用户名: 密码: 验证码:
聚乳酸/含镍化合物纳米复合材料的制备、热性能与阻燃性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可生物降解聚合物聚乳酸(PLA)的原材料能由可再生资源生产制备,因而得到广泛的应用。PLA具有优良的性能,如热塑性好、强度和模量高、高熔融指数、透明度好、易于加工等。然而,由于其内在的化学组成和分子结构,PLA的热稳定性较差,容易燃烧,且燃烧时伴随严重的滴落现象,这限制了其在许多领域的应用和发展。本文针对当前阻燃PLA存在的阻燃剂种类少、添加量高、效果不佳的现状,合成多种含镍化合物,并和新型无卤阻燃剂结合使用,制备PLA复合材料,系统地研究复合材料的组成与热性能、阻燃性能的关系;阐明各阻燃组分间的相互作用机制和在PLA中的阻燃机理。主要研究工作如下:
     1、通过一步共沉淀法合成三种含镍层状双氢氧化物(NiFe、NiAl和NiCr LDHs),研究这些LDHs化合物的结构、形貌和性能,并用于制备PLA/LDHs纳米复合材料及比较研究复合材料的热性能。TGA结果表明PLA/NiCr LDH复合材料的具有较高的热稳定性,DSC结果显示PLA/NiAl LDH复合材料具有最低的熔融焓。SEM显示PLA/NiFe LDH复合材料的炭层最致密,且LRS结果说明其有序化碳的含量最高。TEM和XRD图像显示LDHs在PLA基体中均具有良好的分散并且呈现插层和剥离状态。由于三价金属离子的影响,NiFe、NiAl和NiCr LDHs能够不同程度地提高PLA材料的热稳定性。
     2、用NiFe、NiAl和NiCr LDHs材料首次与苯氧基环磷腈(HPCP)结合使用制备PLA纳米复合材料,并对PLA/HPCP/LDHs复合材料的形貌、热性能和阻燃性能进行比较和研究。TGA表明PLA/HPCP/NiCr复合材料具有较高的炭渣残留量。DSC指出PLA/HPCP/NiFe LDH复合材料呈现最低的结晶度,SEM图像证实其炭化残渣形貌最为致密,XPS表明这种复合材料具有最高的P/C和N/C比值。LRS表明PLA/HPCP/NiAl LDH复合材料有序化碳的含量最高。所有PLA/HPCP/LDHs复合材料在10wt%的添加量时均能达到UL-94V0级别,且LDHs在PLA基体中具有良好的分散。因此,NiFe、NiAl和NiCr LDHs在提高PLA复合材料的热稳定性和阻燃性能方面具有不同程度的良好效果。
     3、由硅烷包覆的聚磷酸铵(APP203)和季戊四醇磷酸酯(PEPA)组成新的有机膨胀体系(IFR),添加到PLA基体中。NiAl LDH具有良好的片层阻隔和催化成炭作用,作为阻燃协效剂用于提高PLA/IFR复合材料的热稳定和阻燃性能。玉米淀粉(CS)作为生物质炭源与APP203形成另一种有机IFR阻燃体系,聚丁二酸丁二醇酯(PBS)用在PLA基体中具有增韧作用,同样使用熔融共混法制备PLA/PBS/APP203/CS/NiAl LDH复合材料.研究结果表明,基于疑聚相的阻燃作用机理,NiAl LDH和上述两种IFR体系协同使用能够有效提高PLA基体的热稳定性和阻燃性能,并解决复合材料燃烧时的滴落问题。
     4、采用水热法合成了纳米级的铁酸镍(NiFe2O4)粒子,并同样方法制备ZnFe2O4和CoFe2O4纳米粒子与之做对比研究。聚磷酸铵(APP)和可膨胀石墨(EG)组成无机IFR体系。这些铁酸盐纳米粒子(MFe2O4)和IFR结合使用制备PLA复合材料,并对比研究复合材料的阻燃性能和机械性能。此IFR体系和MFe204的使用能够大幅度提高PLA材料的LOI,添加量13wt%时复合材料达到UL-94V0级别且无滴落现象。MCC显示12wt%添加量的IFR, PLA复合材料的PHRR、HRC和THR与纯PLA相比分别减少了30.7%、32.8%和17.5%,当含有1wt%添加量的MFe2O4时,火灾危险性进一步降低。添加剂的使用能够一定程度上提高材料的机械性能。综合比较三种铁酸盐纳米粒子的作用,NiFe2O4的效果最好。MFe2O4和IFR在PLA基体中的阻燃作用机理为形成稳定炭层的凝聚相机理。
     5、通过水热法合成形貌规整的钼酸镍(NiMo),并合成掺杂稀土Ce元素的钼酸铈镍(NiMoCe)纳米棒做对比研究。聚苯乙烯(PS)用来增强PLA基体,聚乙二醇(PEG)用于PLA材料的增韧。熔融共混法制备PLA/PS/PEG/纳米棒复合材料,研究复合材料的热稳定性和添加剂的增强增韧作用。含有纳米棒的PLA复合材料的残留炭渣量较高且具有较高含量的石墨化碳,说明纳米棒可以有效提高材料的热稳定性。机械性能表征结果显示PS和PEG在PLA基体中具有增强和增韧作用,在一定添加量范围下,拉伸强度随着NiMo纳米棒添加量的增加而提高。综合比较,NiMo纳米棒的作用效果优于NiMoCeo
The raw material of poly (lactic acid)(PLA), lactic acid can be produced from renewable resources. Therefore. PLA has a wide development and applications. PLA has good properties, such as thermoplastic, high strength, high modulus, high melting index, high transparency and ease of fabrication. However, because of its inherent chemical composition and molecular structure, PLA has poor thermal stability and it is easy to burn with serious dripping, which limit its applications and development in many fields. Therefore, research on the low loading and high flame retardant efficiency of additives is still an important task.
     Based on current research on the thermal stability and flame retardancy of PLA. a variety of nickel-containing compounds were synthesized. Then combined with new halogen-free flame retardants were used in preparing PLA composites. The thermal property and flame retardancy of PLA composites were researched in detail. The interaction of flame retardant compositions and effect mechanism of additives in PLA matrix were discussed.
     The main research work is as follows:
     1、Three different nickel-containing layered double hydroxides (NiFe. NiAl and NiCr LDHs) were synthesized by one-step co-precipitation method. The structure, morphology and property of these LDHs were investigated. They were used to prepare PLA/LDHs nanocomposites. The thermal property of PLA/LDHs composites was researched and compared. TGA results showed that PLA/NiCr LDH composite had the highest thermal stability. DSC suggested that PLA/NiAl LDH composite had the lowest melting enthalpy. SEM presented that the PLA/NiFe composite char residue was densest, and the largest ratio of the ordered carbon was presented in LRS. TEM and XRD images of PLA composites illustrated that all the LDHs had a good dispersion in PLA matrix, and exhibited intercalation or exfoliation. Owing to trivalent cations effect. NiFe. NiAl and NiCr LDHs played different roles in improving the thermal stability of PLA composites.
     2.. NiFe. NiAl and NiCr LDHs were first combined with Hexaphenoxycyclotriphosphazene (HPCP) to prepare PLA/HPCP/LDHs nanocomposites. The morphology, thermal property and flame retardancy of PLA/HPCP/LDHs composites were researched and compared. For PLA composites containing LDHs, TGA measurements confirmed that PLA/HPCP/NiCr LDH composite had slightly more char residue. DSC levels suggested that PLA/HPCP/NiFe LDH composite presented in the best case only a low crystallinity, and SEM images demonstrated that its char residue was densest. In addition. XPS revealed that this composite exhibited the highest P/C and N/C ratios. The largest ratio of ordered carbon for PLA/HPCP/NiAl LDH composite was evident by LRS. All the composites were given UL-94VO rating at the low loading. TEM images showed that all the LDHs had a good dispersion in PLA composites. Thus. NiFe, NiAl and NiCr LDHs play different better effect in improving the thermal stability and flame retardancy of PLA composites.
     3、A new organic IFR formulation constituted by microencapsulated ammonium p.olyphosphate with silane (APP203) and pentaerythritol phosphate (PEPA) was added in PLA matrix. NiAl LDH had good lamellar barrier effect and catalytic charring, which was chosen as flame retardant synergist agent to improve the thermal stability and flame retardancy of PLA/IFR composites. Corn starch (CS) as a bio-carbon source was used to form another organic IFR composites with APP203. Poly(butylenesuccinate)(PBS) was used in PLA matrix, which had the toughening effect. PLA/PBS/APP203/CS/NiAl LDH composites were also prepared by melt blending method. The measurement results showed that NiAl LDH and the above two IFR systems could improve the thermal stability and flame retardancy of PLA composites apparently and resolve the combustion dripping problem. The effect mechanism of additives was mainly based on the condensed phase flame retardant mechanism.
