用户名: 密码: 验证码:
负载型复合纳米材料的制备及其吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸波材料一直是国防科技和功能材料领域的研究热点。但是,迄今为止,很难找到可在宽频范围内同时满足阻抗匹配特性和强吸收要求的单组元吸波剂材料。因此,国际上在研究吸波效能更高的吸波剂方面形成了一条共识性的思路——吸波剂组成上的复合化。由于负载型复合可提升不同组元间的复配均匀性和稳定性,因而逐步发展成了一种备受关注的吸波剂复合化设计与制备方法。本文制备了三类负载型复合纳米材料,并分别对其控制合成、电磁学和吸波性能进行了研究。在此基础上,分析了三类产物微观结构和物质组成的共通性及其吸波性能的一致性规律,分析和提出了负载型复合纳米材料的多重吸波机制。
     建立了一种原位合成方法及其配套热处理技术,实现了磁性纳米粒子在四针状氧化锌晶须(T-ZnOw)表面的均匀负载和磁性粒子成分的可控,制备出了负载型复合产物M-ZnOw及其中间产物Semis.揭示了在Semis的原位合成过程中,聚乙二醇(PEG)既通过物理吸附作用与T-ZnOw结合,又通过氢键和配位键作用而与氧化铁粒子结合,在T-ZnOw和氧化铁粒子之间发挥了桥联作用。电磁学性能研究结果表明:T-ZnOw无磁性,对入射电磁波不具有磁损耗能力。但铁含量高于2wt%、磁性成分为Fe304的M-ZnOw表现铁磁性,具有磁滞损耗、自然共振损耗和交换共振损耗等磁损耗性能。此外,双复介质Fe304在T-ZnOw表面的均匀负载,还使M-ZnOw表现出了优于T-ZnOw的介电损耗能力,其tanδE值明显高于T-ZnOw.吸波性能和吸波机理研究结果表明:在2-18GHz范围内,M-ZnOw表现出了明显优于T-ZnOw的吸波性能,且其吸波性能受铁含量和负载复合均匀性影响。在2-16wt%的研究范围内,铁含量为9wt%的M-ZnOw产物具有最优的吸波性能;具有均匀负载效果的M-ZnOw产物的吸波性能优于非均匀负载的M-ZnOw产物。M-ZnOw表现出了优于与其具有相同组成的简单复合物的吸波性能。M-ZnOw除了具有其构成组元的本征电、磁损耗机制之外,由于其负载复合结构,还可提升纳米损耗效应的发挥和引入异质界面吸波新机制。
     采用化学镀及其后续热处理(N2气氛、450℃、4h)技术,实现了纳米Ni-P镀层在碳纳米管(CNTs)表面的负载复合和镀层晶体结构的可控调节,制备了负载型复合纳米材料P-CNTs(负载非晶态Ni-P镀层)和HT-CNTs(负载多晶态的Ni和Ni3P粒子)。通过对纯化和化学镀工艺时间的调控,实现了对P-CNTs产物的微观形貌、负载复合均匀性及负载层厚度的可控。由不同的P-CNTs产物热处理而制备的HT-CNTs产物之间的负载复合均匀性差异与其对应的P-CNTs产物的负载复合均匀性差异相一致。电磁学性能研究结果表明:与原料CNTs相比,P-CNTs产物的电阻损耗性能降低,介电损耗性能在较高频段有所降低,但在较低频段有所增大;P-CNTs为顺磁性物质,具有一定的磁化损耗能力。当P-CNTs通过热处理工艺而转变为HT-CNTs产物后,其tanδE值在全频段范围内高于CNTs,且其tanδM值相对于P-CNTs有进一步的提升,同时HT-CNTs还表现出了磁滞损耗性能。吸波性能和吸波机理研究结果表明:通过负载型复合,能一定程度改善CNTs的吸波性能。更好的负载复合均匀性有利于P-CNTs和HT-CNTs产物的异质界面吸波机制和纳米损耗效应的发挥,从而使产物在更宽的频带范围内具有更好的吸波效果。
     通过化学氧化法合成了8042-掺杂的无定形结构的聚吡咯(PPy),通过原位合成方法制备了PEG/Fe3O4水基磁流体。在此基础上,建立了具有核-壳结构的Fe3O4/PPy复合产物的一种软模板合成方法。在所合成的Fe3O4/PPy复合产物中,PPy为无定形结构,Fe304为结晶体,部分PPy分子上的N原子与Fe304中的部分Fe原子之间形成了配位结合。通过在合成反应体系中加入乙腈和逐步增大乙腈用量,实现了对Fe3O4/PPy复合产物的微观形貌、铁含量以及电导率等宏微观参数的综合调控。当腈水比为0:10-3:7时,得到的Fe3O4/PPy产物的微观形貌为单一颗粒状,当腈水比增大到4:6-5:5时,产物表现出具有明显粒径差异的大、小两种颗粒(分别是500nIn左右的核-壳结构Fe3O4/PPy大粒子和70nm左右的本征态PPy小粒子)共存的微观形貌。随着腈水比的逐渐增大,Fe3O4/PPy复合产物的铁含量逐步增大,电导率逐步降低。分析提出了基于吡咯在PEG/Fe3O4胶粒表层和表面以及乙腈胶束内聚合相结合的Fe3O4/PPy产物的合成机理,阐明了系列Fe3O4/PPy产物的宏微观参数的受控机制。电磁学和吸波性能研究结果表明:尽管具有核-壳结构的Fe3O4/PPy复合产物S0的电、磁损耗正切值较PPy并不占优,其在2~18GHz范围内的吸波性能却明显优于PPy。这主要归因于SO产物的核-壳结构有助于提升PPy和Fe304两种吸波组元间的电、磁损耗机制的匹配和互补效应。在系列Fe3O4/PPy产物中,SO产物(其铁含量为5.59wt%)由于其核-壳结构复合效果最佳、PPy分子掺杂程度高和产物电导率最大,表现出了最大的tanδE值以及与Fe含量最高(14.69wt%)的S5产物相当的tanδM值,并在2-18GHz范围内表现出最优的吸波性能,这一方面归因于其本征电、磁损耗机制的匹配与互补效应,另一方面源自其最优的核-壳结构复合效果与最佳的纳米颗粒分散性更有利于促进异质界面吸波效应和纳米损耗效应的充分发挥。
     对N-ZnOw、HT-CNTs和Fe3O4/PPy三类负载型复合纳米材料的微观结构、物质组成方的共通性以及其吸波性能和吸波机制方面的一致性规律进行了综合分析,并通过理论分析提出了三类负载型复合纳米材料具有其构成组元的本征电、磁损耗效应和由于负载复合结构而提升或新引入的纳米损耗效应和异质界面损耗效应相结合的多重电磁波损耗机制。分析指出异质界面吸波机制是负载型复合吸波剂区别于单组元吸波剂和简单复合型吸波剂的特有吸波新机制,它可通过增大负载型复合纳米材料的电损耗和磁损耗能力来一定程度的体现。
Microwave absorbing materials have always been a research focus in the fields of national defense technology and functional materials. However, it is quite difficult to find an individual material to meet the requirement of impedance matching and strong absorption capability simultaneously in a broad frequency band. Therefore, a common thought of composite preparation for microwave absorption has been gradually formed in the international range. Among the absorbing composites, one kind of composites with the loading of one component on the surface of another component is more beneficial to improve the composite uniformity and stability between different components, so the loading structured composite has gradually become a focus for the design and preparation of absorbing composite. Three kinds of loading structured nano composites were prepared in this thesis and their controllable synthesis, electromagnetic and microwave absorbing behaviors were investigated. Based on the above research, the commonality of the morphology, structure, composition and the consistent rule of microwave absorption property of the as-prepared three kinds of loading structured composites were analyzed, and the multi-mechanism for microwave absorption of the loading structured nanoscale composites was developed.
