用户名: 密码: 验证码:
大肠杆菌的细胞间通讯及信号传递
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在细菌的生活过程中,环境条件、细菌的密度及生理状态常常处于变化之中。经过长期的进化过程,为了对外部环境及胞内生理状态的变化作出及时反应,细菌已经学会利用各种小分子化合物作为信号分子,并发展出各种信号传递机制去捕获及把这些信号传递到细胞中去。细菌细胞间通迅能使细菌在多细胞水平上采取协调一致的行动,这一过程通常又称为群体感应或密度依赖的基因调控,即细菌在增殖的过程中,不断地向胞外分泌信号小分子,这种信号小分子被称为自诱导物。随着细菌数量的增加,自诱导物就在周围环境中逐渐积累,当自诱导物达到一定的阈值浓度时,即可进入细胞,与受体结合,从而开启或关闭一些基因的转录。在大肠杆菌K-12菌株中,存在两套群体感应信号系统,以AI-1为信号分子的群体感应系统一及以AI-2为信号分子的群体感应系统二。
     群体感应系统一包括与LuxR及LuxI同源的一对蛋白。群体感应系统一的信号分子为AI-1,它由LuxI合成,它的受体蛋白为LuxR。大肠杆菌中的LuxR同源蛋白为SdiA,但无LuxI同源蛋白且不能合成任何AI-1信号分子。但是大肠杆菌的SdiA蛋白能够感应来自其它细菌的AI-1信号分子。最近有报道指出,大肠杆菌通过利用SdiA感应环境中的吲哚及AI-l的浓度变化来控制生物膜的形成,至于SdiA能否直接与吲哚结合,目前仍没有确切的答案。研究表明,SdiA能够促进或抑制核糖核酸多聚酶与启动子的结合,从而控制目的基因的转录。细胞中过量表达SdiA能够影响许多基因的表达,其中包括一些与细胞分裂、运动性、趋化性、及药物代谢相关的基因。
     大肠杆菌有一个完整的群体感应系统二,共包括九个基因,即luxS、lsrR、IsrK、及lsrACDBFG。cAMP-CRP复合体促进lsrR及lsr操纵子(lsrACDBFG)的表达,lsrR与lsr操纵子相邻但转录方向相反,LsrR能够抑制lsrR及lsr操纵子的表达。由LuxS合成群体感应系统二的信号分子,即AI-2,随着细菌的增殖,该信号分子在胞外不断地积累。当胞外的AI-2达到一定的阈值浓度时,由lsr操纵子编码的载体运入胞内,然后被LsrK磷酸化,磷酸化的AI-2与LsrR结合并改变其构象,从而达到调控目的。LsrF与LsrG参与后续的磷酸化AI-2的降解过程。最近研究表明,lsrR或lsrK突变株形成生物膜的厚度及总量均较野生株有所降低。同时,lsrR或lsrK突变株中的sRNA,即全局调控因子DsrA及细胞分裂抑制因子DicF的表达增加了2—4.4倍。
     在弧菌Vibrio harveyi中,有三条群体感应信号通路,这三条通路会聚到一起,控制同一套基因的表达,sRNA也参与了这一调控过程。在大肠杆菌中,仅知道cAMP-CRP复合体通过结合到lsrR及lsr操纵子的启动序列上,促进它们的表达,LsrR的作用正好相反。然而,大肠杆菌中群体感应系统一与系统二之间的相互作用关系仍不清楚。为了更全面地了解大肠杆菌群体感应信号途径,及群体感应与其它信号通路之间的关系,本研究采用基因敲除、凝胶阻滞及酶学分析等方法,分析了SdiA对YdiV的转录调控作用,及SdiA与群体感应系统二的相互作用。环二鸟苷酸是细菌中的第二信使,它由含GGDEF结构域的蛋白合成,被含EAL结构域的蛋白降解。YdiV就是一个含EAL结构域的蛋白。在本研究中,我们发现sdiA及ydiV的表达同时受到葡萄糖的抑制。SdiA能够结合到ydiV的启动子区域,来自于其它细菌的AI-1在非sdiA突变株中能够促进ydiV的表达。通过进一步的研究,我们还发现SdiA具有非特异性地结合DNA的能力。在sdiA及ydiV双突变株中,而不是单突变株中,胞内的cAMP浓度降低了2倍,cAMP浓底的降低使大肠杆菌中群体感应系统二受到抑制。这些研究结果说明了YdiV及cAMP介导了大肠杆菌中两个群体感应系统之间的相互作用;并提示了大肠杆菌中感应各种环境因子的信号通路,如自诱导物及葡萄糖相关信号途径,通过一定的方式联系起来,一起控制细菌的系列行为。
In the life span of bacteria, environmental cues, density of bacteria and physiological states keep changing. To respond to these variable conditions, bacteria have learned how to use small molecular as signal, and evolved a variety of signal sensing and delivering mechanisms during the long evolution progress. Cell-to-cell communication in bacteria that leads to co-ordinated behaviour at a multicellular level is often referred to as quorum sensing, or density-dependent gene regulation, in this process bacteria produce, release and respond to signaling molecules called autoinducers. While bacteria proliferated, autoinducers accumulated in the around environment, once reached a threshold autoinducers can be detected and enter the cell, bind to its receptors and regulate transcription of lots of target genes. Escherichia coli K-12 has two kinds of quorum sensing systems, system 1 which uses AI-1 as signal molecular, and system 2 which uses AI-2 as signal molecular.
