用户名: 密码: 验证码:
微切助互作技术在植物活性成分提取中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然植物中含有丰富的活性物质,被广泛用于药品、保健品和化妆品中。我国拥有丰富的中药资源,但中药提取物的国际市场占有率还不足5%。目前,我国中药有效成分提取常采用传统的有机溶剂提取以及现代的提取方法,如超声波、微波、超临界和超微粉碎辅助提取。但这些提取方法存在有机溶剂使用量大,常具有毒性且易燃易爆,提取率低以及操作步骤冗杂。因此,如何实现药材的高效利用,开发绿色环保、低成本、技术成熟度高的提取技术无疑是一个亟待解决的问题。
     本研究采用微切助互作技术,以水作溶剂提取穿心莲内酯、松针总三萜酸以及刺五加中紫丁香苷。首先,筛选和确定了微切助互作技术辅助提取的最佳助剂;其次,初步考察目标提取物与助剂间的作用情况并比较不同预处理方法对各药材形态及提取率的影响;最后,在单因素试验基础上,通过正交试验优化提取工艺并与热回流提取比较。
     结果表明,经固态研磨后,穿心莲内酯可能与最佳助剂Na_2CO_3反应成盐,与羟丙基-β-环糊精(HP-β-CD)形成复合物;松针总三萜酸可能与最佳助剂Na_2CO_3反应成盐;刺五加中紫丁香苷与HP-β-CD形成复合物;以水作溶剂,微切助互作技术法的提取率显著高于物理混合及超微粉碎辅助提取;物料的粒度及扫描电镜分析表明经微切助互作技术处理后各药材的大部分细胞可能被充分破碎。
     微切助互作技术辅助提取穿心莲内酯的最佳工艺为:(1)碱作助剂。Na_2CO_3用量3%(w/w),研磨时间45min(即物料粒度D_(95)≤37μm),水作溶剂,料液比为1:60 g:ml。(2) HP-β-CD作助剂。用水提取,HP-β-CD用量13%(w/w),循环水温度70℃,研磨时间25 min。
     微切助互作技术辅助提取松针中总三萜酸的最佳工艺为:Na_2CO_3用量为5%(W/W),研磨时间35min(即物料粒度D_(95)≤37μm),乙醇浓度为20%(v/v),料液比为1:40 g:ml。以水替换乙醇,其提取率与20%(v/v)乙醇相当,提示可用水提取。
     微切助互作技术辅助提取刺五加中紫丁香苷的最佳工艺为:HP-β-CD用量为23%(w/w),循环水温度40℃,研磨时间45min(即物料粒度D_(95)≤37μm)。
     与热回流提取比较,微切助互作技术辅助提取将物理法和化学法结合,以水作溶剂,具有提取率高,工艺简单,耗时短,绿色环保等特点,为穿心莲内酯、松针总三萜酸以及刺五加中紫丁香苷的提取提供了新途径。
Natural plant contains a diverse group of bioactive substances with a broad range of applications in medicine, healthcare product and cosmetic. China is rich in medical herb resources, but has a weak market share (less than 5%) for plant extract in the world market. Past methods for extracting these bioactive compounds from complex plant matrixes have varied from traditional solvent extractions to more modern techniques such as supercritical fluid extractions, pressurized fluids extraction, microwave-assisted extraction, and ultrasound-assisted extraction. But there are many limitations of the present extraction technology: usage of organic solvents, often toxic and high flammable, low yields of an extraction for one stage of processing, as a corollary one multiple repetition of the extraction. The utilization of great quantities of organic solvents makes the technology very expensive, fire hazard and ecologically dangerous. Therefore, environmental friendly and industry-ready technique with low cost and enhanced efficiency is required in order to accelerate the development of herb extract industry in China.