     Nanoscaled magnetic particles were uniformly loaded on the surface of tetra-needle like ZnO whisker(abbr. T-ZnOw) and the composition of the particles was controlled by an in situ synthesis and heat treatment method. The loading structured product of M-ZnOw and its intermediate product (noted as Semis) were obtained. The study on the in situ synthesis mechanism showed that plolyethylene glycol(abbr. PEG) played the role of bridging T-ZnOw and nanoscaled magnetic particles through the hydrogen bond and coordinate combination between iron oxide particles and PEG molecule as well as the physical absorption between T-ZnOw and PEG molecule. As shown in the electromagnetic properties, T-ZnOw had no magnetic property and couldn't attenuate the energy of microwave by magnetic loss; M-ZnOw with a magnetic component of Fe3O4and an iron content over than2wt%appeared ferromagnetic property and could absorb microwave through such magnetic loss mechanisms as magnetic hysteresis loss, natural magnetic resonance loss and exchange magnetic resonance loss. In addition, M-ZnOw appeared much better dielectric loss property than T-ZnOw because the double-complex medium of Fe3O4was loaded on the surface of T-ZnOw, and the dielectric loss tangent (tanδE) of M-ZnOw was obviously greater than that of T-ZnOw. Also, M-ZnOw appeared obviously stronger absorbing ability than T-ZnOw in the frequency band of2-18GHz. The absorbing behavior of M-ZnOw was influenced by the iron content and loading uniformity. M-ZnOw with an iron content of9wt%showed the best absorbing property in the researched iron content range of2-16wt%, and M-ZnOw with uniform loading composite effect showed superiorer absorbing capability to that with irregular loading effect. Furthermore, M-ZnOw appeared higher absorbing capability than the handcrafted composite which had the same composition and component contents as M-ZnOw. As far as the microwave absorbing mechanisms of M-ZnOw were concerned, it was concluded that besides the intrinsic electric and magnetic loss mechanisms resulting from the components in M-ZnOw, nano loss effect was improved and heterogenous interface loss effect was brought to M-ZnOw because of its loading composite structure.
     Nanoscaled Ni-P plating was coated on the surface of carbon nanotubes (CNTs) and the crystal structure of the plating was adjusted by an electroless plating and heat treatment (N2,450℃,4h) method. Thus, the loading structured products of P-CNTs (with amorphous Ni-P plating) and HT-CNTs (with polycrystalline Ni and Ni3P plating) were obtained. Moreover, the morphology, loading uniformity and plating thickness of P-CNTs were controlled by adjusting the process time of purification and electroless plating. Further study indicated that different HT-CNTs prepared through heat treatment of different P-CNTs showed a consistent difference on loading uniformity as their corresponding P-CNTs. The electromagnetic properties showed that P-CNTs appeared lower resistive loss than CNTs; the dielectric loss of P-CNTs was lower or higher than that of CNTs respectively in the relatively high or low frequency band. P-CNTs was paramagnetic materials and had magnetization loss property to a certain extent. As P-CNTs was heat treated and transformed to HT-CNTs, the tan δE was higher than that of CNTs in the whole frequency band of2-18GHz, and the magnetic loss tangent (tan δM) was further increased compared with P-CNTs, and magnetic hysteresis loss effect was also obtained. Further study showed that the absorbing property of CNTs could be improved to a certain extent through loading structured composite, and better uniformity of loading composite was more beneficial to the increase of heterogenous interface loss effect and nano loss effect, which finally leaded the P-CNTs and HT-CNTs products to appear much stronger absorption in much wider frequency band.
