用户名: 密码: 验证码:
聚合物弹丸的碰撞行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚碳酸酯是一种无定形的热塑性材料,具有优良的物理机械性能,尤其是耐冲击性优异,性能与一般金属材料十分相似,被称为“透明金属”。利用其透明性和高抗冲击强度,可制作防弹玻璃、飞机的挡风罩、座舱盖等。因此,开展聚碳酸酯力学行为研究,掌握温度、应变率对聚碳酸酯力学性能的影响规律,为聚碳酸酯材料作为冲击防护结构设计提供技术支持;聚合物材料屈服、变形机制的研究也是高分子科学的前沿研究领域,具有较高学术价值,另一方面,在战斗部的设计中,需了解穿靶过程中弹体的动态响应以及影响弹体破坏的主要因素等,从而设计出合理的弹体结构。由于战斗部弹体一般由高强度金属材料制成且弹体结构复杂,难以从现有试验中观察、分析撞靶过程中弹体结构参数对其响应的影响规律,也给相关理论分析和数值模拟工作的模型校验带来较大难度。而用聚碳酸酯材料制作的透明弹丸,可以直观的观测不同弹体的撞击变形或破坏现象,认识弹体在冲击载荷作用下的变形或破坏规律。也可将试验数据能直接用于相关理论分析及数值模拟工作中模型校验和修正,研究弹体撞靶过程的动态破坏规律,建立相应的研究方法,为战斗部的结构设计提供一定的理论依据和技术支撑。
     本文在分析国内外有关无定形聚合物力学行为及聚合物材料Taylor撞击响应研究的基础上,设计实施了聚碳酸酯材料在宽温度范围、宽应变率范围的力学行为实验研究,对其屈服和塑性变形机理进行了分析,建立了无定形聚合物材料屈服的本构模型;开展了聚碳酸酯弹丸的撞击和穿甲实验研究,采用光塑性分析方法,对聚合物弹丸碰撞的塑性变形行为进行了分析,给出了不同弹丸头形撞击后的变形或破坏的影响规律。论文的主要研究内容、方法和结论如下:
     ①无定形聚合物的屈服和塑性变形机理非常复杂,在不同的变形阶段、不同的实验条件下有不同的机理,在变形过程中构象改变、位错运动和扭结传播同时存在。分子动力学模拟表明:在弹性区域,体系的总势能和各势能分量随应变的增加发生不规则的波动;在屈服点附近,总势能和键伸缩振动能将突然增加,非键作用能(范氏作用能)将减少;在稳定的塑性流动区域,各项能量分量变化不大;在应变硬化阶段,各项能量随应变增加而增大;在拉伸过程中,当应变接近屈服区域时,材料内部的变形是不均匀的,局部出现空隙,进入塑性流动区域时,分子开始发生取向。
     ②聚碳酸酯是一种应变率和温度敏感材料,其流动应力随应变率增加而增大,随温度升高而降低;屈服应力随应变率的变化满足幂律函数关系;其屈服应力在应变率为102/s发生转折,比金属材料低两个数量级;在低于玻璃化温度时,屈服应力与温度的关系满足多项式指数方程,在温度低于-75℃或高于100℃时,有突变现象,屈服可看作是一种应力产生的相变,相当于热力学过程;加载弹性模量随温度升高而降低,随应变率增加而升高;在屈服点前的加、卸载循环压缩表明,加、卸载弹性模量随循环次数的增加而增加,即在粘弹性区域,循环加、卸载也会使聚合物材料发生硬化。
     ③在准静态拉伸条件下,在接近屈服点时表面温度开始上升,在应变软化阶段温度上升最快,进入稳定的塑性流动区域后,最高温度变化跟随颈缩区域移动,几乎保持不变,既材料进入塑性区域温度到达最高;在动态压缩下,试样中心温度最高,由中心向外逐渐降低,而且温升率和上升的最高温度与应变率有关的。在应变率为2624s-1时,有59%的塑性功转变为热。
     ④聚合物材料在断裂之前,要先发生分子链的滑移,引起局部变形,呈现出变形的不均匀性:对于钝角边缺口试样,断裂之前,应变场沿载荷45度-60度方向到达试样的承受载荷的中心线位置;断面形貌与裂纹传播的速度有关。
     ⑤通过对不同头形的PC弹丸进行了弹速在118m/s~278m/s范围内撞击刚性靶实验研究,表明可以通过测量弹丸撞击刚性靶的压力反映弹体的载荷时间历程;其脉冲宽度主要取决弹丸的长度,弹丸头部越尖,其波形越平滑,弹丸头部越接近平头,其波形振荡越严重。冲击载荷的最大峰值和弹丸的变形受弹丸头部形状的影响较大。
     ⑥通过对三种不同头部形状PC弹丸对纯铝靶和A3钢靶的穿甲实验结果分析表明,PC弹丸穿甲变化规律与金属弹丸穿甲实验的规律相似,三种头部形状的弹丸中,平头弹丸的过载系数最大,半球头弹丸的次之,截锥型相切尖拱弹丸的过载系数最小。高长径比的截锥型相切尖拱弹丸有利于穿甲。
     ⑦不同头形的弹丸在撞击后的塑性变形分析表明,不同头形弹丸内部的变形模式不同,撞击刚性靶和穿甲后引起的弹丸变形模式也不相同,无论是撞击刚性靶还是穿甲,从头部开始逐渐远离头部,都存在变形模式的转变;弹丸在碰撞时主要是头部承受冲击载荷,柱段承受的冲击载荷较小,因此在弹丸设计的选材时,柱段可以选用强度较低的材料。
     ⑧在对一维DSGZ模型分析的基础上,将其转化为三维模型,并以用户子程序的形式将该模型嵌入到大型通用有限元分析程序ABAQUS/Explicit中,不仅较好模拟了聚碳酸酯弹丸的撞击和穿甲响应,也可以直接应用于实际工程分析,增强了DSGZ模型的实用性。
As a amorphous thermal-plastic material, polycarbonate is also called“transparent metal”because of its excellent physical mechanical properties, especially the great impact resistance fairly similar with that of general metal materials. With the high transparence and impact strength, it could be applied in bulletproof glass, windshield, cockpit of airplane and so on. Therefore, studying the dynamic behavior of polycarbonate can provide technology support for the design of anti-impact structure using polycarbonate. Furthermore, for the design of warhead, the dynamic response of Penetrator during penetration target process and the main factor influencing the damage of projectile-body must be learned to design reasonable structure. As the body of warhead is usually made from high strength metal and its structure is very complicated, it is difficult to analysis that how its structure parameter influence the response during impacting process from current experiment, which put great difficulty on related theoretic analysis and model validation of computational simulations. By using transparent projectiles made from polycarbonate, we could observe the deformation and damaging process intuitively and understand the deformation and damaging rules. Moreover, the experimental data can be directly used in related theoretic analysis, checking and modifying models of computational simulations, studying the dynamic damage rules during impacting process, establish corresponding research method, which could provides certain theory base and technology support for the structure design of warhead.