     The present study was focused on the pressure-shear induced chemical transitions(PICT) assisted extraction of andrographolide from Andrographis paniculata, total triterpene acid from fir needles and syringin Eleutherococcus senticosus with water as solvent. First, the chemical reagent was selected according to the yield of target compounds by PICT assisted extraction; Second, a preliminary investigation was conducted on the interaction of the target compound-chemical reagent. Different pretreatment was compared with respect to their effects on the plant material morphology as well as the target compound yield. Finally, the PICT process was optimized based on both orthogonal and one-factor experiment, and was compared with conventional heat reflux extraction.
     Preliminary investigation showed that andrographolide could possibly be neutralized by Na_2CO_3, and certain complexes may have been formed between andrographolide and hydroxypropyl-β-cyclodextrin (HP-β-CD) after the solid grinding process; total triterpene acid could possibly be neutralized by Na_2CO_3; certain complexes may have been formed between syringin and HP-β-CD after the solid grinding process. The yield of PICT treated samples (extracting with water) was significantly improved (P <0.05) comparing with physical mixing and superfine grinding samples. Both particle analysis and scanning electron micrographs suggested that the plant cell wall could be broken up after the mechanochemcal treatment.
     The optimum parameters for PICT assisted extraction of andrographolide were as follows: (1) alkali reagent. Na_2CO_3 content, 3% (w/w); milling period, 45min (particle size, D_(95)≤37μm); extraction solvent, water; liquid/solid ratio, 1:60 g:ml. (2) HP-β-CD reagent. HP-β-CD content, 13% (w/w); circulating water temperature, 70℃; milling period, 25 min.
     The optimum parameters for PICT assisted extraction of total triterpene acid were as follows: Na_2CO_3 content, 5% (w/w); milling period, 35 min (particle size, D_(95)≤37μm); extraction solvent, 20% v/v aqueous ethanol; liquid/solid ratio, 1:40 g:ml. Aqueous ethanol was replaced by water, and no significant difference in yield was observed with other optimized parameters settings.
     The optimum parameters for PICT assisted extraction of syringin were as follows: HP-β-CD reagent. HP-β-CD content, 23% (w/w); circulating water temperature, 40℃; milling period, 45 min.
     Under the optimized parameters determined herein, significant enhancement such as improved yield, shorter time and more simplified procedures over heat-reflux extraction was observed, which makes PICT (a combination of physical and chemical method) a potential convenient tool for andrographolide from Andrographis paniculata, total triterpene acid from fir needles and syringin Eleutherococcus senticosus. Moreover, the favorable solvent is water, making PICT assisted extraction a less expensive and eco-friendly technique.
引文
[1]Boldyrev V V,Tk(?)(?)ov(?) K.Mechanochemistry of Solids:Past,Present,and Prospects.J Mater Synth Process,2000,8(3-4):121.
    [2]郭学东.比较红参普通粉碎和微粉化处理的溶出速率.首都医药,2000,7(9):47.
    [3]郭学东.茱萸普通粉碎和微粉化处理在溶出速率上的比较.首都医药,2000,7(8):45-68.
    [4]李富文,金凤媚.超微粉碎技术在中药中的应用冲国动物保健,兽药研发,2003.11:35-36.
    [5]Bazarnova.N.G,Fanov.M.V.E,M.Yu.Brazhenikova,Khim,1999,99.
    [6]Yarmukhametova.E.G,Aitunina.L.K,Tikhonova.L.D.Preparation of cellulose ether from rice husks,KORUS,2001:150-153.
    [7]匡海学.中药化学.北京:中国中医药出版社,2003,176:328.
    [8]张新勇,向仁德,张根元.酸碱法提取蛇床子总香豆素的工艺研究.中成药,1999,21(1):7-8.
    [9]Lomovsky.O,Korolyov.K,Kwon.Y.S.Mechanochemical solubilization and mechanochemically assisted extraction of plant bioactive substances.Science and Technology,2003.Proceedings KORUS 2003.The 7th Korea-Russia International Symposium:2003.
    [10]周益明,忻新泉.低热固相合成化学.无机化学学报,1999,15(3):24-291.
    [11]许正斌等.中医药信息.1987,(4):36-37.