     Amorphous polypyrrole (PPy) doped with SO42-was synthesized by a chemical oxidation method and PEG/Fe3O4water-based ferrofluid was prepared through an in situ synthesis method. Furthermore, core-shell structured Fe3O4/PPy composite was prepared by a soft-template synthesis method esatbolished in this thesis. In this special loading structured composite, PPy was still amorphous and Fe3O4was crystalline, and coordinate combination was formed between some N atoms of PPy and some Fe atoms of Fe3O4. the morphology, iron content and conductivity of Fe3O4/PPy composite was controlled by adding acetonitrile into the reaction mixture and gradually rising the content of acetonitrile. When the volume ratio of acetonitrile to water (abbr. VRAW) was in the range of0:10-3:7, the prepared Fe3O4/PPy composites were in the morphology of particles with uniform diameter. However, when VRAW was further increased to4:6-5:5, the obtained Fe3O4/PPy composites were in the morphology of two kinds of particles which had obviously different diameter (the large particles were core-shell structured Fe3O4/PPy in diameter of about500nm, and the small particles were intrinsic PPy in diameter of about70nm). As the gradual increase of VRAW, the iron content and conductivity of the as-prepared Fe3O4/PPy composites were gradually increased and decreased, respectively. The synthesis mechanism of Fe3O4/PPy composites based on the combination of pyrrole's polymerization at the surface and surface layer of PEG/Fe3O4colloidal particles and in the acetonitrile micells was put forward. Moreover, the controllable mechanism of the macro and micro parameters of the as-prepared Fe3O4/PPy composites was theoretically clarified by the proposed synthesis mechanism. As the further study shown, although the dielectric and magnetic loss tangent of SO were not superior to that of PPy, the core-shell structured Fe3O4/VPPy product of SO appeared obviously better absorbing property than pure PPy, which was mainly attributed to the core-shell structure of SO redounded to improve matching and complementary effects of electric and magnetic loss which were resulted from PPy and Fe3O4, respectively. Among the prepared Fe3O4/PPy products, SO (with an iron content of5.59wt%) showed the highest tanδE and the comparable tanδM to S5which had the highest iron content (14.69wt%) because SO had the best core-shell composite effect, a high doping degree of PPy molecular and the largest conductivity. SO also appeared the best microwave absorbing behavior among the as prepared Fe3O4/PPy composites in2-18GHz, which was attributed to its best matching and complementary effects of electric and magnetic loss as well as the improvement of its best core-shell composite effect and dispersion property of nano particles to the heterogenous interface absorbing effect and nano loss effect.
     Multi-mechanism for microwave absorption of loading structured nano composite were analyzed and brought forward through the comparison and investigation on the commonality of micro structure and composition as well as the consistent rule of the as-prepared three kinds of loading structured composites (M-ZnOw, HT-CNTs and Fe3O4/PPy), which were concluded as the combination of intrinsic electric and magnetic loss effects resulted from the composite components with the improved or newly induced absorption mechanisms of nano loss effect and heterogenous interface loss effect. Heterogeneous interface absorbing mechanism was a peculiar absorbing mechanism that loading composite absorber differed from single component absorber and handcrafted composite absorber, which could be embodied to a certain extent through enhancing electric and magnetic loss of the loading composite absorber.
引文
[1]J. Huo, L. Wang, H. Yu. Polymeric nanocomposites for electromagnetic wave absorption. Mater. Sci.,2009,44(15):3917-3927.
    [2]邵蔚,赵乃勤,师春生,等.吸波材料用吸收剂的研究及应用现状.兵器科学与工程,2003,26(4):65-68.
    [3]T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, et al. Microwave behahior of ferrites prepared via sol-gel method. Magn. Magn. Mater.2002,246(3):360-365.
    [4]M. Cao, R. Qin, C. Qiu, et al. Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Design,2003,24(5):391-196.
    [5]赵灵智,胡社军,李善伟,等.吸波材料的吸波原理及其研究进展,一代防御技术2007,35(1):27-31.
    [6]L. Zhang, H. Zhu. Dielectric, Magnetic, and microwave absorbing properties of multi-walled carbon nonotubes filled with Sm2O3 nanoparticles. Mater. Lett.,2009,63: 272-274.
    [7]李黎明,徐政.吸波材料的微波损耗机理及结构设计.现代技术陶瓷.2004,(2):31-33.
    [8]Y. B. Li, G. Chen, Q. H. Li, et al. Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. Alloys Comp.,2011,509: 4104-4107.
    [9]H. J. Zhang, Z. C. Liu, C. L. Ma, et al. Complex permittivity, permeabiltiy, and microwave absorption of Zn and Ti substituted barium ferrite by citrate sol-gel process. Mater. Sci. Eng.,2002,96:289-295.
    [10]陈雪刚,叶瑛,程继鹏.电磁波吸收材料的研究进展.无机材料学报.2011,26(5):449-457.
    [11]V. K. Babbara, R. Archana, R. K. Puri, et al. Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite compostes. Appl. Phys.,2000,87(91): 4362-4366.
    [12]S. W. Phang, T. Hino, M. H. Abdullah, et al, Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials. Mater. Chem. Phys.,2007,104:327-335.
    [13]J. B. Tang, M. Radosz, Y. Q. Shen. Poly (ionic liquid)s as optically transparent microwave-absorbing materials. Macromolecules,2008,41:493-496.
    [14]S. W. Phang, R. Daik, M. H. Abdullah. Poly (4,4'-diphenylene diphenylvinylene) as a non-magnetic microwave absorbing conjugated polymer. Thin Solid Films,2005, 477(1/2):125-130.
    [15]A. Feldblum, Y. W. Park, A. J. Heeger, A. G. Macdiamid. Microwave properties of low-density polyacetylene. J. Polym. Sci.:Polym. Phys.,1981,19:173-179.
    [16]L. Olmedo, P. Hourquebie, F. Jousses. Microwave absorbing materials based on conducting polymers. Adv. Mater.,1993,5(5):373-377.
    [17]Y. J. Zhang, Y. W. Lin, C. C. Chang, et al, Magnetic properties of hydrophilic iron oxide/polyaniline nanocomposites synthesized by in situ chemical oxidative polymerization. Synth. Metals,2010,160:1086-1091.
    [18]Y. Q. Yang, S. H. Qi, J. N. Wang. Preparation and microwave absorbing properties of nickel-coated graphite nanosheet with pyrrole via in situ polymerization. Alloys. Comp., 2012,520:114-121.
    [19]D. L. Zhao, J. M. Zhang, X. Li, et al. Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes. Alloys. Comp.,2010,505:712-716.
    [20]T. C. Zou, H.P. Li, N.Q. Zhao, et al. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire. Alloys. Comp., 2010,496:L22-L24.
    [21]廖宇涛,张兴华.多壁碳纳米管电磁参数的研究和吸波性能模拟.材料导报,2006,20(3):138-140.
    [22]H. Zhu, H. Y. Lin, H. F. Guo, et al. Microwave absorbing property of Fe-filled carbon nanotubes synthesized by a practical route. Mater. Sci. Eng. B,2007,138:101-104.