     Quorum sensing system 1 includes protein pairs similar to LuxR and LuxI. The system 1 autoinducer named AM is produced by LuxI and is detected by LuxR. E. coli encodes a LuxR homologue, SdiA, but it does not encode a LuxI homologue or synthesize any AHL molecule detected by SdiA. However, SdiA of E. coli responds to several AHLs generated by other microbial species. Recently a report indicates that E. coli uses SdiA to monitor indole and AHLs to control biofilms, however, it is not ascertained whether indole itself binds to SdiA. A previous study shows that SdiA can support or inhibit RNA polymerase binding to the promoters and thereby affects transcription of the target genes. Overexpression of SdiA affects expression of a battery of genes, including cell division, motility, chemotaxis, and multidrug efflux pump genes.
     E. coli has an intact quorum sensing system 2 including nine genes (e.g. luxS, lsrR, lsrK and lsrACDBFG). cAMP-CRP complex stimulates expression of both lsrR and lsr operon which includes IsrACDBFG, while LsrR represses their expression and is located adjacent to but is transcribed divergently from the lsr operon. The system 2 autoinducer named AI-2 is synthesized by LuxS and accumulates extracellularly. Following internalization by the Lsr transporter encoded by the genes in the lsr operon, AI-2 is phosphorylated by LsrK and phospho-AI-2 binds specifically to LsrR and antagonizes it. LsrF and LsrG are required for further processing of phospho-AI-2. It has been recently reported that the mean biofilm thickness and biomass of the lsrR or lsrK mutant are lower than that of the wild type, meanwhile, the global small RNA (sRNA) regulator DsrA and the sRNA cell division inhibitor DicF are induced 2 to 4.4-fold in both lsrR and lsrK mutants.
     Three quorum sensing circuits of Vibrio harveyi converge to control a same set of genes, in which sRNA species are involved. In E. coli, cAMP-CRP complex stimulates expression of both lsrR and lsr operon by binding to the promoter regions, while LsrR represses their expression. The relationship between QS system 1 and QS system 2 in E. coli, however, remains obscure. To further explore quorum sensing in E. coli, and the relationship between quorum sensing and other signaling pathways, we analyzed the transcription regulation of ydiV expression by SdiA, and the interaction between SdiA and quorum sensing system 2, by employing these biological technologies, such as gene knock out, gel shift and enzyme activity assay, et al. A class of enzymes containing GGDEF domains synthesize the second messenger c-di-GMP in bacterium that is later hydrolyzed by EAL domain proteins. The protein YdiV consists solely of an EAL domain. Here we show that expression of sdiA and ydiV is inhibited by glucose. SdiA binds to ydiV promoter region in a dose-dependent manner, but nonspecifically in the present study, and AI-1 from other species stimulates ydiV expression in an sdiA -dependent manner. Furthermore, we discover that the double sdiA-ydiV mutation but not the single mutations causes a decrease in intracellular cAMP concentration by 2-fold that leads to the inhibition of QS system 2. These results demonstrate that YdiV and cAMP are involved in the interaction between the two QS systems in E. coli, and indicate that signaling pathways which respond to important environmental cues, such as autoinducers and glucose, are linked together for their control in E. coli.