     In this paper, based upon the analysis of the dynamic behavior of polycarbonate and Taylor impact response of polymeric materials, a series of experiments about the dynamic behavior in wide temperature and strain rate range were designed and performed. By analyzing the yield and plastic deformation mechanism, the yield constitutive model of amorphous polymeric materials was founded. By using polycarbonate as model material, impacting and penetrating experiments were carried out with polycarbonate projectiles. Combining photoplastic analysis, the influence rule of projectile on deformation or damage during impact process was provided. The main study content, methods and conclusions of this thesis are as follows:
     ①The yield and plastic deformation mechanisms of amorphous polymers are very complicated. At different deformation stage and testing conditions there are different mechanisms such as the conformation changing、dislocation movement and kink pair propagation simultaneity existing in the deformation process at the same time. The molecule dynamic simulation result indicated that at elastic region, the system total potential energy and potential component irregularly fluctuated with the increase of strain. Close to the yield point, total potential energy and bond stretching energy abruptly increased and non-bond energy (Van der Waals energy) decreased. At steady plastic flowing region, each kind of energy had no apparently changing. At strain hardening stage, each kind of energy rose with the increase of stain. Analyzing the rapid snapshot on molecule chain during drawing process, it could be found that near yield region the internal deformation of materials was asymmetry. Interspaces appeared partially; after going into flowing region, molecules began to orientate.
     ②Polycarbonate is sensitive against strain rate and temperature. Its yield stress increases with the increase of strain rate and decreases when temperatures rise. The dependence of yield stress against strain rate agrees with power-law function;Under glass transition temperature, the relationship of yield stress and temperature agree with polynomial Index equation. Below -75℃or above 100℃, there is a sudden change phenomena occurring. Yield can be looked as a kind of phase transition caused by stress, which could be equivalent to a thermodynamics process. The loading elastic modulus decreases with the rise of temperature and increases with the rise of strain rate. Cyclic loading and unloading compression experiment before yield point indicate that loading and unloading elastic modulus rise with the of increase cyclic times. Namely, cyclic loading and unloading will also cause the hardening of materials in viscoelastic region.
     ③Under quasi-static tension conditions, the surface temperature begins to rise when approaching the yield point and rise fastest at strain softening stage. After going into steady plastic flowing region, the highest temperature tailing after the necking region has no obvious change,that is, the temperature reaches the highest after going into plastic region. Under dynamic compress, the temperature of the specimen has the h -ighest value in the center and become to decrease from center to out side. The temperature rising rate and the highest rising value depend on strain rate. At strain rate of 2624s-1,about 59% plastic work transforms into heat.
     ④Before the rupture of polymeric materials, slippage of molecular chains firstly occurs which will cause partial deformation and result in the asymmetry of deformation. For single edge notched specimen before rupture, strain field reaches centerline position enduring loads along 45°~60°direction. For double edge notched specimen, the strain field will focuses to centerline position along the same direction. The rupture shape is related to the crack propagation rate.
     ⑤A serials of PC projectile with different nosed shape and speed of 118m/s~278m/s were used to impact rigid target, the experiment result indicated that the load-time history of projectile can be obtained by measure the interface pressure while projectile impacting target. The impact pulse width mainly lies on the length of projectile. The wavform is smooth when the acuter the projectile-nose and waveform is vibrational when the projectile-nose approach flated-end. And the deformation of projectile is deeply affected by the shape of projectile-nose.