    [23]H. Y. Lin, H. Zhu, H. F. Guo, et al. Microwave-absorbing properties of Co-filled carbon nanotubes. Mater. Res. Bull.,2008,43:2697-2702.
    [24]D. L. Zhao, X. Li, Z. M. Shen, et al. Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes. Comp. Sci. Techn.,2008,68:2902-2908.
    [25]J. Perini, L. S. Cohen. Design radar absorbing materials (RAMs) for wide range of angles of incidence. IEEE, International Symposium on Electromagnetic Compatibility, New York,1991,418-424.
    [26]S. C. Hu, Z. W. Zhou, Z. R. Zhou, In situ synthesis of magnetic particles on the surface of tetra-needle Like ZnO whisker. Cryst. Growth.2006,287:54-57.
    [27]S. C. Hu, G. F. Wu, Z. H. Huang, et al, Microwave absorption behavior of ZnO whisker modified by nanosized Fe3O4 particles. Nanosci. and Nanotechn.,2010,10 (11):7592-7595.
    [28]S. Sugimoto, T. Maeda, D. Book, et al. GHz microwave absorption of a fine a-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen. Alloy. Compd., 2002,330(1/2):301-306.
    [29]L. Jian, Guohong Y, Meiling S. Crystal microstructure, infrared absorption, and microwave electromagnetic properties of (La1-xDyx)2/3Sr1/3Mn03. Rare Metals,2009, 28(5):494-499.
    [30]M. H. Shams, S. M. A. Salehi, A. Ghasemi. Electomagnetic wave absorption characteristics of Mg-Ti substituted Ba-hexaferrite. Mater. Lett,2008,62(10/11): 1731-1733.
    [31]M. Begard, K. Bobzin, G Bolelli, et al. Thermal spraying of Co, Ti-substituted Ba-hexaferrite coatings for electromagnetic wave absorption applications. Surf. Coat. Techn.,2009,203(20/21):3312-3319.
    [32]S. M. Abbas, R. Chatterjee, A. K. Dixit, et al. Electomagnetic and microwave absorption properties of (Co2+-Si4+) substituted barium hexaferrites and its polymer composite. Appl. Phys.,2007,101(7):074105-1-6.
    [33]J. M. Song, H. J. Yoon, D. I. Kim, et al. Dependence of electromagnetic wave absorption on ferrite particle size in sheet-type absorbers. Korean Phys. Soc.,2003, 42(5):671-675.
    [34]J. M. Zhao, W. X. An, D. A. Li, et al, Synthesis and microwave absorption properties of SiC-carbon fibers composite in S and C band. Synthetic Metals,2011,161:2144-2148.
    [35]Z. Y. Chu, H. F. Cheng, Y. J. Zhou, et al, Anisotropic microwave absorbing properties of oriented SiC short fiber sheets. Mater. Design,2010,31:3140-3145.
    [36]Z. B. Huang, F. Q. Tang. Preparation, sturcture, and mangetic properties of mesoporous magnetite hollow spheres. Colloid & Interface,2005,281:432-435.
    [37]S. S. Kim, S. T. Kim, J. M. Ahn, et al. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density. Magn. Magn. Mater.,2004,271:39-45.
    [38]D. P. Park, J. H. Sung, S. T. Lim, et al. Synthesis and characterization of organically soluble polypyrrole/clay nanocomposites. Mater. Sci. Lett.,2003,22(18):1299-1302.
    [39]K. H. Wu, T. H. Ting, C. I. Liu, et al. Electromagnetic and microwave absorbing properties of Nio.5Zno.5Fe204/bamboo charcoal core-shell nanocomposites. Compos. Sci. Techn.,2008,68(1):132-139.
    [40]X. Tang, Q. Tian, B. Y. Zhao, et al. The microwave electromagnetic and absorption properties of some porous iron powders. Mater. Sci. Engin. A,2007,445/446:135-140.
    [41]C. C. Lee, Y. Y Cheng, H. Y. Chang, et al. Synthesis and electromagnetic wave absorption property of Ni-Ag alloy nanoparticles. Alloys. Comp.,2009,480:674-680.
    [42]Y. X. Gong, L. Zhen, J. T. Jiang, et al. Preparation of CoFe alloy nanoparticles with tunable electromagnetic wave absorption performance. Magn. Magn. Mater.,2009,321: 3702-3705.
    [43]J. H. Liu, T. Y. Ma, H. Tong. Electromagnetic wave absorption properties of flaky Fe-Ti-Si-Al nanocrystalline composites. Magn. Magn. Mater.,2010,322:940-944.
    [44]G. Z. Shen, Z. Xu, Y. Li. Absorbing properties and structural design of microwave absorbers based on W-type La-doped ferrite and carbon fiber composites. Magn. Magn. Mater.,2006,301:325-330.
    [45]B. W. Li, Y. Shen, Z. X. Yue, et al. Influence of particle size on electromagnetic behavior and microwave absorption properties of Z-type Ba-ferrite/polymer composites. Magn. Magn. Mater.,2007,313:322-328.
    [46]N. Chen, K. Yang, M. Y. Gu. Microwave absorption properties of La-substituted M-type strontium ferrites. Alloys. Comp.,2010,490:609-612.
    [47]P. C. Fannin, C. N. Marin, I. Malaescu, et al. Microwave absorbent properties of nanosized cobalt ferrite powders prepared by coprecipitation and subjected to different thermal treatments. Mater. Design,2011,32:1600-1604.
    [48]D. L. Zhao, F. Luo, W. C. Zhou. Microwave absorbing property and complex permittivity of nano SiC particles doped with nitrogen.J. Alloys. Comp.,2010,490: 190-194.
    [49]F. S. Wen, N. Wang, F. Zhang. Enhanced microwave absorption properties in BiFeO3 ceramics prepared by high-pressure synthesis J. Solid State Commun.,2010,150: 1888-1891.
    [50]Y. B. Feng, T. Qiu, C. Y. Shen. Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J. Magn. Magn. Mater., 2007,318:8-13.