     4、The nanometer-scale nickel ferrite (NiFe2O4) particles were synthesized using the hydrothermal method, and ZnFe2O4and CoFe2O4nanoparticles were synthesized by the same method for comparative research. These metal ferrites (MFe2O4) were combined with an inorganic IFR constituted by ammonium polyphosphate (APP) and expandable graphite (EG) to added in PLA matrix. The flame retardancy and mechanical property of PLA composites were investigated and compared. The LOI value of PLA composites was increased significantly after adding IFR and MFe2O4. UL-94VO rating was obtained with13wt%additive loading. It was no dripping when composites was burned. MCC results showed that PHRR. HRC and THR value of PLA composites had a reduction of30.7%.32.8%and17.5%respectively, comparing to pure PLA. Fire security was further improved when1wt%MFe2O4 was added. The mechanicl property of PLA composites was improved at some extent. NiFe2O4effect was the best among the above three MFe2O4nanoparticles. The promoting mechanism between MFe2O4and APP/EG was caused by formation of the stable char layer, slowing heat and mass transfer between the condensed phase.
     5、Nickel molybdate (NiMo) nanorods with uniform morphorlogy were prepared by the hydrothermal technique, and nickel molybdates doped with Ce (NiMoCe) nanorods were synthesized for comparative research. Polystyrene (PS) was used for enhancing PLA. Polyethylene glycol (PEG) was used as a toughening reagent. PLA/PS/PEG/naorod composites were prepared. The thermal stability of PLA composites, enhancing and toughening effect of additives were investigated. PLA composites with the addition of nanorods had more char residue and higher content of the ordered char layer. Therefore, nanorods were useful to improve the thermal stability of PLA composites. The results of mechanical property measurements indicated that PS and PEG had enhancing and toughening effect. With a just-right formulation, the tensile strength of PLA composites was improved with NiMo nanorod loading increase. NiMo nanorods effect was better than NiMoCe.
引文
[1]李孝红,袁明龙,郝建原等.生物降解聚合物的研究和产业化进展及展望.高分子通报(2008).
    [2]张宁,张俊杰.生物高分子材料聚乳酸研究新进展.河北理工大学学报(自然科学版)(2010年第3期)
    [3]车晶,李定华,杨荣杰.无卤阻燃聚乳酸近期研究进展.2012年中国阻燃学术年会
    [4]李建军,欧玉湘.阻燃理论.科学出版社[M](2013).
    [5]欧玉湘.阻燃塑料手册.北京:国防工业出版社[M](2008).
    [6]欧玉湘,陈宇,王筱梅.阻燃高分子材料.北京:国防工业出版社[M](2001).
    [7]Durak, Y., Durusoy, T. Comparative combustion study of some polymers with oil shale. Journal of Thermal Analysis and Calorimetry 108.1273-1279, (2012).
    [8]Sonnier. R., Negrell-Guirao. C., Vahabi, H. et al. Relationships between the molecular structure and the flammability of polymers:Study of phosphonate functions using microscale combustion calorimeter. Polymer 53.1258-1266. (2012).
    [9]Sonnier, R., Otazaghine. B., Ferry, L. et al. Study of the combustion efficiency of polymers using a pyrolysis-combustion flow calorimeter. Combustion and Flame 160, 2182-2193.(2013).
    [10]Joseph, P., Tretsiakova-McNally. S. Combustion behaviours of chemically modified polyacrylonitrile polymers containing phosphorylamino groups. Polymer Degradation and Stability 97,2531-2535.(2012).
    [11]Sonnier, R., Vahabi. H., Ferry, L. et al. Pyrolysis-combustion flow calorimetry:a powerful tool to evaluate the flame retardancy of polymers. Fire and Polymers Vi:New Advances in Flame Retardant Chemistry and Science [M] 1118,361-390 (2012).
    [12]F. Burgess. P. D. W. L., P.S. Fennell, A.N. Hayhurst. Combustion of polymer pellets in a bubbling fluidised bed. Combustion and Flame 158.1638-1645 (2011).
    [13]欧玉湘.实用阻燃技术.北京:化学工业出版社[M](2003).
    [14]李建军,黄险波.蔡彤旻.阻燃苯乙烯系塑料.北京:科学出版社[M](2003).
    [15]Wang. F., Sheng. S.,J., Guo. G. P. et al. Thermal stability and dynamic thermal mechanical properties of microcellular polylactic acid scaffolds. Acta Physico-Chimica Sinica 29. 2505-2512.(2013).
    [16]Wang. F., Guo. G. P., Ma. Q. Y. et al. Investigation on the thermo-mechanical properties and thermal stability of polylactic acid tissue engineering scaffold material. Journal of Thermal Analysis and Calorimetry 113. 1113-1121. (2013).
    117] Nalbandi. A. Kinetics of thermal degradation of polylactic acid under N-2 atmosphere. Iranian Polymer Journal 10,371-376 (2001).
    118] Jandas. P. J., Mohanty. S., Nayak. S. K. Thermal properties and cold crystallization kinetics of surface-treated banana fiber (BF)-reinforced poly(lactic acid) (PLA) nanocomposites. Journal of Thermal Analysis and Calorimetry 114.1265-1278. (2013).
    [19]Mamun. A. A., Bledzki, A. K. Micro fibre reinforced PLA and PP composites:Enzyme modification, mechanical and thermal properties. Composites Science and Technology 78, 10-17.(2013).
    [20]Dong, Y., Ghataura, A., Haroosh, H. J. Mechanical, thermal and biodegradable properties of polylactic acid (PLA)/coir fibre biocomposites. Fourth International Conference on Smart Materials and Nanotechnology in Engineering [M] 8793. (2013).
    [21]Frone, A. N., Berlioz, S., Chailan, J. F. et al. Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydrate Polymers 91.377-384. (2013).
    [22]Jiang, J. D., Su, L. L., Zhang, K. et al. Rubber-toughened PLA blends with low thermal expansion. Journal of Applied Polymer Science 128.3993-4000. (2013).
    [23]Pongtanayut. K., Thongpin, C, Santawitee. O. The effect of rubber on morphology. thermal properties and mechanical properties of PLA/NR and PLA/ENR blends.10th Eco-Energy and Materials Science and Engineering Symposium 34,888-897. (2013).
    [24]Taib, R. M., Ghaleb. Z. A., Ishak. Z. A. M. Thermal, mechanical, and morphological properties of polylactic acid toughened with an impact modifier. Journal of Applied Polymer Science 123,2715-2725.(2012).
    [25]Balakrishnan. H., Hassan. A., Wahit. M. U. Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. Journal of Elastomers and Plastics 42,223-239, (2010).
    [26]Balakrishnan, H., Hassan. A., Wahit. M. U. et al. Novel toughened polylactic acid nanocomposite:Mechanical, thermal and morphological properties. Materials & Design 31.3289-3298,(2010).
    [27]Ozkoc. G., Kemaloglu. S. Morphology. Biodegradability. mechanical. and thermal properties of nanocomposite films based on PLA and plasticized PLA. Journal of Applied Polymer Science 114,2481-2487. (2009).
    [28]Lim. J. S., Park. K. I., Chung. G. S. et al. Effect of composition ratio on the thermal and physical properties of semicrystalline PLA PHB-HHx composites. Materials Science & Engineering C-Materials for Biological Applications 33.2131-2137. (2013).
    [29]Homklin. R., Hongsriphan. N. Mechanical and thermal properties of PLA PBS co-continuous blends adding nucleating agent. 10th Eco-Energy and Materials Science and Engineering Symposium 34.871-879. (2013).
    [30]Bhatia, A., Gupta, R. K., Bhattacharya, S. N. et al. Effect of clay on thermal, mechanical and gas barrier properties of biodegradable poly(lactic acid)/poly(butylene succinate) (PLA/PBS) nanocomposites. International Polymer Processing 25,5-14. (2010).
    [31]Wang. R. Y., Wang, S. F., Zhang. Y. Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. Journal of Applied Polymer Science 113, 3095-3102.(2009).
    [32]Patricio, T., Bartolo, P. Thermal stability of PCL/PLA blends produced by physical blending process.3rd International Conference on Tissue Engineering (Icte2013) 59, 292-297,(2013).
    [33]Al-Itry, R., Lamnawar, K., Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability 97,1898-1914, (2012).
    [34]Liu. M. H., Yin, Y., Fan. Z. P. et al. The effects of gamma-irradiation on the structure, thermal resistance and mechanical properties of the PLA/EVOH blends. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 274.139-144, (2012).
    [35]Zhang, Y. C., Huang, J. N., Wu. H. Y. et al. Effect of TiO, nanoparticle on thermal and tensile behavior of polypropylene/polylactic acid composite. Materials Research. Pts 1 and 2 [M] 610-613.316-322 (2009).
    [36]Zhang. Y. C, Zou. J., Wu, H. Y. et al. The influence of plasma treatment on the thermal and tensile behavior of plasma treated carbon nanotubes/polypropylene/polylactic acid nano-composite filaments. Proceedings of the Fiber Society 2009 Spring Conference. Volsl and Ii 948-951 (2009).