     ⑥The Penetrating experiment of 3 kind of PC projectile with different nose shape at speed of 150m/s~250m/s across pure aluminums target and A3 steel target shows that the changing laws of PC projectile are similar with that of metal projectile. The overload coefficient of these 3 specimens decease in the following trend: flated-end projectile>hemisphere nosed projectile>truncated conical tip projectile. And the truncated conical tip projectile with large length-diameter ratio is suitable for Penetration.
     ⑦The photoplastic analysis after impacting experiment shows that the interior deformation models are deferent according to different nose-shape. And the deformation model of projectile impacting rigid target is also different from that of Penetrating one. The changing of deformation model exists from nose to end of projectile. When a projectile impacts target, cylindrical regions endure smaller impact loading than nose region. Thus, materials with lower strength such as composite materials can be used for cylindrical regions to raise mass ratio between energetic materials and penetrator.
     ⑧After thorough analyzed, the one-dimensional DSGZ model was transformed into three-dimensional and the model which was then embedded into huge general FEM program ABAQUS/Explicit as user subroutine. Not only the impacting and penetrating response of polycarbonate projectile was well simulated, but also immediacy apply to engineering analysis and practicability of DSGZ model is enhanced.
引文
[1] W. Goldsmith. Review: Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering. 1999, 22:95-395.
    [2] [美] E.L.托马斯主编.聚合物的结构与性能[M].科学出版社,1999,P34.
    [3] Arise. ram. Fundamentals of polymer Engineering[M]. New rork.1997, p75-102.
    [4] A.Keller, D.P.Pope. Identification of structural processes in deformation of oriented polyethylene[J]. Journal of Materials Science. 1971, 6:453-478.
    [5] A.Peterlin. Molecular model of drawing polyethylene and polypropylene[J]. Journal of Materials Science. 1971, 6:490-508.
    [6] P H.Geil, H.Kiho, A.Peterlin Polymer deformation. V. A possible case of repeated twinning[J]. Journal of Polymer Science Part B: Polymer Letters. 1964, 2(1):71-74.
    [7] W. Wu, A.S.Argon and A.P.L.Turner. Plastic deformation of polyethylene crystals on copper and NaCl crystal substrates[J]. Journal of Polymer Science: Polymer Physics Edition. 1972, 10(12):2379-2407.
    [8] J.Peterman and H. Gleiter. Observation of slip trace in polyethylene single crystals[J]. Journal of Polymer Science: Polymer Physics Edition. 1972,10(9): 1731-1741.
    [9] Henry Eyring. Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates[J]. The Journal of Chemical Physics. 1966, 4(4):283-291.
    [10] R. A. Duckett, S. Rabinowitz and I. M. Ward. The strain-rate, temperature and pressure dependence of yield of isotropic poly(methylmethacrylate) and poly(ethylene terephthalate) [J]. Journal of Materials Science. 1970, 5(10):909-915.
    [11] S. Rabinowitz, I. M. Ward and J. S. C. Parry The effect of hydrostatic pressure on the shear yield behavior of polymers[J]. Journal of Materials Science. 1970, 5(10):29-39.
    [12] K.C. Rusch; R.H. Beck JR. Yielding behavior of glassy polymers. I. Free-volume model[J]. Journal of Macromolecular Science Part B. 1969, 3(3):365–383.
    [13] J.-C. Bauwens. Attempt to correlate the formation of free volume and the plastic deformation process in glassy polymers[J]. Polymer. 1980, 21(6):699-705.
    [14] J. -C. Bauwens, Relation between the compression yield stress and the mechanical loss peak of bisphenol-A-polycarbonate in theβtransition range[J]. Journal of Materials Science. 1972, 7(5):577-584.
    [15] Richhard E. Robertson. Theory for the Plasticity of Glassy Polymers[J]. The Journal of Chemical Physics. 1966, 44(10):3950-3956.
    [16] M. G. Brereton, R. A. Duckett, S. H. Joseph and P. J. Spence. An interpretation of the yield behaviour of polymers in terms of correlated motion[J]. Journal of the Mechanics and Physics of Solids, 1977, 25(2):127-136.
    [17] J.C.M.Li and J.J.Gilman. Disclination Loops in Polymers[J]. Journal of Applied Physics. 1970, 41(11):4248-4256.
    [18] P. B. Bowden,S. Raha. A molecular model for yield and flow in amorphous glassy polymers making use of a dislocation analogue[J]. Philosophical magazine. 1974,29(1):149-166.
    [19] A. S. Argon. A theory for the low-temperature plastic deformation of glassy polymers[J]. Philosophical magazine. 1973, 28(4):839-865.
    [20] A. S. Argon. Physical basis of distortional and dilational plastic flow in glassy polymers[J]. Journal of Macromolecular Science, Part B. 1973, 8(3&4):573-596.
    [21] I.V.Yannns.Distortional and dilational plastic flow in polymers [C].In proceeding of International Sympomsium on cromolecular Physics,ed. E. B. Mano. Rio de Janeiro, 1974, p265.