    [51]Y. J. Kang, J. Choi, C. Y. Moon, et al. Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms.J. Phys. Rev. B,2005,71:115441 (1-7).
    [52]D. L. Peng, X. Zhou, S. Inoue, et al. Magnetic properties of Fe clusters adhering to single-wall carbon nanotubes.J. Magn. Mater.,2005,292:143-149.
    [53]V. Georgakilas, V. Tzitzios, D. Gournis, et al. Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem, of Mater.,2005,17(7): 1613-1617.
    [54]G. V. Kurlyandskaya, J. Cunanan, S. M. Bhagat, et al. Field-induced microwave absorption in Fe3O4 nanoparticles and FesO4/polyaniline composites synthesized by different methods.J. Phys. and Client, of Solids,2007,68:1527-1532.
    [55]Z. B. Li, Y. D. Deng, B. Shen, et al. Preparation and microwave absorption properties of Ni-Fe3O4 hollow spheres.J. Mater. Sci. Engin. B,2009,164:112-115.
    [56]H. Y. Lin, H. Zhu, H. F. Guo, et al. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes.J. Mater. Lett.,2007,61:3547-3550.
    [57]C. M. Yang, H. Y. Li, D. B. Xiong, et al. Hollow polyaniline/Fe3O4 microsphere composites:Preparation, characterization, and applications in microwave absorption.J. React.& Funct. Polym,2009,69:137-144.
    [58]Z. Ma, F. B. Meng, R. Zhao, et al. Preparation and dual microwave-absorption properties of carboxylic poly (arylene ether nitrile)/Fe3O4 hybrid microspheres. Magn. Magn. Mater.,2012,324:1365-1369.
    [59]C. Wang, R.T. Lv, Z. H. Huang, et al. Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites.J. Alloys. Comp.,2011,509: 494-498.
    [60]H. Zhu, L. Zhang, L. Z. Zhang, et al. Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing.J. Mater. Lett.,2010,64: 227-230.
    [61]M. Yoshinaka, E. Asakura, M. Oku, et al. Radio wave absorbing material. U.S. Patent 5,310,598,1994.
    [62]X. A. Li, X. J. Han, Y. J. Tan, et al. Preparation and microwave absorption properties of Ni-B alloy-coated Fe3O4 particles. J. Alloys Comp.,2008,464:352-356.
    [63]W. Chen, X. W. Li, G. Xue, et al. Magnetic and conducting particles:preparation of polypyrrole layer on Fe3O4 nanospheres.J. Appl. Surf. Sci.,2003,218:215-218.
    [64]D. L. Zhao, X. Li, Z. M. Shen. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes.J. Alloys. Comp.,2009,471: 457-460.
    [65]W. Y. Fu, S. K. Liu, W. H. Fan, et al. Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property.J. Magn. Magn. Mater.,2007,316:54-58.
    [66]M. S. Cao, J. Yang, W. L. Song, et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces,2012,4: 6949-6956.
    [67]L. Y. Zhang, Z. W. Li. Synthesis and characterization of SrFe12O19/CoFe2O4 nanocomposites with core-shell structure. J. Alloys Comp.,2009,469:422-426.
    [68]M. L. Fuller. Tiwnning in zinc oxide.J. Appl. Phys.,1944,15:164-170.
    [69]Z. W. Zhou, H. Deng, J. Yi, et al. A new method for preparation of zinc oxide whiskers. Mater. Res. Bulletin,1999,34 (10/11):1563-1567.
    [70]D. C. Reynolds, D. C. Look, B. Jogai, et al. Time-resolved photoluminescence lifetime measurements of the r5 and r6 free excitons in ZnO.J. Appl. Phys.,2000,88:2152-2153.
    [71]Z. W. Zhou, S. C. Hu, L. S. Chu. Studies on tetrapod-shaped ZnO whisker modified polymer composites. Mater. Sci. Forum,2005,475-479:1033-1036.
    [72]H. B. Lin, M. S. Cao, Q. L. Zhao, et al. Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhisker. Script Mater.,2008,59: 780-783.
    [73]Z. B. He, Y. Wang, H. W. Bai, et al. Toughening and stiffening effects of T-ZnOw whiskers on polystyrene. Chinese J Polym. Sci.,2008,26(3):285-290.
    [74]Z. W. Zhou, S. K. Liu, L. S. Chu, et al. Fractal analysis of worn surfaces of ZnO whisker/natural rubber-styrene butadiene rubber-butyl rubber composites.J. Appl. Polynm. Sci.,2003,90:667-670.
    [75]S. B. Wang, S. R. Ge, D. K. Zhang. Comparison of tribological behavior of nylon composites filled with zinc oxide particles and whiskers. Wear,2009,266:248-254.
    [76]Z. W. Zhou, W. M. Peng, S. K. Liu, et al. Tetrapod-shaped ZnO Whisker and Its Composites.J. Mater. Processing Techn.,1999,89-90:415-418.
    [77]Z. W. Zhou, L. S. Chu, W. M. Tang, et al. Studies on the antistatic mechanism of tetrapod-shaped ZnOw.J. Electrostatics,2003,57:347-354.
    [78]J. Wang, X. M. Fan, Z. W. Zhou, et al. Preparation of Ag nanoparticles coated tetrapod-like ZnO whisker photocatalysts using photoreduction. Mater. Sci. Engin. B, 2011,176:978-983.
    [79]T. Gao, Y. H. Huang, T. H. Wang, the synthesis and photoluminescence of multipod-like zinc oxide whiskers.J. Phys:Condens. Mater.,2004,16:1115-1121.
    [80]L. B. Feng, A. H. Liu, J. Wei, et al. Synthesis, characterization and optical properties of multipod ZnO whiskers. Appl. Surf. Sci.,2009,255:8667-8671.
    [81]M. S. Cao, D. W. Wang, J. Yuan, et al. Enhanced piezoelectric and mechanical properties of ZnO whiskers and Sb2O3 co-modified lead zirconate titanate composites. Mater. Lett.2010,64:1798-1801.
    [82]Z. M. Dang, L. Z. Fan, S. J. Zhao, et al. Dielectric properties and morphologies of composites filled with whisker and nanosized zinc oxide. Mater. Res. Bull.,2003,38: 499-507.