    [37]Hung. C. Y., Wang. C. C. Chen, C. Y. Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders. Polymer 54.1860-1866, (2013).
    [38]Kumar. M., Mohanty. S., Nayak. S. K. et al. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA PBAT blend and its nanocomposites. Bioresource Technology 101.8406-8415. (2010).
    [39]Shin. B. Y., Han. D. H., Narayan. R. Rheological and thermal properties of the pla modified by electron beam irradiation in the presence of functional monomer. Journal of Polymers and the Environment 18.558-566. (2010).
    [40]Jang. W. Y., Hong. K., H., Cho. B. H. et al. Thermal and rheological properties, and biodegradability of chemically modified PLA by reactive extrusion. Polymer-Korea 32. 116-124(2008).
    [41]Basilissi, L., Di Silvestro. G., Farina. H., et al. Synthesis and characterization of PLA nanocomposites containing nanosilica modified with different organosilanes II:Effect of the organosilanes on the properties of nanocomposites:Thermal characterization. Journal of Applied Polymer Science 128,3057-3063. (2013).
    [42]Mortazavi, B., Hassouna, F., Laachachi, A. et al. Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites. Thermochimica Acta 552,106-113, (2013).
    [43]Chen, B. K., Shih, C. C., Chen, A. F. Ductile PLA nanocomposites with improved thermal stability. Composites Part a-Applied Science and Manufacturing 43,2289-2295. (2012).
    [44]Turan, D., Sirin, H., Ozkoc, G. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and plasticised PLA. Journal of Applied Polymer Science 121,1067-1075,(2011).
    [45]Guo, T., LaBelle, B., Petreas, M. et al. Mass spectrometric characterization of halogenated flame retardants. Rapid Communications in Mass Spectrometry 27.1437-1449. (2013).
    [46]Zhou, S. N., Reiner, E. J., Marvin, C. et al. Development of liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for analysis of halogenated flame retardants in wastewater. Analytical and Bioanalytical Chemistry 396, 1311-1320,(2010).
    [47]Cullum. B. M., Angel. S. M. New technique to study halogenated flame retardant efficiency.43rd International Sampe Symposium and Exhibition on Materials and Process Affordability-Keys to the Future. Vol 43. (1998).
    [48]Bahadir, M. Halogenated flame retardants as sources for POPs in the environment. Fate of Persistent Organic Pollutants in the Environment [M] 229-237 (2008).
    [49]Butt, C. M., Stapleton, H. M. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics. Chemical Research in Toxicology 26.1692-1702.(2013).
    [50]Fernie. K. J., Letcher. R. J. Historical contaminants, flame retardants. and halogenated phenolic compounds in peregrine falcon (falco peregrinus) nestlings in the canadian great lakes basin. Environmental Science & Technology 44.3520-3526. (2010).
    [51]Sverdrup. L. E., Hartnik. T., Mariussen. E. et al. Toxicity of three halogenated flame retardants to nitrifying bacteria, red clover (Trifolium pratense). and a soil invertebrate (Enchytraeus crypticus). Chemosphere 64.96-103. (2006).
    [52]Jiang. Z. J., Liu. S. M., Zhao, J. Q. et al. Flame-retarded mechanism of SEBS/PPO composites modified with mica and resorcinol bis(diphenyl phosphate). Polymer Degradation and Stability 98.2765-2773. (2013).
    [53]Wu. Z. F., Xue, M., Wang, H. et al. Electrical and flame-retardant properties of carbon nanotube/poly(ethylene terephthalate) composites containing bisphenol A bis(diphenyl phosphate). Polymer 54,3334-3340, (2013).
    [54]Kaynak, C. Sipahioglu, B. M. Effects of nanoclays on the flammability of polystyrene with triphenyl phosphate-based flame retardants. Journal of Fire Sciences 31.339-355, (2013).
    [55]Rimdusit, S., Thamprasom, N., Suppakarn. N. et al. Effect of triphenyl phosphate flame retardant on properties of arylamine-based polybenzoxazines. Journal of Applied Polymer Science 130,1074-1083.(2013).
    [56]Xia, X., Ping, P., Dahn. J. R. The reactivity of charged electrode materials with electrolytes containing the flame retardant, triphenyl phosphate. Journal of the Electrochemical Society 159. A1834-A1837, (2012).
    [57]Isitman, N. A., Dogan, M., Bayramli. E. et al. The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate. Polymer Degradation and Stability 97.1285-1296, (2012).
    [58]Naik, A. D., Fontaine. G. Samyn, F. et al. Melamine integrated metal phosphates as non-halogenated flame retardants:Synergism with aluminium phosphinate for flame retardancy in glass fiber reinforced polyamide 66. Polymer Degradation and Stability 98, 2653-2662,(2013).
    [59]Perret. B., Schartel. B., Stoss. K. et al. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. European Polymer Journal 47.1081-1089.(2011).
    [60]Li. X. Y., Yan, T. R., Hu. X. P. et al. Synergistic effects of polyethylene glycol and ammonium polyphosphate on intumescent flame-retardant polypropylene. Polymer Engineering and Science 53.410-416. (2013).
    [61]Zhang. Y., Chen. X. L., Fang. Z. P. Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS. Journal of Applied Polymer Science 128.2424-2432. (2013).
    [62]Zheng, Z. H., Yan, J. T., Sun. H. M. et al. Preparation and characterization of microencapsulated ammonium polyphosphate and its synergistic flame-retarded polyurethane rigid foams with expandable graphite. Polymer International 63.84-92. (2014).
    [63]Mostashari. S. M., Fayyaz. F. A thermogravimetric study of cotton fabric flame-retardancy by means of impregnation with red phosphorus. Chinese Journal of Chemistry 26,1030-1034. (2008).
    [64]Chen, X. L., Yu, J., Qin. J. et al. Combustion behaviour and synergistic effect of zinc borate and microencapsulated red phosphorus with magnesium hydroxide in flame-retarded polypropylene composites. Polymers & Polymer Composites 19.491-496 (2011).
    [65]Zhao, K. M., Xu, W. Z., Song. L. et al. Synergistic effects between boron phosphate and microencapsulated ammonium polyphosphate in flame-retardant thermoplastic polyurethane composites. Polymers for Advanced Technologies 23,894-900. (2012).
    [66]Yuan. X. Y., Wang, D. Y. Chen. L. et al. Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polymer Degradation and Stability 96.1669-1675. (2011).
    [67]Tang, L. S., Yuan, Z. G., Xu. L. et al. Synergistic flame retardancy of aluminium dipropylphosphinate and melamine in polyamide 6. Advances in Materials Science and Engineering, (2013).
    [68]Lu, X. S., Qiao, X. Y., Yang, T. et al. Preparation and properties of environmental friendly nonhalogen flame retardant melamine cyanurate' nylon 66 composites. Journal of Applied Polymer Science 122,1688-1697.(2011).
    [69]Zhang. K., Wu. K.. Zhang. Y. K. et al. Flammability characteristics and performance of flame-retarded epoxy composite based on melamine cyanurate and ammonium polyphosphate. Polymer-Plastics Technology and Engineering 52.525-532. (2013).
    [70]Huang, G. B., Liang, H. D., Wang, Y. et al. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol). Materials Chemistry and Physics 132.520-528. (2012).
    [71]Yang. S. N., Lv. G. P., Liu. Y. et al. Synergism of polysiloxane and zinc borate flame retardant polycarbonate. Polymer Degradation and Stability 98.2795-2800. (2013).
    [72]Quach. Y., Cinausero. N., Sonnier. R. et al. Barrier effect of flame retardant systems in poly(methyl methacrylate):Study of the efficiency of the surface treatment by octylsilane of silica nanoparticles in combination with phosphorous fire retardant additives. Fire and Materials 36.590-602. (2012).
    [73]Kumar. V., Gupta. B., Sharma. P. K. et al. Nanocomposites and blends of biocatalytically synthesized organosilicone co-polymers for flame retardant applications. Journal of Macromolecular Science Part a-Pure and Applied Chemistry 46.1199-1204. (2009).
    [74]Marosfoi, B. B., Szabo. A., Kiss. K. et al. Use of organosilicone composites as flame retardant additives and coatings for polypropylene.11th Meeting on Fire Retardant Polymers 49-58 (2009).
    [75]Devaraju, S., Vengatesan, M. R., Selvi. M. et al. Synthesis and characterization of bisphenol-A ether diamine-based polyimide POSS nanocomposites for low K. dielectric and flame-retardant applications. High Performance Polymers 24,85-96, (2012).
    [76]Xue, M., Zhang, X., Wu. Z. F. et al. Preparation and flame retardancy of polyurethane/POSS nanocomposites. Chinese Journal of Chemical Physics 26,445-450, (2013).