引文
Ahmer BMM, Reeuwijk JV, Timmers CD, et al. 1998. Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J. Bacteriol. 180: 1185-1193.
    Ahmer BMM. 2004. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol. Microbiol. 52: 933-945.
    Albus AM, Pesci EC, Runyen-Janecky LJ, et al. 1997. Vfr controls quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179: 3928-3935.
    Aldea M, Garrido T, Pla J, et al. 1990. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. EMBO J. 9: 3787-3794.
    Amikam D, Steinberger O, Shkolnik T, et al. 1995. The novel cyclic dinucleotide 3'-5' cyclic diguanylic acid binds to p21(ras) and enhances DNA synthesis but not cell replication in the Molt 4 cell line. Biochem. J. 311: 921-927.
    Ansaldi M, Marolt D, Stebe T, et al. 2002. Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol. Microbiol. 44: 1561-1573.
    Atkinson S, Throup JP, Stewart GS, et al. 1999. A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol.Microbiol. 33: 1267-1277.
    Bassler BL, Wright M, Showalter RE, et al. 1993. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol.9: 773-786.
    Bassler BL, Wright M, and Silverman MR. 1994. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13: 273-286.
    Bassler BL, Greenberg EP, and Stevens AM. 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 179: 4043-4045.
    Bassler BL, and Losick R. 2006. Bacterially speaking. Cell 125: 237-246.
    Beeston AL, and Surette MG. 2002. pfs-dependent regulation of autoinducer 2 production in Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 3450-3456.
    Bi E, and Lutkenhaus J. 1990. Interaction between the min locus and ftsZ. J. Bacteriol. 172:5610-5616.
    Camilli A, and Bassler BL. 2006. Bacterial Small-Molecule Signaling Pathways. Science 311:1113-1116.
    Cao JG, and Meighen EA. 1989. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J. Biol. Chem. 264: 21670-21676.
    Chan C, Paul R, Samoray D, et al. 2004a. Structural basis of activity and allosteric control of diguanylate cyclase. Proc. Natl. Acad. Sci. USA 101:17084-17089.
    Chan C, Paul R, Samoray D, et al. 2004b. Structural basis of activity and allosteric control of diguanylate cyclase. Proc. Natl. Acad. Sci. U. S. A. 101: 17084-17089.
    Chen X, Schauder S, Potier N, et al. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545-549.
    Choi SH, and Greenberg EP. 1991. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc. Natl. Acad. Sci. (J. S.A. 88: 11115-11119.
    Christen M, Christen B, Folcher M, et al. 2005. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. Journal of Biological Chemistry 280: 30829-30837.
    Connell N, Han Z, Moreno F, et al. 1987. An E. coli promoter induced by the cessation of growth. Mol. Microbiol. 1: 195-201.
    Cui X, Wen JF, Jin H, et al. 2002. Subtype-specific roles of cAMP phosphodiesterases in regulation of atrial natriuretic peptide release. Eur. J. Pharmacol. 451: 295-302.
    Datsenko KA, and Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A. 97:6640-6645.
    Davies DG, Parsek MR, Pearson JP, et al. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298. de Boer PA, Crossley RE, and Rothfield LI. 1990. Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc. Natl. Acad. Sci. U. S. A. 87: 1129-1133.
    Delisa MP, Valdes JJ, and Bentley WE. 2001. Mapping stress-induced changes in autoinducer AI-2 production in chemostat-cultivated Escherichia coli K-12. J. Bacteriol. 183:2918-2928.
    Deutscher J, Francke C, and Postma PW. 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol.Rev. 70:939-1031.
    Devine JH, Shadel GS, and Baldwin TO. 1989. Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc. Natl. Acad. Sci. U. S. A. 86:5688-5692.
    Dunlap PV, and Greenberg EP. 1988. Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-luxR protein regulatory circuit. J. Bacteriol. 170: 4040-4046.
    
    Dunny GM, and Leonard BA. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51:527-564.
    Eberhard A. 1972. Inhibition and activation of bacterial luciferase synthesis. J. Bacteriol. 109:1101-1105.
    Eberhard A, Burlingame AL, Eberhard C, et al. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry (Mosc). 20: 2444-2449.