    [83]Z. W. Zhou, L. S. Chu, S. C. Hu, Microwave absorption behaviors of tetra-needle-like ZnO whiskers. Mater. Sci. Engin. B,2006,126(1):93-96.
    [84]周祚万,胡书春,杨永祥,等.四针状氧化锌晶须及其纳米改性吸波隐身材料研究.隐身技术,2006,(3):33-36.
    [85]X. L. Chen, Z. W. Zhou, K. Wang, et al. Ferromagnetism in Fe-doped tetra-needle like ZnO whiskers. Mater. Res. Bull.,2009,44(4):799-802.
    [86]T. Dietl, H. Ohmo, F. Matsukura. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science,2000,287:1019-1022.
    [87]J. H. Yu, G. M. Choi. Selective CO gas detection of CuO-and ZnO-doped SnO2 gas sensor.J. Sensors and Actuators B,2001,75:56-61.
    [88]S. C. Hu, Z. W. Zhou, A study on the preparation of PEG/FeOx ferrofluids. Mater. Sci. Forum,2005,475-479:2271-2274.
    [89]E. Pretsch, P. Buhlman, C. Affolter.荣国斌,朱士正译.波谱数据表一有机化合物的结构解析[M].上海:华东理工大学出版社,2002.
    [90]袁洪涛,张跃,谷景华.原位生长高度定向ZnO晶须.物理学报,2004,53(2):646-650.
    [91]W. Wang, B. K. Shang. The influence of antioxidants on the stability of PEG. Chemical Propellants & Polymeric Mater.,2000,4:30-31.
    [92]程建辉.可控粒径与形貌Fe304的制备及性能研究.河北师范大学硕士讼文,2010.
    [93]王兴庆,钟军华,洪新.超细氧化铁粉低温还原热力学研究.粉末冶金材料科学与工程,2008,13(3):150-154.
    [94]王秀,孙菲,林姜多,李秋菊,洪新,微尺度氧化铁粉的低温还原机理.粉末冶金材料科学与工程,2012,17(2):153-159.
    [95]马世昌主编.基础化学反应[M].西安:陕西科学技术出版社,2003.
    [96]W. Yoshimi, T. Shinya, K. Yoshiaki, et al. Reduction of magnetite by hydrogen ion implantation.J. Phys.D,1996,29(1):8-13.
    [97]C. E. Loo, N. J. Bristow. Research of mechanism of pulverizing sintered iron ore by reduction in low temperature. Sintering and Pelletizing,1995,20(4):22-28.
    [98]田民波.磁性材料[M].北京:清华大学出版社,2001.
    [99]D. J. Dunlop. Superparamagnetic and single-domain threshold size in magnetite.J. Geophysical Research,1973,78:1780-1793.
    [100]张帆.四氧化三铁及其复合纳米结构的电磁响应特性.哈尔滨工程大学硕士论 文2011.
    [101]倪世兵.过渡族金属氧化物Fe304和Zn3(VO4)2的制备及应用研究.兰州大学博士论文,2010.
    [102]金维芳.电介质物理学[M].北京:机械工业出版社,1995年第2版.
    [103]S. Iijima. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [104]肇研,段跃新,栋蔚慰,等.多壁碳纳米管复合材料在8mm波段的吸波性能.复合材料学报,2007,24(3):23-27.
    [105]M. S. Dresselhaus. Applied physics nanotube antennas. Nature,2004,432(7020): 959-960.
    [106]R. Andrews, D. Jacques, D. Qian, et al. Purification and structural annealing of multi-walled carbon nanotubes at graphitization temperatures. Carbon,2001,39(11): 1681-1687.
    [107]P. M. Ajayan, O. ephan, P. Redlich, et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature,1995,375(6532):564-567.
    [108]M. Hulman, H. Kuzmany, P. Costa, et al. Light-induced instability of PbO-filled single-wall carbon nanotubes. AppL Phys. Lett.,2004,85(11):2068-2070.
    [109]B. M. Kim, S. Qian, H. H. Bau. Filling carbon nanotubes with particles. Nano Lett., 2005,5(5):873-878.
    [110]C. H. Kiang. Electron irradiation induced dimensional change in bismuth filled carbon nanotubes. Carbon,2000,38:1699-1701.
    [111]T. P. Kumar, R. Ramesh, Y. Y. Lin, et al. Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochemistry Communications,2004,6(6): 520-525.
    [112]J. Chen, A. Kutana, C. Collier, et al. Electrowetting in carbon nanotubes. Science, 2005,310(5753):1480-1483.
    [113]L. Cao, H. Z. Chen, H. Y. Li, et al. Fabrication of rare-earth biphthalocyanine encapsulated by carbon nanotubes using a capillary filling method. Chem. Mater.,2003, 15(17):3247-3249.
    [114]C. H. Xu, J. Sun, L. A. Gao. Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries.J. Phys. Chem. C,2009,113(47):20509-20513.
    [115]V. K. Gupta, S. Agarwal, T. A. Saleh. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal.J. Hazardous Mater.,2011, 185(1):17-23.
    [116]Y. K. Chen, A. Chu, J. Cook, et al. Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies. Mater. Chem.,1997,7(3):545-549.
    [117]A. M. Zhang, J. L. Dong, Q.H. Xu, et al. Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation. Catalysis Today,2004,93-95:347-352.
    [118]R. M. Lago, S. C. Tsang, K. L. Lu, et al. Filling carbon nanotubes with small palladium metal crystallites-the effect of surface acid groups.J. Chem. Soc., Chem. Commun.,1995, (13):1355-1356.
    [119]J. P. Tessonnier, O. Ersen, G. Weinberg, et al. Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes. J. ACS Nano,2009,3(8): 2081-2089.
    [120]F. Caturla, F. Molina, M. Molina-Sabio, et al. Electroless plating of graphite with copper and nickel. Electro. Chenu Soc.,1995,142(12):4084-4090.
    [121]黄建华,孙晓刚,李静,等.碳纳米管表面化学镀Co的研究.材料导报,2008,22(Z1):109-111.
    [122]郑重,李四年,陈慧敏,等.多壁纳米碳管化学镀钻磷合金.新技术新工艺,2005,(8):63-64.