    [12]Lomovsky.O.I.Mechanochemical technology of processing of plant raw materials.Regional scientific-practical conference 《 Chemical and pharmaceutical industry in modern conditions》.Novosibirsk:1999.
    [13]Pankrushina.N.A,Lomovsky.O.I.Mechanochemical solid-state extraction-new effective approach to extraction of biologically active compounds from medicinal herbs,Book of abstract of the International seminar 《Wood biologically active resources》.Khabarovsk:2001.
    [14]邵锡宸,夏定龙,刘为群.麻黄草原料前处理及麻黄碱连续浸取.中国医药工业杂志,1994,25(8),363-368.
    [15]王杰,任仲皎,伍明.从黄连中提取小檗碱的新方法研究.中国药学杂志,1994,29(8),490-491.
    [16]邱国福,胡泉源,李红等.从银杏叶中提取黄酮苷方法的改进.湖北医科大学学报,1996,17(3),205-206.
    [17]吴俊伟,古淑英,曾忠良等.酸水法及其它方法提取穿心莲总内酯的比较.中国兽药杂志,1999,33(2):23-25.
    [18]魏凤玲,朱春波,朱立平等.三七总皂苷提取工艺优选.中国中药杂志,2000,25(12):722-723.
    [19]张兰桐,任雷鸣,温进坤.中药现代化研究与发展战略.河北医科大学学报,2000,21(4),253-256.
    [20]王宏洁,司南,边宝林.饮片超微粉碎前后主要有效成分溶出量的对比研究.中国中药杂质,2004,29(11):1111-1112.
    [21]李鹰,丁青龙,赵静安,用正交试验探讨金银花煎煮条件对绿原酸含量的影响.江苏药学与临床研究,2008,8(1):33-35.
    [22]周德庆,曾骆.黄岑总黄酮的提取工艺研究.华西药学杂志,2002,18(1):78-79.
    [23]黄祖良,何有成,韦国锋等.从植物十大功劳叶中制取四氢小蘖碱的工艺研究.广西化工,2002,32(2):16-17.
    [24]张春红,张崇禧,郑友兰等.浸溃法提取人参皂昔最佳工艺的研究.吉林农业大学学报,2003,250:73-74.
    [25]刘进月,赵典刚,韩月香.渗流法提取芦丁的实验研究.中国中医药科技,1999,6(5):320-321.
    [26]邵方晓,刘吉晨,苦参总碱浸膏提取工艺的研究.中国新医药,2003,2(6):8.
    [27]刘祥兰,刘重芳,张英等.金银花中绿原酸提取工艺的比较和优化研究.中成药,2000,22(6):402-404.
    [28]方阵,吴健,王康才.正交实验筛选黄连水提工艺.时珍国医国药,2001,12(11):982-983.
    [29]全学军,王万能,陆天健.超声提取植物有效成分的动力学研究.化学反应工程与工艺,2005,21(4):320-326.
    [30]Pare J R J,Belanger J M R,Stafford S S et al.Microwave-assisted natural products extraction.US,Pat,5002784 A.1991.
    [31]韩伟,郝金玉,薛伯勇等.微波辅助提取青蒿素的研究.中成药,2002,24(2),83-86.
    [32]李晓明,王跃生,闫寒等.超微粉碎决明子对其大黄酚溶出量的影响.中国实验方剂学杂志.2001,7(6):6-8.
    [33]武练增.超临界二氧化碳提取高纯度卵黄磷脂的方法,中国,专利,ZL94 102 372.9.1994.
    [34]Joneston K P,Harrison K L,Clarke M J et al.Water-in-Carbon dioxide microemulsion an environment for hydrophiless including proteins.Science,1996,271:624-627.
    [35]马桔云,赵晶岩,姜颖等.纤维素酶在黄连提取工艺中的应用.中草药,2000,31(2):103-104.
    [36]沈爱英,谷文英.复合酶法提取姬松茸子实体多糖的研究.食用菌,2001,23(3):7-9.