    [22] Z. H. Stachurski. Yield strength and anelastic limit of amorphous ductile polymers. Part 1 Amorphous structure and deformation [J]. Journal of Materials Science. 1986, 21(9):3231-3236.
    [23] Z. H. Stachurski. Yield strength and anelastic limit of amorphous ductile polymers. Part 1 Amorphous structure and deformation [J]. Journal of Materials Science. 1986, 21(9):3237-3242.
    [24] M.C.Boyce, D.M.Parks and A.S.Argon. Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model[J]. Mechanic of Materials. 1988, 7(1):15-33.
    [25] E.M.Arruda and M.C.Boyce. Evolution of plastic anisotropy in amorphous polymers during finite straining [J]. International Journal of Plasticity. 1993, 9(6): 697-720.
    [26] P.B.Wu, and E.Van der Giessen. Analysis of shear band propagation in amorphous glassy polymers [J]. International Journal of Solids and Structures. 1994, 31(11): 1493-1517.
    [27] J. Lu, K.Ravi—Chander. Inelastic deformation and localization in polycarbonate under tension [J]. International Journal of solids and structures. 1999, 36:391-425.
    [28] I.J.Rao, K.R.Rajagopal. A study of strain-induce crystallization of polymers [J]. International Journal of solids and structures. 2000, 38:1149-1167.
    [29] T.K. Mattioli, D.J. Quesnel. Rate process analysis applied to the mechanical behavior of glassy bisphenol-A-polycarbonate [J]. Polymer Engineering & Science. 1987, 27(11):848-856.
    [30] E.M.Arruda, M.C.Boyce, R.Jayachandran. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers [J]. Mechanicof Materials. 1995, 19(2-3):193-212.
    [31] J.Bauwens, C.Bauwens-Crwet and G.Homes. Tensile yield-stress behavior of poly(vinyl choride) and polyvarbonate in the glass transition region[J]. Journal of polymer Science. 1969, part A-2, 7:1745-1754.
    [32] J.Bauwens, C.Bauwens-Crwet and G.Homes. Tensile yield-stress behavior of glassy polymers [J]. Journal of polymer Science. 1969, part A-2, 7:735-742.
    [33] E. Kontou. Effect of Thermal Treatments on the Yielding of Polycarbonate [J]. Journal. Applied. Polymer. Science. 2005 98:796-805.
    [34] J.Sweeney, P.Caton-Rose, P.D.Coates. Modeling the Large-Strain Constitutive Behavior of Polycarbonate under Isothermal and Anisothermal Conditions [J]. Journal. Applied. Polymer. Science.. 2005, 96: 2105-2116.
    [35] S.B.Clay. Measurement of the Residual Mechanical Properties of Crazed Polycarbonate. II: Design of Experiments Analysis [J]. Polymer Engineering & Science. 2002, 42(1): 191-202.
    [36] F.Povolo, G.Schwartz, and E.B.Hermida. Temperature and Strain Rate Dependence of the Tensile Yield Stress of PVC [J]. Journal of Applied Polymer Science. 1996, 61:109-117.
    [37] Bauwens-Crowet and J–C. Bauwens. Annealing of polycarbonate below the glass transition quantitative interpetation of the effect on yield stress and differential scanning calorimetry measurement [J]. Polymer. 1982, 23:1599-1604.
    [38] A.S.Argon, M.I.Bessonov. Plastic-defrmation in polyimides, with new implication on the plastic-deformation of glassy polymer [J]. Philosophical Magazine. 1977, 35: 917-933.
    [39] S.Yamin and R.J.Young. The mechanical-properties of epoxy- resins 1. Mechanicsms of plastic-deformation [J]. Journal of Materials Science. 1980, 15(7):1814-1822.
    [40] O.A.Hasan and M.C.Boyce. Energy-storage during inelastic deformation of glassy polymers [J]. Polymer.1993, 34(24): 5085-5092.
    [41] O.A.Hasan and M.C.Boyce.A constitutive model for the nonlinear viscoelastiv viscoplastic behavior of glassy-polymers [J]. Polymer Engineering & Science. 1995, 35(4): 331-344.
    [42]刘旭红,黄西成,陈裕泽,苏先越,朱建士.强动载荷下金属材料塑性变形本构模型评述[J].力学进展. 2007, 37(43): 361-374.
    [43]王仁,陈晓红.高分子材料粘弹塑本构关系进展[J].力学进展. 1995, 25:289-301.
    [44]王礼立,杨黎明.固体高分子材料非线性粘弹性本构关系.冲击动力学进展[M].合肥.中国科技大学出版社.1992, 88-116.
    [45]张杰,胡平,甘志华.玻璃态聚合物塑性大变形微观结构模型研究进展[J].高分子材料科学与工程. 2000. 16(7):26-29.
    [46] Y.Duan, A.Saigal, R.Greif. A uniform phenomenological constitutive model for glassy andsemicrystalline polymer [J]. Polymer Engineering and Science. 2001, 41(8): 1322-1328.
    [47] R.N.Haward, The application of a Gauss-Eyring model to predict the behavior of thermoplastic in tensile experiments [J]. Journal of polymer Science part B-Physics. 1995, 33:1481-1494.