    Egland KA, and Greenberg EP. 1999. Quorum sensing in Vibrio fischeri: elements of the luxl promoter. Mol. Microbiol. 31: 1197-1204.
    Engebrecht J, Nealson K, and Silverman M. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32: 773-781.
    Freeman JA, and Bassler BL. 1999a. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol.Microbiol. 31:665-677.
    Freeman JA, and Bassler BL. 1999b. Sequence and Function of LuxU: a Two-Component Phosphorelay Protein That Regulates Quorum Sensing in Vibrio harveyi. J. Bacteriol.181:899-906.
    Freeman JA, Lilley BN, and Bassler BL. 2000. A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi.Mol. Microbiol. 35: 139-149.
    Fuqua C, and Winans SC. 1996. Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J.Bacteriol. 178:435-440.
    Fuqua C, Winans SC, and Greenberg EP. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev.Microbiol. 50:727-751.
    Fuqua C, Parsek MR, and Greenberg EP. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35:439-468.
    Fuqua C, and Greenberg EP. 2002a. Signalling listening on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Bio. 3: 685-695.
    Fuqua C, and Greenberg EP. 2002b. Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Bio. 3: 685-695.
    Fuqua WC, Winans SC, and Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269-275.
    Galperin MY, Nikolskaya AN, and Koonin EV. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203: 11-21.
    
    Garcia-Lara J, Shang LH, and Rothfield LI. 1996. An extracellular factor regulates expression of sdiA, a transcriptional activator of cell division genes in Escherichia coli. J. Bacteriol.178:2742-2748.
    
    Gerhardt P, Murray RGE, Wood WA, et al. (1994) Methods for general and molecular bacteriology. Washington: American Society for Microbiology.
    Gonzalez Barrios AF, Zuo R, Hashimoto Y, et al. 2006. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J.Bacteriol. 188:305-316.
    Gray KM, Passador L, Iglewski BH, et al. 1994. Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J. Bacteriol. 176: 3076-3080.
    Gray KM, and Garey JR. 2001. The evolution of bacterial Luxl and LuxR quorum sensing regulators. Microbiology 147: 2379-2387.
    Hanzelka BL, and Greenberg EP. 1996. Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J. Bacteriol. 178:5291-5294.
    Hanzelka BL, Parsek MR, Val DL, et al. 1999. Acylhomoserine Lactone Synthase Activity of the Vibrio fischeri AinS Protein. J. Bacteriol. 181: 5766-5770.
    Henke JM, and Bassler BL. 2004. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186: 6902-6914.
    Hickman JW, Tifrea DF, and Harwood CS. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. U. S.A. 102: 14422-14427.
    Hisert KB, MacCoss M, Shiloh MU, et al. 2005. A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Mol. Microbiol. 56: 1234-1245.
    Houdt R, Aertsen A, Moons P, et al. 2006. N-acyl-l-homoserine lactone signal interception by Escherichia coli. FEMS Microbiol. Lett. 256: 83-89.
    Hueck CJ. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379-433.
    Imamura R, Yamanaka K, Ogura T, et al. 1996. Identification of the cpdA gene encoding cyclic 3',5'-adenosine monophosphate phosphodiesterase in Escherichia coli. J. Biol. Chem.271:25423-25429.
    Inada T, Takahashi H, Mizuno T, et al. 1996. Down regulation of cAMP production by cAMP receptor protein in Escherichia coli: an assessment of the contributions of transcriptional and posttranscriptional control of adenylate cyclase. Mol. Gen. Genet. 253: 198-204.
    Jenal U. 2004. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Current Opinion in Microbiology 7: 185-191.
    Johnson MR, Montero Cl, Conners SB, et al. 2005. Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima.Mol. Microbiol. 55: 664-674.
    Kader A, Simm R, Gerstel U, et al. 2006. Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 60:602-616.
    Kahn D, and Ditta G. 1991. Modular structure of FixJ: homology of the transcriptional activator domain with the -35 binding domain of sigma factors. Mol. Microbiol. 5: 987-997.
    Kanamaru K, Kanamaru K, Tatsuno I, et al. 2000a. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 38: 805-816.
    Kanamaru K, Kanamaru K, Tatsuno I, et al. 2000b. Regulation of virulence factors of enterohemorrhagic Escherichia coli O157:H7 by self-produced extracellular factors.Biosci. Biotechnol. Biochem. 64: 2508-2511.
