用户名: 密码: 验证码:
生物质热裂解液化制备酚醛树脂关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和材料是人类社会可持续发展的基础和重要保障。利用可再生的生物质资源热裂解液化制备人造板用生物基树脂材料具有重要的科学意义和实际应用价值。本论文针对生物质热裂解液化制备酚醛树脂的关键科学技术问题展开系统研究和分析,主要进行了年处理1000t生物质热裂解液化中试生产线设计、生物质热裂解液化影响因素分析与工艺优化、生物质热裂解液化产物分析、以制备刨花板为去向的生物油酚醛树脂合成优化以及生物油酚醛树脂结构表征与固化机理研究。本论文将生物油的上游高效制备与下游的树脂合成应用有机地融合起来,从工业化应用的角度对生物质热裂解液化制备酚醛树脂产业链条中的关键科学问题进行技术攻关、熟化与创新研究,具有较强工程实践意义。本论文所得主要结论与创新点如下:
     (1)完成了年处理量为1000t的生物质热裂解液化中试生产线的工艺设计,对热解气流程、生物油流程、燃气供热流程以及冷却循环流程进行了理论分析和设计,将热解产生的不凝结气体循环用作流化载气和反应器的热源燃料,实现了生物质热裂解液化反应过程的自热化。
     (2)对生物质热裂解液化生产线的热力和动力进行了计算,求得单位时间木质原料热解反应需要的总热量为56kj,系统所需的总功率为76kW,甲烷的补给量为1.86kg/h;对生产线中的流化床反应器、旋风分离器、管壳式换热器、冷凝系统、水汽分离器、缓冲罐、暂存罐等进行了设计、选型和布局,运行表明所设计的各关键系统结构紧凑、性能优良,中试生产线整体运行稳定,达到了设计要求。
     (3)以杨木树皮为原料,以产油率、酚类物质含量、所合成生物油酚醛树脂胶黏剂粘剂的胶合强度为目标,快速热解优化工艺为:热解温度823K(550℃)、杨木树皮颗粒粒径0.3-0.45mm、螺旋进料器转速20r/min(对应的进料量为26kg/h),流化气体流量25m3/h。
     (4)杨木生物油主要有机成分为酚类、醛类、酸类、酮类和烃类物质,其在有机相中相对百分含量分别约为33.55%、32%、14%、8.75%、8.53%和2.91%;生物油的pH值约为3.33,粘度39.7mPa.s,含水率31.856%,密度1.146g/cm3,高位热值约为14.6MJ/kg,存储过程不稳定,pH和粘度会发生较明显变化;生物油的重均分子量为572,数均分子量为211,其分子量主要分布在小于560的区段(约占74%)。
     (5)杨木热解炭粒径主要集中于10-200μm之间,以40-100μm居多,其具有一定的碳含量和热值,可以直接用来作为一种燃料;碘吸附值、亚甲基蓝吸附值和比表面积均较低,作为吸附用活性炭使用前需进一步活化;不凝结气体主要包括CO、 C02、 H2、 CH4和H2O,相对百分含量分别约为40.16%、40.10%、7.95%、0.96%以及10.84%。
     (6)随F/P摩尔比升高,生物油酚醛树脂的粘度呈上升趋势,游离酚含量降低,静曲强度、内结合强度呈先增加后减小的趋势,甲醛释放量显著升高;随生物油替代率增加,生物油酚醛树脂的粘度、游离苯酚含量,胶接刨花板的静曲强度和内结合强度均下降,而甲醛释放量升高;随NaOH/P摩尔比升高,粘度升高趋势逐渐下降,游离苯酚含量,甲醛释放量下降,胶接刨花板的静曲强度和内结合强度先升高后小幅下降;随反应时间延长,树脂粘度升高趋势逐渐增大,游离苯酚含量、甲醛释放量均下降,静曲强度、内结合强度先升高后小幅下降。
     (7)综合考虑树脂各项性能与生产成本之间的关系,生物油酚醛树脂的较佳合成工艺条件为:F/P摩尔比为2.0,生物油替代率为35%, NaOH/P摩尔比为0.45,反应时间为50min;该优化合成工艺下BPF树脂胶接刨花板的静曲强度(MOR)为36MPa、内结合强度(IB)为0.79MPa均大幅超过刨花板国家标准(MOR≥18MPa, IB≥0.45MPa),甲醛释放量为0.56mg/100g远低于现行刨花板最低行业标准(≤5mg/100g)要求。
     (8)对生物油酚醛树脂和普通酚醛树脂进行了FTIR、13C-CP/MAS NMR和GPC测试,发现生物油酚醛树脂在固化过程中生物油中多元酚类结构上的羟甲基与苯酚结构单元上的羟甲基发生了共缩聚反应,生物油的引入提高了整个树脂体系的聚合度,生物油组分最终可较好地嵌入到整个树脂的固化体系。
     (9)对生物油酚醛树脂和酚醛树脂进行了DSC分析,发现生物油酚醛树脂的固化温度略高于酚醛树脂,说明酚醛树脂体系中生物油的引入需要更多的固化热量;采用Kissinger方法求出30%替代率生物油酚醛树脂的相关动力学参数,包括活化能105.3kJ/mol,频率因子8.32×1012s-1,反应级数为0.94。
Energy and materials are the basis for sustainable development of human society. It has great scientific importance and practical value to use fast pyrolysis technology of renewable biomass resources for preparing woody bio-resin materials. This paper intended for key technologies of wood fast pyrolysis and bio-oil phenolic resins synthesis. It mainly includes the design of pilot production line of biomass pyrolysis liquefaction with processing1000tonnes biomass a year, analysis and process optimization of influence factors of biomass pyrolysis liquefaction, analysis on products of biomass pyrolysis liquefaction, synthesis optimization of bio-oil phenolic resin for preparation of particle board, study on the curing mechanism and structural characterization of bio-oil phenolic resin. This paper organically combined upstream preparation of bio-oil efficiently with its downstream synthesis application. And then, much effort had been put on the key technologies of wood fast pyrolysis and bio-oil phenolic resins synthesis by technology research, improvement and innovation from the perspective of industrial application, which has important engineering practice significance. The main conclusions and innovations derived from this paper are as follows.