    [77]Bae, J. W., Yang, T. U., Nam, G. J. et al. Dispersion and flame retardancy of ethylene vinylacetate/layered silicate nanocomposites using the masterbatch approach for cable insulating material. Polymer Bulletin 67,729-740, (2011).
    [78]Ishikawa. T., Maki, I., Takeda, K. Flame retardancy of poly(butylene terephthalate) blended with phosphorous compounds. Journal of Applied Polymer Science 92. 2326-2333, (2004).
    [79]Ma, H. Y., Fang, Z. P. Synthesis and carbonization chemistry of a phosphorous-nitrogen based intumescent flame retardant. Thermochimica Acta 543.130-136. (2012).
    [80]Yu, B. G., Lu. L. G., Wang. D. W. et al. Fire hazard assessment of phosphorous-containing flame retardant polypropylene based on cone calorimeter. Progress in Safety Science and Technology, Vol Vii. Pts a and B 7.135-138. (2008).
    [81]Liu. Y., Wang, Q. The investigation on the flame retardancy mechanism of nitrogen flame retardant melamine cyanurate in polyamide 6. Journal of Polymer Research 16.583-589. (2009).
    [82]Jian, R. K., Chen. L., Hu. Z. et al. Flame-retardant polycarbonate/acrylonitrile-butadiene-styrene based on red phosphorus encapsulated by polysiloxane:Flame retardance, thermal stability, and water resistance. Journal of Applied Polymer Science 123.2867-2874. (2012).
    [83]Liu. S. M., Yang. Y., Jiang. Z. J. et al. Synergistic flame retardant effect of poly(ether sulfones) and polysiloxane on polycarbonate. Journal of Applied Polymer Science 124. 4502-4511.(2012).
    [84]Liu. Y., Zhang. Y. Cao. Z. H. et al. Synthesis of three novel intumescent flame retardants having azomethine linkages and their applications in EVA copolymer. Industrial & Engineering Chemistry Research 51.11059-11065. (2012).
    [85]Wu. D. H., Zhao. P. H., Liu. Y. Q. Flame retardant property of novel intumescent flame retardant rigid polyurethane foams. Polymer Engineering and Science 53.2478-2485. (2013).
    [86]Yang. C. W., Liang, G. Z., Gu, A. J. et al. Flame retardancy and mechanism of bismaleimide resins based on a unique inorganic-organic hybridized intumescent flame retardant. Industrial & Engineering Chemistry Research 52,15075-15087, (2013).
    [87]Lecouvet, B., Sclavons, M. Bailly, C. et al. A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polymer Degradation and Stability 98.2268-2281, (2013).
    [88]Zhang. J. Y. Preparation and flame retardancy of a novel flame-retardant poly(ethylene-co-vinyl acetate)/aluminum hydroxide composites Containing phosphorus. Polymer Composites 32.1970-1978.(2011).
    [89]Gul, R., Islam, A., Yasin, T., Mir, S. Flame-retardant synergism of sepiolite and magnesium hydroxide in a linear low-density polyethylene composite. Journal of Applied Polymer Science 121.2772-2777. (2011).
    [90]Zhang, P., Kang, M., Hu, Y. Influence of layered zinc hydroxide nitrate on thermal properties of paraffin/intumescent flame retardant as a phase change material. Journal of Thermal Analysis and Calorimetry 112.1199-1205.(2013).
    [91]Feng. Y. J., Tang, P. G., Xi. J. M. et al. Layered double hydroxides as flame retardant and thermal stabilizer for polymers. Recent Patents on Nanotechnology 6.231-237 (2012).
    [92]Huang. G. B., Fei. Z. D., Chen. X. Y. et al. Functionalization of layered double hydroxides by intumescent flame retardant:Preparation, characterization, and application in ethylene vinyl acetate copolymer. Applied Surface Science 258.10115-10122, (2012).
    [93]Gavgani, J. N., Adelnia. H.. Gudarzi. M. M. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal. and barrier properties. Journal of Materials Science 49.243-254. (2014).
    [94]Jiao. C. Zhuo. J., Chen. X. Synergistic effects of zinc oxide in intumescent flame retardant silicone rubber composites. Plastics Rubber and Composites 42.374-378. (2013).
    [95]Li. N., Xia. Y., Mao. Z. W. et al. Influence of antimony oxide on flammability of polypropylene/intumescent flame retardant system. Polymer Degradation and Stability 97. 1737-1744.(2012).
    [96]Jiao. C. M.. Chen, X. L., Zhang. J. Synergistic flame-retardant effects of aluminum oxide with layered double hydroxides in EVA/LDH composites. Journal of Thermoplastic Composite Materials 23,501-512, (2010).
    [97]Jiao, C. M., Chen, X. L. Synergistic flame retardant effect of cerium oxide in ethylene-vinyl acetate/aluminum hydroxide blends. Journal of Applied Polymer Science 116,1889-1893,(2010).
    [98]Dogan, M., Bayramli, E. The flame retardant effect of aluminum phosphinate in combination with zinc borate, borophosphate, and nanoclay in polyamide-6. Fire and Materials 38,92-99, (2014).
    [99]Uhlenbroich, T. Zinc-sulfide as a flame-retardant. Kunststoffe-Plast Europe 85,90-91 (1995).
    [100]Braun, U., Schartel, B. Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene. Macromolecular Chemistry and Physics 205, 2185-2196,(2004).
    [101]Ye, L., Wu, Q. H. Effects of an intercalating agent on the morphology and thermal and flame-retardant properties of low-density polyethylene/layered double hydroxide nanocomposites prepared by melt intercalation. Journal of Applied Polymer Science 123, 316-323,(2012).
    [102]Cui, Y., Liu, X. L., Tian, Y. M. et al. Controllable synthesis of three kinds of zinc borates and flame retardant properties in polyurethane foam. Colloids and Surfaces a-Physicochemical and Engineering Aspects 414,274-280, (2012).
    [103]Siddhamalli, S. K., Lee, V. W. Injection moldable FR-HIPS formulations based on blends of chlorinated wax and non diphenyl oxide (DPO)-brominated flame retardant in conjunction with metal oxide metal sulfide synergists. Journal of Vinyl & Additive Technology 4,117-125, (1998).
    [104]Gao, H. L., Hu, S., Han, H. C. et al. Effect of different metallic hydroxides on flame-retardant properties of low density polyethylene/melamine polyphosphate/starch composites. Journal of Applied Polymer Science 122,3263-3269, (2011).
    [105]Zhao, C. X., Liu, Y., Wang, D. Y. et al. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polymer Degradation and Stability 93,1323-1331. (2008).
    [106]Wu, Z. P., Hu, Y. C., Shu, W. Y. Effect of ultrafine zinc borate on the smoke suppression and toxicity reduction of a low-density polyethylene/intumescent flame-retardant system. Journal of Applied Polymer Science 117,443-449, (2010).
    [107]Song, R. J., Zhang, B. Y, Huang. B. T. et al. Synergistic effect of supported nickel catalyst with intumescent flame-retardants on flame retardancy and thermal stability of polypropylene. Journal of Applied Polymer Science 102.5988-5993, (2006).
    [108]Chen. X. C. Ding. Y. P., Tang. T. Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. Polymer International 54,904-908. (2005).
    [109]Chen, X. C., He, J. H., Yan, C. X. et al. Novel in situ fabrication of chestnut-like carbon nanotube spheres from polypropylene and nickel formate. Journal of Physical Chemistry B 110,21684-21689,(2006).
    [110]Mostashari, S. M, Baghi, O., Mostashari, S. Z. Thermogravimetric analysis of a cellulosic fabric treated with nickel sulfate hexahydrate as a flame-retardant. Cellulose Chemistry and Technology 43,95-98 (2009).
    [111]Song, R. J., Fu. Y., Li, B. Transferring noncharring polyolefins to charring polymers with the presence of Mo/Mg/Ni/O catalysts and the application in flame retardancy. Journal of Applied Polymer Science 129.138-144, (2013).
    [112]Wu, N., Ding, C., Yang, R. J. Effects of zinc and nickel salts in intumescent flame-retardant polypropylene. Polymer Degradation and Stability 95,2589-2595, (2010).
    [113]Zhou, K. Q., Wang, B. B., Jiang, S. H. et al. Facile preparation of nickel phosphide (Ni12P5) and synergistic effect with intumescent flame retardants in ethylene-vinyl acetate copolymer. Industrial & Engineering Chemistry Research 52,6303-6310. (2013).
    [1]Singh. G., Kaur. N., Bhunia. H. et al. Degradation behaviors of linear low-density polyethylene and poly(L-lactic acid) blends. Journal of Applied Polymer Science 124. 1993-1998,(2012).
    [2]Taib, R. M., Ghaleb, Z. A., Ishak, Z. A. M. Thermal, mechanical, and morphological properties of polylactic acid toughened with an impact modifier. Journal of Applied Polymer Science 123,2715-2725, (2012).