    Karaolis DKR, Cheng K, Lipsky M, et al. 2005. 3',5'-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochem. Biophys. Res. Commun. 329: 40-45.
    Koop AH, Hartley ME, and Bourgeois S. 1987. A low-copy-number vector utilizing beta-galactosidase for the analysis of gene control elements. Gene 52: 245-256.
    Kovacikova G, Lin W, and Skorupski K. 2005. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol. Microbiol. 57:420-433.
    Kozmik Z, Urbanek P, and Paces V. 1990. Albumin improves formation and detection of some specific protein-DNA complexes in the mobility shift assay. Nucleic Acids Res. 18:2198.
    Kulasekara HD, Ventre I, Kulasekara BR, et al. 2005. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol. Microbiol. 55:368-380.
    Laue BE, Jiang Y, Chhabra SR, et al. 2000. The biocontrol strain Pseudomonas fluorescens FI13 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase.Microbiology 146 ( Pt 10): 2469-2480.
    Lazazzera BA, and Grossman AD. 1998. The ins and outs of peptide signaling. Trends Microbiol. 6: 288-294.
    Lazdunski AM, Ventre I, and Sturgis JN. 2004. Regulatory circuits and communication in gram-negative bacteria. Nat. Rev. Microbiol. 2: 581-592.
    Lee J, Jayaraman A, and Wood TK. 2007. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 7: 42.
    Lenz DH, Mok KC, Lilley BN, et al. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69-82.
    Lerat E, and Moran NA. 2004. The evolutionary history of quorum-sensing systems in bacteria. Mol. Biol. Evol. 21: 903-913.
    Lewis HA, Furlong EB, Laubert B, et al. 2001. A structural genomics approach to the study of quorum sensing: crystal structures of three LuxS orthologs. Structure 9: 527-537.
    Li J, Attila C, Wang L, et al. 2007. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J. Bacteriol. 189: 6011-6020.
    Lim B, Beyhan S, Meir J, et al. 2006. Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Mol. Microbiol. 60: 331-348.
    Lindsay A, and Ahmer BMM. 2005. Effect of sdiA on biosensors of N-acylhomoserine lactones. J.Bacteriol. 187:5054-5058.
    
    Losick R, and Kaiser D. 1997. Why and how bacteria communicate. Sci. Am. 276: 68-73.
    
    McFall-Ngai MJ, and Ruby EG. 1991. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254: 1491-1494.
    Mendez-Ortiz MM, Hyodo M, Hayakawa Y, et al. 2006. Genome-wide Transcriptional Profile of Escherichia coli in Response to High Levels of the Second Messenger 3',5'-Cyclic Diguanylic Acid. J. Biol. Chem. 281: 8090-8099.
    Michael B, Smith JN, Swift S, et al. 2001a. SdiA of Salmonella enterica Is a LuxR homolog that detects mixed microbial communities. J. Bacteriol. 183: 5733-5742.
    Michael B, Smith JM, Swift S, et al. 2001b. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J. Bacteriol. 183: 5733-5742.
    
    Miller J (1972) Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory.
    Miller MB, and Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165-199.
    Miller MB, Skorupski K, Lenz DH, et al. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110: 303-314.
    Miller ST, Xavier KB, Campagna SR, et al. 2004. Salmonella typhimuhum recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15: 677-687.
    Minogue TD, Wehland-von Trebra M, Bernhard F, et al. 2002. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol. Microbiol. 44: 1625-1635.
    More MI, Finger LD, Stryker JL, et al. 1996. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272: 1655-1658.
    Nasser W, Bouillant ML, Salmond G, et al. 1998. Characterization of the Erwinia chrysanthemi expl-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol. Microbiol. 29: 1391-1405.
    Nealson KH, Platt T, and Hastings JW. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104: 313-322.
    Nealson KH, and Hastings JW. 1979. Bacterial bioluminescence: its control and ecological significance. Microbiol. Mol. Biol. Rev. 43: 496-518.
    Ohtani K, Hayashi H, and Shimizu T. 2002. The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens. Mol. Microbiol. 44: 171-179.
    Otto M, Sussmuth R, Jung G, et al. 1998. Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett. 424: 89-94.