    [37]国家药典委员会编.中华人民共和国药典一部.北京:化学工业出版社,2000:200.
    [38]张建强,张玲,王欢,孙英法.穿心莲提取工艺.食品与药品,2005,7(1),39.
    [39]赵玉江,李勇,吴修红,孟祥才.不同提取方法对穿心莲内酯含量的影响[J].黑龙江医药,2006,19(3):182.
    [40]颜玉贞,谢培山.穿心莲质量控制的再评价.中药新药与临床药理,1998,9(4):204-206
    [41]聂凌云,罗兴平.穿心莲提取工艺的研究及热稳定性考察.解放军药学学报,2005,21(1):32-34.
    [42]张玲,尚立霞,单卫华等.穿心莲的提取工艺研究.时珍国医国药,2003,14(8):458.
    [43]徐家敏,沈海泉,胡旦燕.穿心莲注射液提取工艺研究.黑龙江商学院学报,1998,14(1):15.
    [44]吴俊伟,古淑英,曾忠良.酸水法提取穿心莲总内酯.四川畜牧兽医学院学报,1999,13(3):7.
    [45]郭彬,娄勇,蒋琼等.穿心莲浸膏的提取工艺研究.安徽医药,2002,6(3):7.
    [46]金海英,徐慧,郭艳民等.穿心莲药材中穿心莲内酯的含量测定.中医药信息,2002,8(6):27.
    [47]高红宁,金万勤,郭立伟等.AB-8树脂对苦参总黄酮的吸附性能研究.中草药,2001,32(10):887-889.
    [48]田瑛,董俊兴.天然产物中抗爱滋病病毒活性成分的研究进展.中国药学杂志,2002,37(6):401.
    [49]Rozhanskaya O A,Yudina N V,lomovskii O I,and Korolev K G,Sibir.Vestn.S-kh.Nauki,2(2003).
    [50]刘梁,韩定献,周军等.三叶委陵菜根中三萜类化合物抗病毒作用研究.时珍国医国药,2006,17(8):1484-1485.
    [51]罗俊,林志彬.灵芝三萜类化合物药理作用研究进展.药学学报,2002,37(7):574-578.
    [52]陈玉昆中药提取生产工艺学(下).沈阳:沈阳出版社,1992.109.
    [53]肖崇厚.中药化学.上海:上海科学技术出版社,1998.6.
    [54]崔星明,王勇为,陈光宇.超临界流体萃取芦笋中熊果酸的研究.上海农业学报,2004,21(1):123-123.
    [55]雒廷亮,张景伟,曹文豪等.山茱萸中熊果酸提取工艺研究进展.河南化工,2005,22(2):6-81.
    [56]张兆旺,孙秀梅.试论“半仿生提取法”制备中药口服制剂.中国中约杂志,1995,20(11):670.
    [57]龚慕辛,贾富霞,王敏等.不同提取方法对女贞子中齐墩果酸提出量的影响.北京中医1999,10(3):53.
    [58]黄书铭,杨新林,张自强等.超声循环提取灵芝中三萜类化合物的研究冲草药,2004,35(5):508-510.
    [59]仲兆金,刘浚.衍生法分离茯苓三萜.中药材,2002,25(4):247-249.
    [60]国家药典委员会.中华人民共和国药典(一部).北京:化学工业出版社,2005.
    [61]邵莉.刺五加对大鼠急性缺血在灌注视网膜神经节细胞保护的研究:(硕士学位论文).沈阳:中国医科大学,2005.
    [62]潘海峰,孟艳彬,缪红.刺五加的研究概况.承德医学院学报,2002,19(2):15-17.
    [63]杨春花,刘刚,张崇禧,郑友兰.刺五加的研究进展.人参研究,2004,16(1):17-20.
    [64]Wagner H,Heur Y H,Obermeier A et al.DC- and HPLC-analysis of Eleutherococcs.Planta Med,1982,44(4):193-198.