    [48] J.Sweeny. A comparison of three polymer network models in current use[J]. Computational and Theoretical Polymer Science. 1999, 9:27-33.
    [49] M.C.Boyce, D.M.Parks, A.S.Argon. Large inelastic deformation of glassy polymers partⅠ: Rate dependent constitutive model [J]. Mechanics of Materials. 1988, 7(1):15-33.
    [50] E.M.Arruda, M.C.Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials [J]. Journal of the Mechanics and Physics of Solids. 1993, 41:389-412.
    [51] P.D.Wu, E. van der Giessen. On improved network model for rubber elasticity and their application to orientation hardening in glassy polymers [J]. Journal of the Mechanics and Physics of Solids. 1993, 41:427-45.
    [52] Y.Tomita, T.Adachi, S.Tanaka. Modelling and application of constitutive equation for glassy polymer based on nonaffine network theory [J]. European Journal of Mechanics A/Solids. 1997, 16:745-755.
    [53] A.D.Drozdov, R.K.Gupta. Constitutive equations in finite viscoelasticity of semicrystalline polymers [J]. International Journal of Solids and Structures. 2003, 40:6217-6243.
    [54] L.Anand, M.E.Gurtin. A theory of amorphous solids undergoing large deformation, with application to polymeric glasses [J]. International Journal of Solids and Structures. 2003, 40:1465-1487.
    [55] I.M.Ward and D.W. Hadley. An introduction to the mechanical properties of solid polymer[M]. Wiley & Sons, New York, 1993
    [56] W.Borstow and R.D.Corneliussen. Failure of Plastic. Macmillan Pub., New York,1986
    [57] R.P.Nimmer. Some problems associated with the puncture testing of plastics [J]. Polymer Engineering & Science. 1983, 23(3): 155-164.
    [58] O.A.Hasan.An experimental and analytical investigation of the thermomechanical properties of glassy polymers [D]. PhD.Thesis, MIT, Cambridge, Massachusetts, 1994
    [59] J.Amoedo and D.Lee, Modeling the uniaxial rate and temperature dependent behavior of amorphous and semicrystalline polymers [J]. Polymer Engineering & Science.1992, 32(16): 1055-1065.
    [60] C.G’Sell and J.J.Jonnas, Determination of the plastic behavior of solid polymer at constant true strain rate [J]. Journal of Materials Science. 1971, 4(3): 583-5919.
    [61] E.M.Arruda, M.C.Boyce, R.Jayachandran. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers[J]. Mechanic of Materials. 1995, 19(2-3): 193-212.
    [62] I. M. Ward.The role of molecular networks and thermally activated processes in the deformation behavior of polymers [J]. Polymer Engineering & Science. 1984, 24(10): 724-736.
    [63] R.M.Christensen. Theory of viscoelasticity: An introduction. Academic Press, New York, 1971.
    [64] A. D. Drozdov, A. L. Kalamkarov. A constitutive model for nonlinear viscoelastic behavior of polymers [J]. Polymer Engineering & Science. 1996, 36(14): 1907-1919.
    [65] A.D.Drozdov. Constitutive equations in nonlinear visoplasticity of glassy polymers based on the concept of traps [J]. Polymer Engineering & Science. 2000, 40(3): 818-825.
    [66] M.C.Boyce.Large inelastic deformation on glassy polymers [D]. PhD. Thesis, MIT, Cambridge, Massachusetts, 1986
    [67] S.Bahadur. Strain hardening equation and the prediction of tensile strength of rolled polymers [J]. Polymer Engineering & Science. 1973, 13(4): 266-272.
    [68] D.Lee and P.C.Luken. Material modeling and solid phase forming of polycarbonate sheet [J]. Polymer Engineering & Science. 1986, 26(9): 612-619.
    [69] Y.Tomita. Constitutive modelling of deformation behavior of glassy polymers and applications [J]. International Journal of Mechanical Sciences. 2000, 42(8): 1455-1469.
    [70] Y. Tomita and S. Tanaka. Prediction of deformation behavior of glassy polymers based on molecular chain network model [J]. International Journal of Solids and Structures. 1995, 32(23): 3423-3434.
    [71] Y. Tomita and S. Tanaka. Characterization of micro- to macroscopic deformation behavior of amorphous polymer with heterogeneous distribution of microstructures [J]. International Journal of Mechanical Sciences. 2003, 45(10): 1703-1716.
    [72] Y. Tomita and S. Tanaka. Computational characterization of micro- to mesoscopic deformation behavior of semicrystalline polymers [J]. International Journal of Mechanical Sciences. 2000, 47(4-5): 687-700.
    [73]杨挺青.粘弹塑本构理论及其应用[J].力学进展. 1992, 22(1): 10-19.
    [74]杨挺青,罗之波,徐平等著.粘弹性理论与应用[M].科学出版社. 2004, P168.
    [75] L.E.Malvern, Plastic wave propagation in a bar of material exhibiting a strain-rate effect [J]. Quart of Applied Mathematics. 1950, 8:405-411.