    [3]Zhan, J., Song, L., Nie, S. B. et al. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polymer Degradation and Stability 94,291-296, (2009).
    [4]Reti, C., Casetta, M., Duquesne. S. et al. Flammability properties of intumescent PLA including starch and lignin. Polymers for Advanced Technologies 19,628-635, (2008).
    [5]Yuan, X. Y., Wang, D. Y. Chen, L. et al. Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polymer Degradation and Stability 96.1669-1675, (2011).
    [6]Mohapatra, A. K., Mohanty. S., Nayak, S. K. Poly(lactic acid) and layered silicate nanocomposites prepared by melt mixing:Thermomechanical and morphological properties. Polymer Composites 33.2095-2104, (2012).
    [7]Han, S. O., Karevan. M., Bhuiyan, M. A. et al. Effect of exfoliated graphite nanoplatelets on the mechanical and viscoelastic properties of poly(lactic acid) biocomposites reinforced with kenaf fibers. Journal of Materials Science 47.3535-3543. (2012).
    [8]Chen, B. K., Shih, C. C., Chen, A. F. Ductile PLA nanocomposites with improved thermal stability. Composites Part a-Applied Science and Manufacturing 43,2289-2295, (2012).
    [9]Kasuga, T., Ota, Y., Nogami. M. et al. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22.19-23. (2001).
    [10]Drumright. R. E.. Gruber, P. R., Henton. D. E. Polylactic acid technology. Advanced Materials 12.1841-1846, (2000).
    [11]Wei. L. L. et al. Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(Iactic acid). Polymer Degradation and Stability 96. 1557-1561.(2011).
    [12]Wang. D. Y. Song. Y. P.. Lin. L. et al. A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer 52.233-238. (2011).
    [13]Tao. K., Li. J., Xu. L. et al. A novel phosphazene cyclomatrix network polymer:Design, synthesis and application in flame retardant polylactide. Polymer Degradation and Stability 96.1248-1254.(2011).
    [14]Suardana. N. P. G., Ku. M. S., Lim,J. K. Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Materials & Design 32. 1990-1999,(2011).
    [15]Li. S. M., Ren, J., Yuan. H. et al. Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites. Polymer International 59.242-248, (2010).
    [16]Bourbigot, S., Duquesne, S., Fontaine, G. et al. Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants. Molecular Crystals and Liquid Crystals 486,1367-1381, (2008).
    [17]Murariu, M., Bonnaud, L.,Yoann, P. et al. New trends in polylactide (PLA)-based materials:"Green" PLA-Calcium sulfate (nano)composites tailored with flame retardant properties. Polymer Degradation and Stability 95,374-381, (2010).
    [18]Hapuarachchi, T. D., Peijs, T. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Composites Part a-Applied Science and Manufacturing 41,954-963,2010.03.004 (2010).
    [19]Yanagisawa, T., Kiuchi, Y., Iji, M. Enhanced flame retardancy of polylactic acid with aluminum tri-hydroxide and phenolic resins. Kobunshi Ronbunshu 66,49-54 (2009).
    [20]Zhu. H. F.. Zhu, Q. L., Li. J. A. et al. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polymer Degradation and Stability 96,183-189.(2011).
    [21]Liu, X. Q., Wang. D. Y, Wang, X. L. et al. Synthesis of organo-modified alpha-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems. Polymer Degradation and Stability 96.771-777, (2011).
    [22]Feng. J. X., Su, S. P.. Zhu. J. An intumescent flame retardant system using beta-cyclodextrin as a carbon source in polylactic acid (PLA). Polymers for Advanced Technologies 22.1115-1122. (2011).
    [23]Wang. D. Y. Leuteritz. A.. Wang. Y. Z. et al. Preparation and buming behaviors of flame retarding biodegradable poly (lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polymer Degradation and Stability 95.2474-2480. (2010).
    [24]Ke. C. H., Li. J., Fang. K. Y. et al. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polymer Degradation and Stability 95.763-770. (2010).
    [25]Wang, J., Fan. G. L., Wang. H. et al. Synthesis, characterization, and catalytic performance of highly dispersed supported nickel catalysts from ni-al layered double hydroxides. Industrial & Engineering Chemistry Research 50,13717-13726. (2011).
    [26]Yi, H. H., Wang. H. Y.,Tang. X. L. et al. Effect of calcination temperature on catalytic hydrolysis of COS over CoNiAl catalysts derived from hydrotalcite precursor. Industrial & Engineering Chemistry Research 50.13273-13279, (2011).
    [27]Prasanna, S. V., Kamath, P. V. Anion-exchange reactions of layered double hydroxides: interplay between coulombic and h-bonding interactions. Industrial & Engineering Chemistry Research 48,6315-6320, (2009).
    [28]Chitrakar, R., Sonoda, A., Makita. Y. et al. Calcined Mg-Al layered double hydroxides for uptake of trace levels of bromate from aqueous solution. Industrial & Engineering Chemistry Research 50,9280-9285, (2011).
    [29]Gao, Z. Y., Du, B., Zhang. G. Y. et al. Adsorption of pentachlorophenol from aqueous solution on dodecylbenzenesulfonate modified nickel-titanium layered double hydroxide nanocomposites. Industrial & Engineering Chemistry Research 50.5334-5345, (2011).
    [30]Dadwhal, M., Kim, T. W., Sahimi. M. et al. Study of CO(2) diffusion and adsorption on calcined layered double hydroxides:The effect of particle size. Industrial & Engineering Chemistry Research 47,6150-6157, (2008).
    [31]Yu, J. J., Wang, X. P., Tao, Y. X. et al. Effective NOx decomposition and storage/reduction over mixed oxides derived from layered double hydroxides. Industrial & Engineering Chemistry Research 46,5794-5797, (2007).
    [32]Wang. L., Lu. Z., Li. F.. Duan. X. Study on the mechanism and kinetics of the thermal decomposition of Ni/Al layered double hydroxide nitrate. Industrial & Engineering Chemistry Research 47.7211-7218, (2008).
    [33]Wang, D. Y., Leuteritz, A.,Wang, Y. Z. et al. Preparation and burning behaviors of flame retarding biodegradable poly(lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polymer Degradation and Stability 95.2474-2480 (2010).
    [34]Kakati. K., Prakash. A., Pugazhenthi. G. Thermal properties and thermal degradation kinetics of polypropylene/organomodified Ni-Al layered double hydroxide (Idh) nanocomposites prepared by melt intercalation technique. Key Eng Mater 471-472. 209-214.(2011).
    [35]Wang. D. Y., Das. A., Costa. F. R. et al. Synthesis of organo cobalt aluminum layered double hydroxide via a novel single-step self-assembling method and its use as flame retardant nanofiller in PP. Langmuir 26.14162-14169. (2010).
    [36]Ding. P., Tang. S. F. Yang. H. et al. PP/LDH nanocomposites via melt-intercalation: synergistic flame retardant effects, properties, and applications in automobile industries. Adv Mat Res 87-88.427-432. (2010).
    [37]Jiao. C. M, Chen. X. L. Synergistic effects of titanium dioxide with layered double hydroxides in EVA/LDH composites. Polym Eng Sci 51.2166-2170. (2011).
    [38]Jiao. C. M., Chen. X. L., Zhang. J. Synergistic flame-retardant effects of aluminum oxide with layered double hydroxides in EVA/LDH composites. J Thermoplast Compos 23. 501-512,(2010).
    [39]Cui, Z., Qu, B. J. Synergistic effects of layered double hydroxide with phosphorus-nitrogen intumescent flame retardant in Pp/Epdm/Ifr/Ldh nanocomposites. Chinese J Polym Sci 28,563-571, (2010).
    [40]Manzi-Nshuti, C., Wang, D. Y., Hossenlopp. J. M. Aluminum-containing layered double hydroxides:the thermal, mechanical, and fire properties of (nano)composites of poly(methyl methacrylate). Journal of Materials Chemistry 18.3091-3102 (2008).
    [41]Cairon, O., Dumitriu. E., Guimon, C. Acido-basicity of Mg-Ni-AI mixed oxides from LDH precursors:A FTIR and XPS study. Journal of Physical Chemistry C 111, 8015-8023,(2007).
    [42]Dussault, L., Dupin, J. C., Dumitriu, E. et al. Microcalorimetry, TPR and XPS studies of acid-base properties of NiCuMgAl mixed oxides using LDHs as precursors. Thermochimica Acta 434,93-99, (2005).
    [43]Han, Y. F., Liu, Z. H. Preparation of Ni2-Fe3-layered double hydroxide material with high crystallinity and well-defined hexagonal shapes. Chemistry of Materials 20.360-363 (2008).
    [44]Guo. S. Z., Zhang, C., Peng, H. D. Structural characterization, thermal and mechanical properties of polyurethane/CoAl layered double hydroxide nanocomposites prepared via in situ polymerization. Composites Science and Technology 71.791-796 (2011).