    Park Y-H, Lee BR, Seok Y-J, et al. 2006. In vitro reconstitution of catabolite repression in Escherichia coli. J. Biol. Chem. 281: 6448-6454.
    Parsek MR, Schaefer AL, and Greenberg EP. 1997. Analysis of random and site-directed mutations in rhll, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Mol. Microbiol. 26: 301-310.
    Parsek MR, Val DL, Hanzelka BL, et al. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. U. S. A. 96: 4360-4365.
    Parsek MR, and Greenberg EP. 2000. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc.Natl. Acad. Sci. U. S. A. 97: 8789-8793.
    Paul BJ, Berkmen MB, and Gourse RL. 2005. From the Cover: DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl. Acad. Sci. USA 102:7823-7828.
    Paul R, Weiser S, Amiot NC, et al. 2004. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 18:715-727.
    Perry SJ, Baillie GS, Kohout TA, et al. 2002. Targeting of Cyclic AMP Degradation to beta 2-Adrenergic Receptors by beta -Arrestins. Science 298: 834-836.
    Piper KR, Beck von Bodman S, and Farrand SK. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362: 448-450.
    Rahmati S, Yang S, Davidson AL, et al. 2002. Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol. Microbiol. 43: 677-685.
    Reverchon S, Bouillant ML, Salmond G, et al. 1998. Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi.Mol. Microbiol. 29: 1407-1418.
    Romling U, Gomelsky M, and Galperin MY. 2005a. C-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57: 629-639.
    Romling U, Gomelsky M, and Galperin MY. 2005b. C-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57: 629-639.
    Romling U, and Amikam D. 2006a. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. 9:218-228.
    Romling U, and Amikam D. 2006b. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. 9:218-228.
    Ross P, Weinhouse H, Aloni Y, et al. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279-281.
    Ruby EG. 1996. Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annu. Rev. Microbiol. 50: 591-624.
    Rust L, Pesci EC, and Iglewski BH. 1996. Analysis of the Pseudomonas aeruginosa elastase (lasB) regulatory region. J. Bacteriol. 178: 1134-1140.
    Ryjenkov DA, Tarutina M, Moskvin OV, et al. 2005. Cyclic Diguanylate Is a Ubiquitous Signaling Molecule in Bacteria: Insights into Biochemistry of the GGDEF Protein Domain. J. Bacteriol. 187: 1792-1798.
    Sambrook J, and Russell D (2001) Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
    Savery NJ, Lloyd GS, Busby SJW, et al. 2002. Determinants of the C-Terminal Domain of the Escherichia coli RNA Polymerase {alpha} Subunit Important for Transcription at Class I Cyclic AMP Receptor Protein-Dependent Promoters. J. Bacteriol. 184: 2273-2280.
    Schaefer AL, Val DL, Hanzelka BL, et al. 1996. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. U. S. A. 93: 9505-9509.
    Schauder S, Shokat K, Surerte MG, et al. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41: 463-476.
    Schmidt AJ, Ryjenkov DA, and Gomelsky M. 2005. The Ubiquitous Protein Domain EAL Is a Cyclic Diguanylate-Specific Phosphodiesterase: Enzymatically Active and Inactive EAL Domains. J. Bacteriol. 187: 4774-4781.
    Simm R, Morr M, Kader A, et al. 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessibility to motility. Mol. Microbiol. 53: 1123-1134.
    
    Sitnikov DM, Schineller JB, and Baldwin TO. 1996. Control of cell division in Escherichia coli:regulation of transcription of ftsQA involves both rpoS and SdiA-mediated autoinduction. Proc. Natl. Acad. Sci. U. S. A. 93: 336-341.
    Sperandio V, Melltes JL, Nguyen W, et al. 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 96: 15196-15201.
    Sperandio V, Torres AG, Giron JA, et al. 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli 0157-H7. J. Bacteriol. 183: 5187-5197.
    Sperandio V, Torres AG, Jarvis B, et al. 2003. Bacteria-host communication: the language of hormones. Proc. Natl. Acad. Sci. U. S. A. 100: 8951-8956.
    Steinberger O, Lapidot Z, Ben-lshai Z, et al. 1999. Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3',5'-cyclic diguanylic acid. FEBS Lett. 444: 125-129.