    [76] L.E.Malvern, The propagation of longitudinal waves of plastic deformation in bar of materialexhibiting a strain-rate effect[J]. Journal of Applied Mechanics. 1951, 18(2):203-208.
    [77]黄克智.非线性连续介质力学[M].北京:科学出版社.1989.
    [78] N.Cristescu. A procedure for determining the constitutive equation of exhibiting both time-dependent and time-independent plasticity [J]. Journal of the Mechanics and Physics of Solid. 1972, 8:511-531.
    [79]王仁,杨桂通.塑性力学进展[M].北京:中国铁道出版社.1988.
    [80] Y.Duan, A.Salgal and R. Greif. Analysis of Multiaxial impact behavior of polymers [J]. Polymer Engineering and Science. 2002, 42(2): 395-402.
    [81] Y.Duan, A.Salgal and R. Greif. Impact behavior and model of Engineering polymers [J]. Polymer Engineering and Science. 2003, 43(1):112-124.
    [82] N.W.J.Brooks, R.A.Duckett, I.M.Ward.Temperature and Strain- Rate Dependence of Yield Stress of Polyethylene [J]. Journal Polymer Science.B: Polymer Physics. 1998, 36:2177-2189.
    [83] R.N.Haward, G.Thackray. The use of a mathematical model to describle isothermal stress-strain curves in glassy thermoplastic [J]. Proceeding the Royal of Society A. 1968, 302:453-472.
    [84] Joseph Carleone. Tactical missile warheads [M]. The American Institute of Aeronautics and Astronautics, Inc.. 1993: 175-183.
    [85] D.H.Allen.Thermomechanical Coupling in inelastic solids [J]. Applied Mechanics Review. 1991, 44:361-373.175-180.
    [86] J.J. Mason, A.J.Rosakis, G.Ravichamdran. On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and kolsky bar[J]. Mechanics of Materials. 1994, 17:135-145.
    [87] R.Weichert. On the temperature rise at the tip of a fast running crack [J]. Journal of the Mechanics and Physics of Solid. 1974, 22(2):127-133.
    [88]曹正元,袁旬华,顾邵德等.红外应变图分析方法的应用[J].力学与实践. 1994,16(3): 32-34.
    [89] S.A .Telenkov, Y.Wang, Y.Lu et al. Infrared imaging of stress-crazing in rubber modified polystrene [J]. Polymer Engineering and Science. 1998, 38(3)392-391.
    [90]朱锡雄,朱国瑞,黄旭升等.航空用PMMA的非线性热弹性本构关系[J].航空学报. 1992, 13(11): A594-A601.
    [91]钱伟长.穿甲力学[M].国防工业出版社. 1985.
    [92] G. I. Taylor, The use of flat-ended projectiles for determining dynamic. yield stress. I. Theoretical considerations [J]. Proceedings of royal society (London). Series A. Mathematicaland Physical Science. 1948,194:289-299.
    [93] A. C. Whiffin. The use of flat-ended projectiles for determining dynamic yield stress.Ⅱ:Tests on various metallic materials [J]. International Journal of Impact Engineering. 1999, 22(5): 855-886.
    [94] S. E. Jones. A one-dimensional two-phase flow model for Taylor impact specimens [J]. Journal of engineering material. Trans. ASME. 1991,113:228-235.
    [95] S. E. Jones. An engineering analysis of plastic wave propagation the Taylor test [J]. International Journal of Impact Engineering .1997.19(2):95-106.
    [96] M. J. Forrestal, A. J. Piekutowski. Penetration of Aluminum targets by Ogive-nose steel projectile at striking velocities to 3.0km/s[C]. Proceedings of International Conference on Fundamental Issues and Application of Shock Wave and High-strain-rate Phenomena. 2002.
    [97]陈裕泽.变形弹体击穿薄板力学参量分析及其应用[R].内部报告, 1988.
    [98]田常津.弹体穿甲力学过程分析及在XXX斗部选型上的应用[R].内部报告, 1988.
    [99] A.Turgutlu, S.T.S.AL-Hassani and M.Akyurt.Impact defformation of polymeric projectiles [J]. International Journal of Impact Engineering. 1996, 18(2):119-127.
    [100] M.R. Staker, Metals handbook Ninth edition-introduction [M], Ohio, USA: American Society for metals. 1980, 187-189.
    [101] P.S. Follasbee, Metals handbook Ninth edition-high strain rate compression testing, Ohio, USA: American Society for metals. 1980, 190-207.
    [102] M.A. Meyers, Dynamic Behavior of Materials [M], New York, USA: John Wiley & Sons, Inc.. 1994, 296-324.
    [103] M.M.Al-Mousawi, S. R. Reid, W. F. Deans, Use of the split Hopkinson pressure bar techniques in high strain rate materials testing [J]. Mechanical Engineering Science, 1997, 211(4):273-292.
    [104] R. M. Davies, A critical study of Hopkinson pressure bar. Philosophical [J]. Transaction of the royal society. 1948, A240: 375-457.
    [105] A. Kolsy, An investigation of the mechanical properties of materials at very high rates loading [J]. Proceeding the royal of Society. (London) B. 1949, B62: 676-700.