    [45]Zhao. X. F., Xu. S. L., Wang. L. Y. et al. Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Research 3. 200-210.(2010).
    [46]Wang. L. J., Xie. X. L., Su. S. P. A comparison of the fire retardancy of poly(methyl methacrylate) using montmorillonite. layered double hydroxide and kaolinite. Polymer Degradation and Stability 95.572-578 (2010).
    [47]Wu. G. Q., Wang. L. Y.. Yang. L. et al. Factors affecting the interlayer arrangement of transition metal-ethylenediaminetetraacetate complexes intercalated in Mg/Al layered double hydroxides. European Journal of Inorganic Chemistry.799-808. (2007).
    [48]Rev, S., Merida-Robles. J., Han. K. S. et al. Acry late intercalation and in situ polymerization in iron substituted nickel hydroxides. Polymer International 48.277-282. (1999).
    [49]Saiah, F. B. D., Su. B. L., Bettahar. N. Removal of evans blue by using nickel-iron layered double hydroxide (LDH) nanoparticles:effect of hydrothermal treatment temperature on textural properties and dye adsorption. Macromolecular Symposia 273. 125-134,(2008).
    [50]Yang, J. F., Zhou, Z. T. Preparation and electrochemical performance of Ni-Al LDH doped with Co and La. Chemistry Letters 38,138-139, (2009).
    [51]Park. K., Kim. K. Y., Lu, L. et al. Structural characteristics of (NiMgAl)O-x prepared from a layered double hydroxide precursor and its application in direct internal reforming molten carbonate fuel cells. Fuel Cells 7,211-217, (2007).
    [52]Zhang, J., Wei, W., Sun, Y. H. Fluorine-modified mesoporous Ni-Mg-Al mixed oxides for partial oxidation of methane. Catalysis Letters 135,321-329, (2010).
    [53]Xiang, X., Hima, H. I., Wang. H. et al. Facile synthesis and catalytic properties of nickel-based mixed-metal oxides with mesopore networks from a novel hybrid composite precursor. Chemistry of Materials 20,1173-1182, (2008).
    [54]Romero, A., Jobbagy, M., Laborde, M. et al. Ni(Ⅱ)-Mg(Ⅱ)-Al(Ⅲ) catalysts for hydrogen production from ethanol steam reforming:Influence of the activation treatments. Catalysis Today 149,407-412, (2010).
    [55]Sakaebe, H., Uchino, H., Azuma. M. et al. Cycleability of Ni-Fe hydroxides in nonaqueous electrolyte. Solid State Ionics 113,35-41, (1998).
    [56]Casenave, S., Martinez, H., Guimon, C. et al. Acid-base properties of Mg-Ni-Al mixed oxides using LDH as precursors. Thermochimica Acta 379.85-93, (2001).
    [57]Afrifah, K. A., Matuana. L. M. Impact modification of polylactide with a biodegradable ethylene/acrylate copolymer. Macromolecular Materials and Engineering 295.802-811. (2010).
    [58]Sobkowicz. M. J., Feaver. J. L., Dorgan. J. R. Clean and green bioplastic composites: Comparison of calcium sulfate and carbon nanospheres in polylactide composites. Clean-Soil Air Water 36.706-713. (2008).
    [59]Ren, Z. J., Dong. L. S.. Yang. Y. M. Dynamic mechanical and thermal properties of plasticized poly(lactic acid). Journal of Applied Polymer Science 101.1583-1590. (2006).
    [60]Tai. Q. L., Chen. L. J., Song. L. el al. Effects of a phosphorus compound on the morphology, thermal properties, and flammability of polystyrene' MgAI-layered double hydroxide nanocomposites. Polymer Composites 32.168-176. (2011).
    [61]Nie, S. B., Hu. Y., Song. L. et al. Study on a novel and efficient flame retardant synergist-nanoporous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene. Polymers for Advanced Technologies 19,489-495, (2008).
    [62]Le Bras M. Bourbigot S., Christelle D. New Intumescent formulations of fire-retardant polypropylene-discussion of the free radical mechanism of the formation of carbonaceous protective material during the thermo-oxidative treatment of the additives. Fire Mater 20 (4),191-203(1996).
    [63]Chen, Y. J., Zhan. J., Zhang. P. et al. Preparation of intumescent flame retardant poly(butylene succinate) using fumed silica as synergistic agent. Industrial & Engineering Chemistry Research 49,8200-8208. (2010).
    [64]Riva, A., Camino. G., Fomperie. L. et al. Fire retardant mechanism in intumescent ethylene vinyl acetate compositions. Polymer Degradation and Stability 82.341-346. (2003).
    [65]Nie, S. B., Hu, Y., Song, L. et al. Synergistic effect between a char forming agent (CFA) and micro encapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polymers for Advanced Technologies 19,1077-1083, (2008).
    [66]Tai. Q. L., Yuen. R. K. K.,Yang. W. et al. Iron-montmorillonite and zinc borate as synergistic agents in flame-retardant glass fiber reinforced polyamide 6 composites in combination with melamine polyphosphate. Composites Part a-Applied Science and Manufacturing 43.415-422. (2012).
    [67]LeBras, M., Bourbigot. S., LeTallec. Y. et al. Synergy in intumescence-Application to beta-cyclodextrin carbonisation agent intumescent additives for fire retardant polyethylene formulations. Polymer Degradation and Stability 56,11-21, (1997).
    [68]Wang, X., Hu, Y. A., Song. L. et al. Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites. Industrial & Engineering Chemistry Research 50.713-720. (2011).
    [69]Zhu. S. W.. Shi. W. F. Thermal degradation of a new flame retardant phosphate methacrylate polymer. Polymer Degradation and Stability 80.217-222. (2003).
    [70]Zhao. C. X., Liu. Y. Wang. D. Y. et al. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polymer Degradation and Stability 93.1323-1331. (2008).
    [1]Bourbigot. S., Fontaine. G. Flame retardancy of polylactide:an overview. Polymer Chemistry I.1413-1422.(2010).
    [2]Han, H. S., You. J. M., Jeong, H. et al. Synthesis of graphene oxide grafted poly(lactic acid) with palladium nanoparticles and its application to serotonin sensing. Applied Surface Science 284,438-445. (2013).
    [3]Zhou, H., Nabiyouni, M., Lin, B. R. et al. Fabrication of novel poly(lactic acid)/amorphous magnesium phosphate bionanocomposite fibers for tissue engineering applications via electrospinning. Materials Science & Engineering C-Materials for Biological Applications 33.2302-2310. (2013).
    [4]Martelo, L., Jimenez, A., Valente, A. J. M. et al. Incorporation of polyfluorenes into poly(lactic acid) films for sensor and optoelectronics applications. Polymer International 61.1023-1030,(2012).
    [5]Meneghello. G., Parker, D. J., Ainsworth, B. J. et al. Fabrication and characterization of poly(lactic-co-glycolic acid)/polyvinyl alcohol blended hollow fibre membranes for tissue engineering applications. Journal of Membrane Science 344,55-61, (2009).
    [6]Yanagisawa, T., Kiuchi, Y., Iji, M. Enhanced flame retardancy of polylactic acid with aluminum tri-hydroxide and phenolic resins. Kobunshi Ronbunshu 66.49-54 (2009).
    [7]Shukor, F., Hassan, A., Islam. M. S. et al. Effect of ammonium polyphosphate on flame retardancy. thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Materials & Design 54,425-429, (2014).
    [8]Feng. J. X., Su. S. P.. Zhu, J. An intumescent flame retardant system using beta-cyclodextrin as a carbon source in polylactic acid (PLA). Polymers for Advanced Technologies 22.1115-1122, (2011).
    [9]Wu, Z., Wei. C. Y., Cui. Y. Z. et al. Study of flame-retardant cotton stalk bast fibers reinforced polylactic acid composites. Advanced Composite Materials and Manufacturing Engineering [M] 583.228-231 (2012).
    [10]Chang. S. K., Zeng. C. Yuan. W. Z. et al. Preparation and characterization of double-layered microencapsulated red phosphorus and its flame retardance in poly(lactic acid). Journal of Applied Polymer Science 125.3014-3022. (2012).
    [11]Li, X. G., Wu, Y. Q., Zheng. X. Effect of nano anhydrous magnesium carbonateon fire-retardant performance of polylactic acid/bamboo fibers composites. Journal of Nanoscience and Nanotechnology 11.10620-10623. (2011).
    [12| Tang. G., Zhang. R., Wang. X. et al. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite. Journal of Macromolecular Science Part a-Pure and Applied Chemistry 50,255-269. (2013).
    [13]Wang, D. Y., Leuteritz. A., Wang, Y. Z. et al. Preparation and burning behaviors of flame retarding biodegradable poly (lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polymer Degradation and Stability 95,2474-2480, (2010).
    [14]Nguyen, T. M. D., Chang, S., Condon, B. et al. Development of an environmentally friendly halogen-free phosphorus-nitrogen bond flame retardant for cotton fabrics. Polymers for Advanced Technologies 23,1555-1563. (2012).