    [123]X. H. Chen, C. S. Chen, H. N. Xiao, et al. Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits. Tribology International,2006, 39:22-28.
    [124]C. Y. Chen, K. Y. Lin, W. T. Tsai, et al. Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite. International Journal of Hydrogen Energy,2010, 35:5490-5497.
    [125]K. Y. Lin, W. T. Tsai, J. K. Chang. Decorating carbon nanotubes with Ni particles using an eletroless deposition technique for hydrogen storage applications. International Journal of Hydrogen Energy,2010,35:7555-7562.
    [126]D. L. Zhao, X. Li, Z. M. Shen, et al. Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes. Comp. Sci. Techn.,2008,68:2902-2908.
    [127]朱红,於留芳,林海燕,等.化学镀镍碳纳米管的微波吸收性能研究.功能材料,2007,38(7):1213-1216.
    [128]L. M. Ang, T. S. A. Hor, C. H. Tung, et al, Decoration of activated carbon nanotubes with copper and nickel, Carbon,2000,38:363-372.
    [129]F. Wang, S. Arai, M. Endo. The preparation of multi-walled carbon nanotubes with a Ni-P coating by an electroless deposition process. Carbon,2005,43:1716-1721.
    [130]Z. Yang, H. Xu, M. K. Li, et al. Preparation and properties of Ni/P/single-walled carbon nanotubes composite coatings by means of electroless plating. Thin Solid Films, 2004,466:86-91.
    [131]龚晓钟,汤皎宁,古坤明,等.化学镀镍法制备碳纳米管.合成化学2005,13(4):398-400.
    [132]R. J. Xue, Y. C. Wu. Mechanism and micro structure of Electroless Ni-Fe-P Plating on CNTs. J. China Univ. Mining & Technol.,2007,17(3):0424-0427.
    [133]F. Z. Kong, X. B. Zhang, W. Q. Xiong, et al. Continuous Ni-layer on multiwall carbon nanotubes by an electroless plating method. Surf.& Coating Technol.,2002,155: 33-36.
    [134]姚娇艳.碳纳米管的表面改性及在吸波领域的应用研究,西安电子科技在学硕士论文,2008.
    [135]Q. Q. Li, S. S. Fan, W. Q. Han, et al. Coating of carbon nanotube with nickel by electroless plating method, Appl. Phys.,1997,36 (4B) Part 2:L501-L503.
    [136]秦云川,齐暑华,邱华,等.镀镍碳纳米管的制备及电磁性能.宇航材料工艺,2012,(6):65-69.
    [137]K.G. Keong, W. Sha, S. Malinov, Crystallization and phase transformation behavior of electroless nickel-phosphorus deposites with low and medium phosphorus contents under continuous heating. Mater. Sci.,2002,37:4445-4450.
    [138]A. Revesz, J. Lendvai, A. Cziraki, et al, Formation of nanocrystalline phase during decomposition of amorphous Ni-P alloys by continuous linear heating. Metallkunde, 2001,92:483-488.
    [139]孔凡志,张孝彬,熊文庆.用于复合材料增强体的多壁纳米碳管化学镀镍.复.合材料学报,2002,19(5):71-74.
    [140]Z. Liu, Z. L. Li, F. Wang, et al. Electroless preparation and characterization of Ni-B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene. Mater. Res. Bull,2012,47(2):338-343.
    [141]D. L. Zhao, X. Li, Z. M. Shen. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ag nanowires. Mater. Sei. Eng. B,2008, 150:105-110.
    [142]G. Z. Zou, M. S. Cao, H. B. Lin, et al. Nickel layer deposition on SiC nanoparticles by simple electroless plating and its dielectric behaviors. Powder Techn.,2006,168: 84-88.
    [143]L. F. Q. P. Marchesi, F. R. Simoes, L. A. Pocrifka, et al. Investigation of polypyrrole degradation using electrochemical impedance spectroscopy.J. Phys. Chem. B,2011, 115:9570-9575.
    [144]P. C. Wang, J. Y. Yu. Dopant-dependent variation in the distribution of polarons and bi polarons as charge-carriers in polypyrrole thin films synthesized by oxidative chemical polymerization. Reactive & Functional Polymers,2012,72:311-316.
    [145]J. Joo, J. K. Lee, J. S. Baeck, et al. Electrical, magnetic, and structural properties of chemically and electrochemically synthesized polypyrroles. Synth. Metals,2001,117: 45-51.
    [146]Y. F. Chen, J. Liu, H. J. Yao, et al. Electrochemical polymerization and characterization of polypyrrole nanowires and nanotubules. Physica B,2010,405:2461-2465.
    [147]Y. Liu, Y. Chu, L. K. Yang. Adjusting the inner-structure of polypyrrole nanoparticles through microemulsion polymerization. Mater. Chem. Phys.,2006,98:304-308.
    [148]D. D. Ateh, H. A. Navsaria, P. Vadgama. Polypyrrole-based conducting polymers and interactions with biological tissues.J. R. Soc. Interface,2006,3:741-752.
    [149]V. Bajpai, P. A. He, L. M. Dai. Conducting-polymer microcontainers:controlled syntheses and potential applications. Adv. Funct. Mater.,2004,14:145-151.
    [150]J. Jang, H. Yoon. Formation mechanism of conducting polypyrrole nanotubes in reverse micelle systems. Langmuir,2005,21,11484-11489.
    [151]J. Jang, H. Yoon. Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization. Chem. Commun.,2003,6:720-721.
    [152]N. Strand, A. Bhushan, M. Schivo, et al. Chemically polymerized polypyrrole for on-chip concentration of volatile breath metabolites. Sens. Actuators B Chem.,2010, 143(2):516-523.
    [153]李倩倩,黄健涵,刘素琴,等.聚吡咯的化学氧化合成及其对金属镁的防腐蚀性能研究.功能材料,2008,3(39):526-528.
    [154]L. C. Li, C. Xiang, X. X. Liang, et al. Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole:preparation and electromagnetic properties. Synth. Metals,2010,160:28-34.