    [65]Farnsworth N R,Kinghorn A D,Soejarto D D et al.Siberian Ginseng(Eleutherococcus senticosus).Current status as an adaptogen.In:Wagner H,Hikino H,Famsworth NR.Economic and Medicinal Plant Research,Vol.1.New York:Academic Press.1985:155-215.
    [66]中国科学院植物研究所主编.中国高等植物图鉴(第一册).北京:科学出版社,1972.
    [67]Lapchik V F,Frolova G M,Ovodov Y S.Quantitative determination of Eleutherococcus senticosus glucosides.Rast-Resur,1969,5:455-457.
    [68]Kang J S,Linh P T,Cai X F et al.Quantitative determination of eleutheroside B and E from Acanthopanax species by high performance liquid chromatography.Arch Pharm Res,2001,24(5):407-411.
    [69]Bladt S,Wagner H,Woo W S.Taiga-Wurzel,DC-und HPLC-analyse yon Eleutherococcus-baw.Acanthopanax extraken und diese enthaltenden Phytopraparaten.Dtsch Apoth,1990,130(27):1499-1508.
    [70]Yat P N,Arnason J T,Awang D V C et al.An improved extraction procedure for the rapid,quantitative high performance liquid chromatographic estimation of the main eleutherosides(B and E) in the Eleutherococcus(Eleuthero).Phytochem Anal,1998,9(6):291-295.
    [71]Sandra A,Tania N,Sabine V M et al.Quality Control of Roots of Eleutherococcus senticosus by HPLC.Phytochem Anal.2005,16(1):55-60.
    [72]袁晔蓉,李强.刺五加中紫丁香苷的制备及其含量测定.辽宁中医杂志,2007,34(6):809-811.
    [73]张妍华,孙立夫,施维林等.HPLC法测定黑龙江省不同地区刺五加紫丁香苷的含量.植物研究,2005,25(4):123-126.
    [74]于波涛,张志荣,刘文胜等.穿心莲内酯体外稳定性研究.中成药,2002,24(5):331-333.
    [75]童林荟.环糊精化学-基础与应用.北京:科学出版社,2001.
    [76]Uekama K,Irie T,Hirtayama F.Cyclodextirn drug carder systems.Chemical Reviews,1998,98(5):2045-2076.
    [77]张钰,程度胜.β-环糊精及其衍生物在生物制药领域中的应用.生物技术通讯,2003,14(5):433-435.
    [78]徐志红,李磊,武法文等.环糊精对黄酮的包合作用及其在银杏黄酮提取中的应用.精细化工,2005,22(10):762-765.
    [79]刘锦业,刘远军,罗智等.2-羟丙基β-环糊精对女贞叶提取物的增溶作用.中国冶金工业医学杂志,2002,19(4):201-202.
    [80]张振海,刘力,徐德生.环糊精辅助提取丹参工艺的研究.中成药,2005,27(3):264-266.
    [81]童林荟.环糊精化学-基础与应用.北京:科学出版社,2001.
    [82]王瑜真,张卫星.谭晶.β-环糊精包合穿心莲内酯方法比较.实用医药杂质,2004,21(1):45-46.
    [83]易中宏,郑一敏,胥秀英等.分光光度法测定茯苓中总三萜类成分的含量.时珍国医国药,2005,1 6(4):847-848.
    [84]黄书铭,杨新林,黄健等.紫外分光光度法快速测定灵芝样品中三萜类化合物的含量.北京理工人学学报,2004,24(6):555-558.
    [85]张雁冰,王克让,刘宏民.马桑叶中总三萜酸的含量测定.时珍国医国药,2006,17(4):529-5301.
    [86]于生兰,孙玲,张龙,张小华.黄芩苷-β-环糊精包合物的研究.中国兽医医药杂质,2003,6:9-11.
    [87]张春滨,曲光.β-环糊精衍生物包合脱水穿心莲内酯的工艺研究.中医药信息,2002,19(5):56-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700