    [106] J. Harding, E. D. Wood and J. D. Campbell, A tensile testing of materials at impact rate of strain [J]. Journal of Mechanical Engineering science. 1960, 2:1-96.
    [107] J. Harding and L. M. Wels, A tensile testing technique for fiber-reinforced composites at impact rate of strain [J]. Journal of Materials Science. 1983, 18(6): 1810-1826.
    [108] W. E. Baker, C. H. Yew, Strain-rate effects in the propagation of torsional plastic wave [J]. Journal of Applied Mechanics. 1996, 64: 917.
    [109] J. D. Campbell, A. R. Dowling, The behaviour of materials subjected to dynamic incremental shear loading [J], Journal of the Mechanics and Physics of Solids. 1970, 18(1):43-63.
    [110] J. Duffy, J. D. Campbell and R.H. Hawley, On the use of a torsional split Hopkinson bar study rate effects in 1100-0 aluminium [J]. Journal of Applied Mechanics. 1971, 38:83-91.
    [111] U.S.Lindholm. Some experiments with split hopkinson pressure bar[J]. Journal of the Mechanics and Physics of Solids. 1964, 12(5): 317-335.
    [112]李玉龙,索涛,郭伟国等.确定材料在高温高率下动态性能的Hopkinson杆系统[J].爆炸与冲击. 2005, 25(6): 487-492.
    [113]张方举,谢若泽,田常津等, SHPB系统高温自组装技术[J].实验力学. 2005, (2): 281-284.
    [114] C.R.Siviour, S.M.Walley, W.G.Proud and J.E.Field. The high strain rate compressive behaviour of polycarbonate and polyvinylidene [J]. Polymer. 2005, 46(26): 12546-12555.
    [115] J.J.Mason, A.J.Roski, G.Ravichandran. On the strain rate dependence of fraction of plastic work converted into heat: an experimental study using high-speed infrared detectors and the kolsky bar [J], Mechanics of Materials. 1994, 17:135-145.
    [116] J.Hedowany, G.Ravichandran. A.J. Roski. Partition of plastic work into heat and energy stored in metal [J], Experimental Mechanics. 2000, 40(2): 113-123.
    [117] R.Kapoor, S.Nemat-Nasser,determination of temperature rise during high strain rate deformation[J] , Mechanics of Materials. 1998, 27:1-12.
    [118] P. Rosakis, A.J. Rosakis, G. Ravichandran, J.Hodowany. A thermodynamic interal variable model for the partition of plastic work into heat and stored energy in metal [J]. Journal of the Mechanics and Physics of Solid. 2000, 48:581-607.
    [119] S.C. Chou, K.D. Robertsonal and J.H. Rainey. The effect of strain and heat developed during deformation on the stress-strain curve of plastic [J], Experimental Mechanics. 1973, 13(3): 422-432.
    [120] G.W.Adams, R.J.Farris. Latent enery of deformation of bisphenol-A-Ploycarbonate [J]. Polymer engineering and Science part B. polymer Physics. 1988, 26:433-445.
    [121] A.Trojanowski, C.Ruiz, J.Harding. Thermomechanical properties of polymers at high rates of strain [J]. Journal of Physics,Ⅳ.France. 1997, C3:7.
    [122] D.Rittle. On the conversion of plastic work to heat during high strain rate deformation of glassy polymers [J]. Mechanics of Materials. 1999, 31:131-139.
    [123] Zhouhua Li, John Lambros. Strain rate effects on the thermomechanical behavior of polymers [J]. International Journal of solids and Structures [J]. 2001, 38:3549-3562.
    [124] J.W.Hutchinson, K.W.Neale. Neck propagation [J]. Journal of the Mechanics and Physics of Solid. 1983, 31(5): 405-426.
    [125] L.O. Fager, J.L. Bassani . Plane strain neck propagation [J]. Journal of the Mechanics and Physics of Solid. 1986, 22 (11): 1243-1257.
    [126] P. Tugcu, K.W.Neale. Necking and neck propagation in polymeric materials under plane strain tension [J]. Journal of the Mechanics and Physics of Solid. 1987, 23(7): 1063-1085.
    [127] Y.Tomita, K.Hayashi.Thermo-elasto-viscoplastic deformation of polymeric bars under tension [J]. Journal of the Mechanics and Physics of Solid. 1993, 30(2): 225-235.
    [128]胡平,Y.Omita.高分子材料平面应变拉伸变形局部化[J].力学学报. 1996, 28(5): 564-574.
    [129]胡平.预延伸非晶聚合物材料各向异性变形局部化[J].力学学报. 1998, 30(3): 354-361.
    [130]王任达主编.全息和散斑检测[M].机械工业出版社. 2004,P114-115.
    [131] R?sler, H. Harders, M. B?ker. Mechanical Behavior of Engineering Materials [M]. Springer Berlin Heideberg. New York. 2007.
    [132]傅政编著.高分子材料强度及破坏行为[M].化学工业出版社. 2004,P66-69.
    [133] B. J.Alder, and T. E. J.Wainwright. Phase Transition for a Hard Sphere System [J]. The Journal of Chemical Physics. 1957, 27(5): 1208-1209.