    [155]A. H. Chen, H. Q. Wang, B. Zhao, et al. The preparation of polypyrrole-Fe3O4 nanocomposites by the use of common ion effect. Synth. Metals,2003,139:411-415.
    [156]Y. S. Yang, J. Liu, M. X. Wan. Self-assembled conducting polypyrrole micro/nanotubes. Nanotechnology,2002,13(6):771-773.
    [157]F. Kiani, A. A. Rostami, A. Omrani, et al. Electrolyte and solvent effects on voltammetry behavior and surface morphology of Polypyrrole films deposited on glassy carbon electrode in the redox process. European Online Journal of Natural and Social Sciences,2012,1(3):55-61.
    [158]H. Y. Mi, X. G. Zhang, X. G. Ye, et al. Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors. Power Sources,2008,176(1):403-409.
    [159]H. Y. Mi, X. G. Zhang, Y. L. Xu, et al. Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes. Appl. Surf. ScL,2010,256: 2284-2288.
    [160]S. B. Wang, G. Q. Shi. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Mater. Chem. Phys.,2007,102:255-259.
    [161]W. D. Zhang, H. M. Xiao, L. P. Zhu, et al. Facile one-step synthesis of electromagnetic functionalized polypyrrole/Fe3O4 nanotubes via a self-assembly process. Polym. Sci. Part A:Polym. Chem.,2010,48:320-326.
    [162]H. M. Xiao, W. D. Zhang, M. X. Wan, et al. Novel electromagnetic functionalized y-Fe2O3/polypyrrole composite nanostructures with high conductivity. Polym. Sci. Part A:Polym. Chem.,2009,47:4446-4453.
    [163]J. C. Aphesteguy, S. E. Jacobo. Composite of polyaniline containing iron oxides. Physica B,2004,354:224-227.
    [164]W. Chen, X. W. Li, G. Xue, et al. Magnetic and conducting particles:preparation of polypyrrole layer on Fe3O4 nanospheres. Appl. Surf. Sci.,2003,218:215-221.
    [165]P. Xu, X. J. Han, C. Wang, et al. Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. Phys. Chem. B,2008,112:2775-2781.
    [166]G. Bidan, O. Jarjayes, J. M. Fruchart, et al. New nanocomposites based on "tailor dressed" magnetic particles in a polypyrrole matrix. Adv. Mater.,1994,6:152-155.
    [167]G. H. Qiu, Q. Wang, M. Nie. Polypyrrole-Fe3O4 nagnetic nanocomposite prepared by ultrasonic Irradiation. Macromol. Mater. Eng.,2006,291:68-74.
    [168]X. F. Lu, H. Mao, W J Zhang. Fabrication of core-shell Fe3O4/polypyrrole and hollow polypyrrole microspheres. Polym. Compos.,2009,30(6):847-854.
    [169]H. M. Xiao, W. D. Zhang, M. X. Wan, et al. Novel electromagnetic functionalized y-Fe2O3/polypyrrole composite nanostructures with high conductivity. Polym. Sci. A: Polym. Chem.,2009,47:4446-4453.
    [170]郭洪范,朱红,林海燕,等.聚吡咯-Fe304纳米复合材料的制备与表征及性能.北京交通大学学报,2007,31(6):38-41.
    [171]M. Bhaumik, A. Maity, V. V. Srinivasu, et al. Enhanced removal of Cr(VI) from aqueous solution using polyppyrrole/FesO4 magnetic nanocomposite. Journal of Hazardous Materials,2011,190:381-390.
    [172]M. Bhaumik, T. Y. Leswifi, A. Maity, et al. Removal of fluoride from aqueous solution by polyppyrrole/Fe3O4 magnetic nanocomposite. Journal of Hazardous Mater.,2011, 186:150-159.
    [173]Z. H. Huang, S. C. Hu, N. Zhang, et al. Effect of volume ratio of acetonitrile to water on the morphology and property of polypyrrole prepared by chemical oxidation method. Polym. Engin. Sci.,2012,52(7):1600-1605.
    [174]黄真浩,胡书春,陈海路,等.乙腈与水的体积比对SDBS掺杂PPY的微观形貌与性能的影响.功能材料,2011增V(42):922-926.
    [175]U. Kedar, P. Phutane, S. Shidhaye, et al. Advances in polymeric micells for drug delivery and tumor targeting. Nanomedicine:Nanotechnology, Biology and Medicine, 2010,6:714-729.
    [176]G. Z. Wang, Z. Gao, S. W. Tang, et al. Microwave absorption properties of carbon nanocoils coated with hghly controlled magnetic materials by atomic layer deposition. ACS Nano,2012,6(12):11009-11017.
    [177]Y. L. Ren, H. Y. Wu, M. M. Lu, et al. Quaternary nonocomposites consisting of graphene, Fe3O4@Fe core@shell, and ZnO nonoparticles:synthesis and excellent electromagnetic absorption properties. ACS Appl. Mater.& Interf.,2012,4: 6436-6442.
    [178]P. Saini, V. Choudhary, N. Vijayan, et al. Improved electromagnetic interface shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. The Journal of Physical Chemistry C,2012,116:13403-13412.
    [179]R. C. Che, C. Y. Zhi, C. Y. Liang, et al. Fabrication and microwave absorption of carbon nonotubes/CoFe2O4 spinel nonocomposite. Appl. Phys. Lett,2006,88, 033105(1-3).
    [180]Y. J. Chen, P. Gao, R. X. Wang, et al. Porous Fe3O4/SnO2 core/shell nonorods: Synthesis and Electromagnetic Properties. The Journal of Physical Chemistry C,2009, 113:10061-10064.
    [181]L. Kong, X. W. Yin, F. Ye, et al. Electromagnetic Wave Absorption Properties of ZnO-based materials modified with ZnAl2O4 nanograins. The Journal of Physical Chemistry C,2013,117:2135-2146.
    [182]R. J. Tseng, C. O. Baker, B. Shedd, et al. Charge transfer effect in the polyaniline-gold nonoparticle memory system, Appl. Phys. Lett.,2007,90:053101.
    [183]吴国峰,常笑蕾,胡书春,等.氧化锌晶须/聚苯胺核壳结构复合物的制备与性能研究.功能材料,2008,39(10):1720-1723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700