    [15]Huang, G. B., Wang. X., Fei, Z. D. et al. Poly(methyl methacrylate)/montmorillonite nanocomposites prepared with a novel reactive phosphorus-nitrogen-containing monomer of N-(2-(5.5-dimethyl-1,3.2-dioxaphosphinyl-2-ylamino)ethyl)-acrylamide and its thermal and flame retardant properties. Journal of Applied Polymer Science 124, 5037-5045,(2012).
    [16]Wu, D. H., Zhao, P. H., Zhang, M. et al. Preparation and properties of flame retardant rigid polyurethane foam with phosphorus-nitrogen intumescent flame retardant. High Performance Polymers 25,868-875, (2013).
    [17]Dong, Z. Q., Yu, D., Wang, W. Preparation of a new flame retardant based on phosphorus-nitrogen (p-n) synergism and its application on cotton fabrics. Advanced Mechanical Design, Pts 1-3 [M] 479-481.381-384 (2012).
    [18]Yao. L., Ding. J., Qu. B. J. et al. Kinetics study of thermal degradation of UV-cured acrylated cyclophosphazene/epoxy acrylate blends. Acta Chimica Sinica 63.1834-1840 (2005).
    [19]Kajiwara. M., Hashimoto. M., Saito, H. Phosphonitrilic chloride.30. synthesis of chelating polymers from cyclophosphazene derivatives and studies of their electrical-conductivity and thermal properties. Polymer 16.861-863. (1975).
    [20]Zhang. Y. F., Liu. A. H., Zhang. Y. H. et al. Preparation and thermal property of cyclophosphazene containing silicon. Journal of Materials Science Letters 20.789-791. (2001).
    [21]Arikawa. H., Kanie. T., Fujii. K. et al. Effect of filler properties in composite resins on light transmittance characteristics and color. Dental Materials Journal 26.38-44 (2007).
    [22]Vargas. A., Berrios. J. D., Chiou. B. S. et al. Extruded/injection-molded composites containing unripe plantain flour, ethylene-vinyl alcohol, and glycerol:Evaluation of mechanical property, storage conditions, biodegradability. and color. Journal of Applied Polymer Science 124,2632-2639, (2012).
    [23]Wang, X., Hu, Y. A., Song, L. et al. Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites. Industrial & Engineering Chemistry Research 50,713-720, (2011).
    [1]Bourbigot. S., Lebras. M., Delobel. R. Fire degradation of an intumescent flame-retardant polypropylene using the cone calorimeter. Journal of Fire Sciences 13,3-22, (1995).
    [2]Scharf, D., Nalepa, R., Heflin, R. et al. Studies on flame-retardant intumescent char. Fire Safety Journal 19,103-117.(1992).
    [3]Li, B., Sun. C. Y., Zhang, X. C. An investigation of flammability of intumescent flame retardant polyethylene containing starch by using cone calorimeter. Chemical Journal of Chinese Universities-Chinese 20,146-149(1999).
    [4]Feng, C. M., Zhang, Y., Liang. D. et al. Flame retardancy and thermal degradation behaviors of polypropylene composites with novel intumescent flame retardant and manganese dioxide. Journal of Analytical and Applied Pyrolysis 104,59-67, (2013).
    [5]Nie, S. B., Qi, S. H., He, M. S. et al. Synergistic effects of zeolites on a novel intumescent flame-retardant low-density polyethylene (LDPE) system. Journal of Thermal Analysis and Calorimetry 114.581-587.(2013).
    [6]Dai, P. B., Wang. D. Y., Wang, Y. Z. Thermal degradation and combustion behavior of a modified intumescent flame-retardant ABS composite. Journal of Thermoplastic Composite Materials 23.473-486, (2010).
    [7]Chen, Y. J., Fang, Z. P., Yang, C. Z. et al. Effect of clay dispersion on the synergism between clay and intumescent flame retardants in polystyrene. Journal of Applied Polymer Science 115.777-783. (2010).
    [8]Gao. F., Tong. L. F., Fang. Z. P. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polymer Degradation and Stability 91,1295-1299. (2006).
    [9]Liu. Y. J., Mao. L. Effect of MgAlZnFe-CO3 LDHs on fire retardancy and mechanical properties of intumescent flame retardant poly(butylene succinate) composites. Chemical Journal of Chinese Universities-Chinese 34,2903-2910. (2013).
    [10]Wu. D. H., Zhao. P. H., Liu. Y. Q. Flame retardant property of novel intumescent flame retardant rigid polyurethane foams. Polymer Engineering and Science 53.2478-2485. (2013).
    [11]Zhao. W., Li. B., Xu. M. J. et al. Novel intumescent flame retardants:synthesis and application in polycarbonate. Fire and Materials 37.530-546. (2013).
    [12]Liu. Y. A., Wang. Q. Reactive extrusion to synthesize intumescent flame retardant with a solid acid as catalyst and the flame retardancy of the products in polypropylene. Journal of Applied Polymer Science 107.14-20.(2008).
    [13]Zhang, R., Xiao, X. F., Tai, Q. L. et al. Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid). Polymer Engineering and Science 52.2620-2626,(2012).
    [14]Xuan, S. Y., Wang, X., Song, L. et al. Study on flame-retardancy and thermal degradation behaviors of intumescent flame-retardant polylactide systems. Polymer International 60, 1541-1547,(2011).
    [15]Nie, S. B., Song, L., Zhan, J. et al. Synergistic effect of novel synergists-transition metal ion-incorporated nickel phosphates with intumescent flame retardants in polypropylene. Journal of Macromolecular Science Part a-Pure and Applied Chemistry 46,554-559, (2009).
    [16]Zhang, M., Ding, P., Qu, B. J. Flammable, thermal, and mechanical properties of intumescent flame retardant PP/LDH nanocomposites with different divalent cations. Polymer Composites 30,1000-1006, (2009).
    [17]Gao, M., Wo, Y., Wu, W. H. Microencapsulation of intumescent flame-retardant agent and application to epoxy resins. Journal of Applied Polymer Science 119.2025-2030. (2011).
    [18]Song. P. A., Shen, Y., Du, B. X. et al. Effects of reactive compatibilization on the morphological, thermal, mechanical, and rheological properties of intumescent flame-retardant polypropylene. Acs Applied Materials & Interfaces 1.452-459. (2009).
    [19]Yang. X. F., Ge. N. L., Hu. L. Y. et al. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system. Polymers for Advanced Technologies 24.568-575. (2013).
    [20]Li, X. Y., Yan, T. R., Hu, X. P. et al. Synergistic effects of polyethylene glycol and ammonium polyphosphate on intumescent flame-retardant polypropylene. Polymer Engineering and Science 53,410-416, (2013).
    [21]Bhatia, A., Gupta, R. K., Bhattacharya. S. N. et al. Effect of clay on thermal, mechanical and gas barrier properties of biodegradable poly(lactic acid)/poly(butylene succinate) (PLA/PBS) nanocomposites. International Polymer Processing 25,5-14. (2010).
    [22]Park, S. B., Hwang. S. Y. Moon. C. W. et al. Plasticizer effect of novel PBS ionomer in PLA/PBS ionomer blends. Macromolecular Research 18.463-471. (2010).
    [23]Zhou. L., Guo, C. G., Li. L. P. Influence of ammonium polyphosphate modified with 3-(methylacryloxyl) propyltrimethoxy silane on mechanical and thermal properties of wood flour-polypropylene composites. Journal of Applied Polymer Science 122.849-855. (2011).
    [24]Guo. C. G., Zhou. L., Lv. J. X. Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polymers & Polymer Composites 21,449-456 (2013).
    [25]Gao, S. L., Li, B., Bai, P. et al. Effect of polysiloxane and si lane-modified SiO2 on a novel intumescent flame retardant polypropylene system. Polymers for Advanced Technologies 22,2609-2616, (2011).
    [26]Bolcu, C., Modra, D., Vlase, G. et al. Synthesis and thermal behavior of some diisocyanate-silane compounds. Journal of Thermal Analysis and Calorimetry 115, 489-494,(2014).
    [27]Lan, X. R., Wu, F., Ji, D. Y. et al. Effect of nucleating agent and its adjuvant on crystallization behaviors of poly(lactic acid). Acta Polymerica Sinica,949-955, (2013).
    [28]Nofar, M., Tabatabaei, A., Park, C. B. Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer 54,2382-2391, (2013).
    [29]Song, P., Wei, Z. Y., Liang, J. C. et al. Crystallization behavior and nucleation analysis of poly(1-lactic acid) with a multiamide nucleating agent. Polymer Engineering and Science 52,1058-1068,(2012).
    [30]Fan, H. B., Yang, R. J. Flame-retardant polyimide cross-linked with polyhedral oligomeric octa(aminophenyl)silsesquioxane. Industrial & Engineering Chemistry Research 52,2493-2500, (2013).