    [134] B. J.Alder, and T. E. J.Wainwright. Studies in Molecular Dynamics. I. General Method [J]. The Journal of Chemical Physics. 1959, 31(2):459-466.
    [135] F. H.Stillinger and A. J.Rahman. Improved simulation of liquid water by molecular dynamics [J]. The Journal of Chemical Physics. 1974, 60(4): 1545-1557.
    [136] J. A.McCammon, B. R. Gelin and M.Karplus. 1977, Nature (Lond.) 267:585-590.
    [137] Vassilios Galiatsaotos. Molecular simulation methods for predicting polymer properties [M]. Press. John wiley &sons Inc. Hoboken, New Jersey. 2005.
    [138] Sun H., Ren P., J.R.Fried. COMPASS: An ab Initio force-field optiminzed for condensed-phase application-overview with details on alkane and benzene compounds [J]. Journal of physical chemistry B. 1998, 102(38): 7338-7364.
    [139] Kisaragi Yashiro, Tomohiro Ito, Yoshihiro Tomita.Molecular dynamics simulation of deformation behavior in amorphous polymer: nucleation of chain entanglements and network structure under uniaxial tension [J]. International Journal of Mechanical Sciences.2003, 45:1863–1876.
    [140] E.Fukada. History and recent progress in piezoelectric polymer[C]. IEEE Transactions on ultrasonics, Ferroelectrics and frequency control, Tokyo, Japan, Nov. 2000:1277-1290.
    [141] E.M.Olsen, J.T.Rosenber, J.D.Kawamoto. XTD investigation by computional simulations of mechanical response using new viscous internal damge model[C]. 11th International detonation symposium. Snowmass. Village colored. 1998:360.
    [142] J.Liss and W.Goldsmith. Plate perforation phenomena due to normal impact by bluntcylinders [J]. International Journal of Impact Engineering. 1984, 2:37-64.
    [143] K.Ito. New material for photoelasticity and photoplasticity [J]. Experiment Mechanic. 1962, 2(12): 373-376.
    [144] Brill W A. Basic studies in photoplasticity [D]. PhD Dissertation Stanford University. 1966
    [145] J. M. Dally and A. mule. Polycarbonate as model materials for three-dimensional photoplasticity [J]. Journal of Applied Mechanics. Transactions. ASME. 1973, 40: 600-605
    [146]大连理工大学数理力学组.光弹性实验[M].北京:国防工业出版社. 1978.
    [147]云大真.关于光塑性研究中的若干基本问题[J].大连工学院学报. 1980, 19(2): 65-75.
    [148]赖曾美,张鸿庆,唐新武等.工艺应力与变形的光弹塑模拟技术的探索[J].实验力学. 1989, 4(3): 229-241.
    [149]朱明海,范琳.光塑性模型材料聚碳酸酯的光学力学性能[J].材料科学与工程. 1990, 8(2): 36-41.
    [150]谢建新,曹乃光.三维光塑性法及其在挤压变形研究中的应用[J].中南矿冶学院学报. 1986, (5): 53-61.
    [151]任广升等.光塑性方法在三维大塑性变形问题中的应用与探讨[J].金属成形工艺. 1991, 9(2): 33-37.
    [152]朱明海,范琳.现代光塑性技术在冷挤压工艺研究中的应用[J].模具技术. 1992,(5):15-21.
    [153]朱明海,范琳.圆柱体自由墩粗的光塑性分析[J].锻压技术. 1988, (5):48-50.
    [154]朱明海,范琳.光塑性技术在模锻工艺中的应用[J].锻压机械. 1990, (1):14-17.
    [155]朱明海,范琳.封先河.塑性加工工艺优化设计的一种新方法-现代光塑性法[J].锻压技术. 1993, (2):20-23.
    [156]朱明海,范琳著.现代光塑性[M].国防工业出版社, 1995年.
    [157] H.F.Brinson. The viscoelastic behavior of ductile polymer-deformation and fracture of high polymer[M].(H.Kauch et al eds)plenum press. NY1973, 397-416.
    [158] R.P.Nimmer. Analysis of the puncture of a bisphenol-polycarboante disc[J]. Polymer Engineering and Science. 1983, 23(3), 155-164.
    [159] N.Billon and J.M.Haudin. Numerical methods in industrial forming processes[C]: Proceedinig of 4th International Conference on Numerical Methods In Industrial Forming Proecesses, 1992, 335.
    [160] O.Schang, N.Billon, J.M.Muracc iole and F.Feragut. Mechanical behavior of a polyamide 12 during impact [J]. Polymer Engineering and Science. 1996, 36(4), 541-550.
    [161]卢剑锋,庄茁,张帆. ABAQUS/Standard用户材料子程序实例-Johnson-Cook金属本构模型[C]. ABAQUS软件2003年度用户年会论文集. 2003, 1-18.
    [162] J.L.Yu, and N. Jonse, Numerical simulation of impact loaded steel beams and failure criteria[J]. International Journal of Solid and Structure. 1997, 34(30): 3977-4004.
    [163]张士林,任颂赞主编.工程材料手册[M].上海科学技术出版社,上海.2000,P3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700