. Peng, G. X. Lu, S. B. Li, Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. Journal of Physical Chemistry C 2009, 113(21), 9352-9358; (c) X. Fan, M. L. Zhang, I. Shafiq, W. J. Zhang, C. S. Lee, S. T. Lee, Bicrystalline CdS nanoribbons. Crystal Growth & Design 2009, 9(3), 1375-1377; (d) X. H. Li, J. X. Li, G. D. Li, D. P. Liu, J. S. Chen, Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres. Chemistry-A European Journal 2007, 13(31), 8754-8761; (e) T. Y. Zhai, Z. J. Gu, H. Z. Zhong, Y. Dong, Y. Ma, H. B. Fu, Y. F. Li, J. N. Yao, Design and fabrication of rocketlike tetrapodal CdS nanorods by seed-epitaxial metal-organic chemical vapor deposition. Crystal Growth & Design 2007, 7(3), 488-491.
    8. G. F. Lin, J. W. Zheng, R. Xu, Template-Free Synthesis of uniform CdS hollow nanospheres and their photocatalytic activities. Journal of Physical Chemistry C 2008, 112(19), 7363-7370.
    9. S. L. Xiong, B. J. Xi, C. M. Wang, G. F. Zou, L. F. Fei, W. Z. Wang, Y. T. Qian, Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with L-cysteine’s assistance. Chemistry-A European Journal 2007, 13(11), 3076-3081.
    10. S. L. Xiong, X. G. Zhang, Y. T. Qian, CdS with various novel hierarchical nanostructures by nanobelts/nanowires self-assembly: controllable preparation and their optical properties. Crystal Growth & Design 2009, 9(12), 5259-5265.
    11. M. H. Chen, Y. N. Kim, C. C. Li, S. O. Cho, Controlled synthesis of hyperbranched cadmium sulfide micro/nanocrystals. Crystal Growth & Design 2008, 8(2), 629-634.
    12. (a) T. Thongtem, C. Pilapong, S. Thongtem, Solvothermal synthesis of CdS nanorods using hydroxyethyl cellulose as a template. Current Applied Physics 2009, 9(6) 1272-1277; (b) J. S. Jang, U. A. Joshi, J. S. Lee, Solvothermal snthesis of CdS nanowires for photocatalytic hydrogen and electricity production. Journal of Physical Chemistry C 2007, 111(36), 13280-13287; (c) H. B. Chu, X. M. Li, G. D. Chen, W. W. Zhou, Y. Zhang, Z. Jin, J. J Xu, Y. Li, Shape-controlled synthesis of CdS nanocrystals in mixed solvents. Crystal Growth & Design 2005, 5(5), 1801-1806; (d) J. Yang, J. H. Zeng, S. H. Yu, L.Yang, G. E. Zhou, Y. T. Qian, Formation Process of CdS Nanorods via Solvothermal Route. Chemistry of Material 2000, 12(11), 3259-3263; (e) Y. D. Li, H. W. Liao, Y. Ding, Y. T. Qian, L. Yang, G. E. Zhou, Nonaqueous synthesis of CdS nanorod semiconductor. Chemistry of Material 1998, 10(9), 2301-2303.
    13. (a) Y. W. Jun, S. M. Lee, N. J. Kang, J. Cheon, Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. Journal of the American Chemical Society 2001, 123(21), 5150-5151; (b) Y. Cheng, Y. S. Wang, F. Bao, D. Q. Chen, Shape control of monodisperse CdS nanocrystals: hexagon and pyramid. Journal of Physical Chemistry B 2006, 110(19), 9448-9453; (c) Y. H. Tong, Y. C. Liu, L. Dong, D. X. Zhao, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. W. Fan, Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. Journal of Physical Chemistry B 2006, 110(41), 20263-20267.
    14. (a) O. D. Melo, L. Hernández, O. Zelaya-Angel, R. Lozada-Morales, M. Becerril, E. Vasco, Low resistivity cubic phase CdS films by chemical bath deposition technique. Applied Physics Letters 1994, 65(10), 1278-1280; (b) Y. C. Cao, J. H. Wang, One-pot synthesis of high-quality zinc-blende CdS Nanocrystals. Journal of the American Chemical Society 2004, 126(44), 14336-14337.
    15. Y. D. Li, H. W. Liao, Y. Ding, Y. Fan, Y. Zhang, Y. T. Qian, Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod. Inorganic Chemistry 1999, 38(7), 1382-1387.
    16. R. K. Pati, I. C. Lee, K. J. Gaskell, S. H. Ehrman, Precipitation of nanocrystalline CeO2 using triethanolamine. Langmuir 2009, 25(1), 67-70.
    17. (a) Y. Zhou, Q. M. Ji, M. Masuda, S. Kamiya, T. Shimizu, Helical arrays of CdS nanoparticles tracing on a functionalized chiral template of glycolipid nanotubes. Chemistry of Material 2006, 18(2),403-406; (b) X. J. Zhang, Y. Xie, Q. R. Zhao, Y. P. Tian, 1-D coordination polymer template approach to CdS and HgS aligned-nanowire bundles. New Journal of Chemistry 2003, 27(5), 827-830.
    18. H. X. Guo, Z. Xi. Du, X. Z. Li, Acta Crystallographica 2009, E65, m810-m811.
    19. L. Fan, R, Guo, Controlled synthesis of pyramid-aggregated sphere-like cadmium sulfide in the presence of a polymer. Crystal Growth & Design 2009, 9(4), 1677-1682.
    20. F. Chen, R. J Zhou, L. G. Yang, N. Liu, M. Wang, H. Z. Chen, Large-scale and shape-controlled syntheses of three-dimensional CdS nanocrystals with flowerlike structure. Journal of Physical Chemistry C 2008, 112(4), 1001-1007.
    21. H. G. Yang, H. C. Zeng, Preparation of hollow anatase TiO2 nanospheres via Ostwald Ripening. Journal of Physical Chemistry B 2004, 108(11), 3492-3495.
    22. N. Z. Bao, L. M. Shen, T. Takata, K. Domen, Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Material 2008, 20(1), 110-117.
    23. J. T. Hu, T. W. Odom, C. M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research 1999, 32(5), 435-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700