    [31]Jiao, C. M., Wang, Z. Z., Ye, Z. et al. Flame retardation of ethylene-vinyl acetate copolymer using nano magnesium hydroxide and nano hydrotalcite. Journal of Fire Sciences 24,47-64, (2006).
    [32]Chattopadhyay, D. K., Webster, D. C. Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science 34,1068-1133, (2009).
    [33]Bourbigot, S., LeBras, M., Delobel, R. et al. XPS study of an intumescent coating.2. Application to the ammonium polyphosphate pentaerythritol ethylenic terpolymer fire retardant system with and without synergistic agent. Applied Surface Science 120,15-29, (1997).
    [1]Feng. F. F., Qian. L. J. The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams. Polymer Composites 35,301-309. (2014).
    [2]Zheng. Z. H., Yan.,1. T., Sun. H. M. et al. Preparation and characterization of microencapsulated ammonium polyphosphate and its synergistic flame-retarded polyurethane rigid foams with expandable graphite. Polym Int 63.84-92, (2014).
    [3]Murariu, M., Dechief. A. L., Bonnaud, L. et al. The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability 95,889-900,(2010).
    [4]Wei, P., Bocchini, S., Camino, G. Flame retardant and thermal behavior of polylactide/expandable graphite composites. Polimery 58,361-364 (2013).
    [5]Bai, G., Guo, C. G., Li, L. P. Synergistic effect of intumescent flame retardant and expandable graphite on mechanical and flame-retardant properties of wood flour-polypropylene composites. Construction and Building Materials 50.148-153. (2014).
    [6]Gogoi, P., Boruah, M., Bora, C. et al. Jatropha curcas oil based alkyd/epoxy resin/expanded graphite (EG) reinforced bio-composite:Evaluation of the thermal, mechanical and flame retardancy properties. Progress in Organic Coatings 77.87-93, (2014).
    [7]Guo. C. G., Zhou. L., Lv. J. X. Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polymers & Polymer Composites 21.449-456 (2013).
    [8]Yanez-Vilar, S., Sanchez-Andujar. M., Gomez-Aguirre. C. et al. A simple solvothermal synthesis of MFe:O4 (M=Mn. Co and Ni) nanoparticles. J Solid State Chem 182. 2685-2690. (2009).
    [9]Srivastava, M., Chaubey. S., Ojha, A. K. Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater Chem Phys 118.174-180. (2009).
    [10]Prabhakaran. T., Hemalatha.J. Combustion synthesis and characterization of highly crystalline single phase nickel ferrite nanoparticles. J Alloy Compd 509.7071-7077. (2011).
    [11]Wang. L. X., Li. J. C. Wang. Y. Q. et al. Adsorption capability for Congo red on nanocrystalline MFe2O4 (M=Mn. Fe. Co. Ni) spinel ferrites. Chem Eng J 181.72-79. (2012).
    [12]Sue. K., Aoki. M. Sato. T. et al. Continuous hydrothermal synthesis of nickel ferrite nanoparticles using a central collision-type micromixer:effects of temperature, residence time, metal salt molality. and NaOH addition on conversion, particle size, and crystal phase. Ind Eng Chem Res 50.9625-9631. (2011).
    [13]Ashiq, M. N., Ehsan, M. F., Iqbal, M. J. et al. Synthesis, structural and electrical characterization of Sb3+ substituted spinel nickel ferrite (NiSbxFe2-xO4) nanoparticles by reverse micelle technique. J Alloy Compd 509,5119-5126, (2011).
    [14]Chen. X. C., Ding, Y. P., Tang. T. Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. Polym Int 54,904-908, (2005).
    [15]Horrocks, A. R., Anand, S. C., Sanderson, D. Complex char formation in flame retarded fibre-intumescent combinations.1. Scanning electron microscopic studies. Polymer 37. 3197-3206(1996).
    [16]Kuila, T., Bose, S., Khanra, P. et al. Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Compos Part a-Appl S 42,1856-1861,(2011).
    [17]Zhu, H. F., Zhu, Q. L., Li. J. A. et al. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polymer Degradation and Stability 96,183-189.(2011).
    [1]Singh. G., Kaur, N., Bhunia. H. et al. Degradation behaviors of linear low-density polyethylene and poly(L-lactic acid) blends. Journal of Applied Polymer Science 124. 1993-1998,(2012).
    [2]Rahaman, M. H., Tsuji. H. Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s:Effects of block length. Journal of Applied Polymer Science 129,2502-2517,(2013).
    [3]Song, Y. N., Tashiro, K., Xu. D. G. et al. Crystallization behavior of poly(lactic acid)/microfibrillated cellulose composite. Polymer 54,3417-3425, (2013).
    [4]Jayaramudu, J., Reddy, G. S. M., Varaprasad, K. et al. Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites. Carbohydrate Polymers 94, 822-828,(2013).
    [5]Bajpai, P. K., Singh, I., Madaan. J. Tribological behavior of natural fiber reinforced PLA composites. Wear 297.829-840, (2013).
    [6]Han, H. Y., Wang, X. D., Wu, D. Z. Preparation, crystallization behaviors, and mechanical properties of biodegradable composites based on poly(L-lactic acid) and recycled carbon fiber. Composites Part a-Applied Science and Manufacturing 43,1947-1958, (2012).
    [7]Abdelwahab, M. A., Flynn, A., Chiou, B. S., et al. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stabil 97,1822-1828, (2012).
    [8]Zhang. H. Y., Chang. L. Zhang. B. et al. Synthesis and characterization of microparticles made of carboxymethyloxysuccinic-acid-modified PLA-PEG co-polymer. Journal of Biomaterials Science-Polymer Edition 19.99-111, (2008).
    [9]Jonoobi, M. Mathew, A. P., Abdi, M. M. et al. Comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. Journal of Polymers and the Environment 20,991-997. (2012).
    [10]Mohapatra. A. K., Mohanty. S., Nayak. S. K. Poly(lactic acid) and layered silicate nanocomposites prepared by melt mixing:Thermomechanical and morphological properties. Polymer Composites 33.2095-2104. (2012).
    [11]Yang. Y. Q., Murakami. M., Hamada. H. Molding method, thermal and mechanical properties of Jute/PLA injection molding. Journal of Polymers and the Environment 20. 1124-1133.(2012).
    [12]Lin. N., Huang. J., Chang. P. R. et al. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydrate Polymers 83.1834-1842. (2011).
    [13]Marais. A., Kochumalayil, J. J., Nilsson. C. et al. Toward an alternative compatibilizer for PLA/cellulose composites:Grafting of xyloglucan with PLA. Carbohydrate Polymers 89. 1038-1043,(2012).
    [14]Shi. Q. F., Zhou, C. J., Yue, Y. Y. et al. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydrate Polymers 90,301-308, (2012).
    [15]Kaddouri, A., Tempesti, E., Mazzocchia, C. Comparative study of beta-nickel molybdate phase obtained by conventional precipitation and the sol-gel method. Materials Research Bulletin 39,695-706, (2004).
    [16]Sautel, M., Thomas, G., Kaddouri, A. et al. Kinetics of oxidative dehydrogenation of propane on the beta phase of nickel molybdate. Applied Catalysis a-General 155.217-228. (1997).
    [17]Del Rosso, R., Kaddouri, A., Anouchinsky, R. et al. Oxidative dehydrogenation of propane by continuous and periodic operating flow reactor with a nickel molybdate catalyst. Journal of Molecular Catalysis a-Chemical 135,181-186.(1998).
    [18]Tai, Q. L., Song, L., Feng. H. et al. Investigation of a combination of novel polyphosphoramide and boron-containing compounds on the thermal and flame-retardant properties of polystyrene. Journal of Polymer Research 19. (2012).
    [19]Hung, C. Y., Wang, C. C., Chen. C. Y. Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders. Polymer 54.1860-1866. (2013).
    [20]Shimpi, N., Borane. M., Mishra, S. et al. Biodegradation of polystyrene (PS)-poly(lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa. Macromolecular Research 20. 181-187,(2012).
    [21]Anuar, H., Azlina, H. N., Suzana. A. B. K. et al. Effect of peg on impact strength of pla hybrid biocomposite. Ieee Symposium on Business, Engineering and Industrial Applications [M] 473-476 (2012).
    [22]Lai. S. M., Chen. J. R.. Han. J. L. et al. Preparation and properties of melt-blended polylactic acid/polyethylene glycol-modified silica nanocomposites. Journal of Applied Polymer Science 130.496-503. (2013).
    [23]Park. B. S., Song. J. C., Park. D. H. et al. PLA chain-extended PEG blends with improved ductility. Journal of Applied Polymer Science 123.2360-2367. (2012).
    [24]Taib. R. M., Ramarad. S., Ishak. Z. A. M. et al. Properties of polylactic acid biocomposites plasticized with polyethylene glycol. Polymer Composites 31.1213-1222. (2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700