    Surette MG, and Bassler BL. 1999. Regulation of autoinducer production in Salmonella typhimurium. Mol. Microbiol. 31: 585-595.
    Surette MG, Miller MB, and Bassler BL. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. U. S. A. 96: 1639-1644.
    Taga ME, Semmelhack JL, and Bassler BL. 2001. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol. Microbiol. 42: 777-793.
    Taga ME, Miller ST, and Bassler BL. 2003. Lsr-mediated transport and processing of Al-2 in Salmonella typhimurium. Mol. Microbiol. 50: 1411-1427.
    Tal R, Wong HC, Calhoon R, et al. 1998. Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes. J. Bacteriol. 180: 4416-4425.
    Tamayo R, Tischler AD, and Camilli A. 2005. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J. Biol. Chem. 280: 33324-33330.
    
    Tischler AD, and Camilli A. 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 53: 857-869.
    Tischler AD, and Camilli A. 2005. Cyclic Diguanylate Regulates Vibrio cholerae Virulence Gene Expression. Infect. Immun. 73: 5873-5882.
    Vendeville A, Winzer K, Heurlier K, et al. 2005. Making 'sense' of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol. 3: 383-396.
    Wang L, Hashimoto Y, Tsao C-Y, et al. 2005a. Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. i.Bacteriol. 187:2066-2076.
     Wang L, Li J, March JC, et al. 2005b. luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J. Bacteriol. 187: 8350-8360.
    Wang XD, de Boer PA, and Rothfield LI. 1991. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J. 10: 3363-3372.
    Ward JE, Jr., and Lutkenhaus J. 1985. Overproduction of FtsZ induces minicell formation in E. coli. Cell 42: 941-949.
    Waters CM, and Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria.Annu. Rev. Cell Dev. Biol. 21: 319-346.
    Weber H, Pesavento C, Possling A, et al. 2006. Cyclic-di-GMP-mediated signalling within the s~s network of Escherichia coli. Mol. Microbiol. 62: 1014-1034.
    Wei Y, Lee J-M, Smulski DR, et al. 2001a. Global impact of sdiA amplification revealed by comprehensive gene expression profiling of Escherichia coli. J. Bacteriol. 183: 2265-2272.
    Wei Y, Vollmer AC, and LaRossa RA. 2001b. In vivo titration of mitomycin C action by four Escherichia coli genomic regions on multicopy plasmids. J. Bacteriol. 183: 2259-2264.
    Weinhouse H, Sapir S, Amikam D, et al. 1997. c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett. 416: 207-211.
    Winzer K, Hardie KR, Burgess N, et al. 2002. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148: 909-922.
    Winzer K, Hardie KR, and Williams P. 2003. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv. Appl. Microbiol. 53: 291-396.
    Xavier K, Miller S, Lu W, et al. 2007. Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem. Biol. 2: 128-136.
    Xavier KB, and Bassler BL. 2003. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6: 191-197.
    Xavier KB, and Bassler BL. 2005a. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol. 187: 238-248.
    Xavier KB, and Bassler BL. 2005b. Interference with AI-2-mediated bacterial cell-cell communication. Nature 437: 750-753.
    Yamamoto K, Yata K, Fujita N, et al. 2001. Novel mode of transcription regulation by SdiA, an Escherichia coli homologue of the quorum-sensing regulator. Mol. Microbiol. 41:1187-1198.
    Yao Y, Martinez-Yamout MA, and Dyson HJ. 2005. Letter to the editor: backbone and side chain ~1H, ~(13)C and ~(15)N assignments for Escherichia coli SdiA 1-171, the autoinducer-binding domain of a quorum sensing protein. J. Biomol. NMR 31: 373-374.
    Yao Y, Martinez-Yamout MA, Dickerson TJ, et al. 2006. Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J. Mol. Biol. 355: 262-273.
    Yoshimura-Suzuki T, Sagami I, Yokota N, et al. 2005. DOSEc, a Heme-Regulated Phosphodiesterase, Plays an Important Role in the Regulation of the Cyclic AMP Level in Escherichia coli. J. Bacteriol. 187: 6678-6682.
    Yu D, Ellis HM, Lee EC, et al. 2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 97: 5978-5983.
    Zhang R-g, Pappas T, Brace JL, et al. 2002. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417: 971-974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700