     (1) The design of pilot production line of biomass pyrolysis liquefaction with processing1000tonnes biomass a year has been finished. The pyrolysis vapor process, bio-oil process, gas heating process and cooling cycles process have been analysed theoretically and designed. The self-heating process of biomass pyrolysis liquefaction has been realized when using non-condensation of gases for circulating as a flow of carrier gas and heat source of fluidized-bed reactor.
     (2) Heat and power on the pilot production line of biomass pyrolysis has been calculated. The total calories in woody raw materials for pyrolysis is56kJ; The system required total power is76kW; The increment of methane is1.86kg/h. Fluidized bed reactor, cyclone separator, shell-and-tube heat exchanger, condensation system, moisture separators, buffer tank, staging, tank were designed and selected. Expermental running indicated that the key systems were compact and had excellent performance and the pilot production line ran stability and met the design requirements.
     (3) In order to improve the yield and content of phenols of bio-oil and bonding strength of phenol-formaldehyde resin adhesive, poplar bark was taken as raw materials for the optimum technologies of fast pyrolysis, which are:pyrolysis temperature of823K(550℃), particle size of0.3-0.45mm, Screw-feeder speed of20r/min(feeding rate of26kg/h), Streams of gas flow of25m3/h.
     (4) The main organic components of Poplar bio-oil are phenols, aldehydes, acids, and ketones and hydrocarbons and the relative percentage contents are33.55%,32%,14%,8.75%,8.53%and2.91%separately. The pH value of bio-oil was about3.33; The viscosity was39.7mPa-s; The water content was31.856%; The relative density was1.146g/cm3; The high calorific value was14.6MJ/kg. The PH and viscosity would change obviously. The weight-average molecular weight was572; The number-average molecular weight was211. The molecular weight of bio-oil was main distributed less than560.
     (5) The particle size of bio-char of Poplar was mainly in10-200μm and mostly in40-100μm. The bio-char has a certain amount of carbon content and caloric value and can be used for a kind of fuels directly. It should be further activation before using of adsorption of activated carbon because of the low methylene blue adsorption value and specific surface area. Non-condensing gas components analysis showed that it was included CO, CO2, H2, CH4and H2O and the relative percentage contents are40.16%,40.10%,7.95%,0.96%and10.84%.
     (6) As the increase of F/P molar ratio, the viscosity of bio-oil-phenolic resin gone up, free phenol content reduced, MOR and IB increased firstly and then reduced and formaldehyde increased significantly. As the increase of substitution rate of bio-oil, the viscosity of bio-oil-phenolic resin, free phenol content and MOR and IB reduced and formaldehyde emission increased. As the increase of NaOH/P molar ratio, the increasing trend of viscosity declined gradually, free phenol content reduced, formaldehyde emission reduced and MOR and bond strength increased firstly and then reduced. As the increase of reaction time, the viscosity of bio-oil-phenolic resin gone up, free phenol content reduced, formaldehyde emission reduced and MOR and IB increased firstly and then reduced in small scale.
     (7) Comprehensive consideration of the relationship between resin performance and production costs, the better technological conditions for synthesis of bio-oil-phenolic resin were F/P molar ratio of2.0, bio-oil substitution rate of35%, NaOH/P molar ratio of0.45, reaction time of50min. The optimization of synthesis technology was that the MOR and IB of BPF resin was36MPa and0.79MPa, which exceeds national standards substantially for Particle board (MOR>18MPa, IB>0.45MPa) and formaldehyde emission was0.56mg/100g, which well below the current minimum of Particle board industry standards (≤5mg/100g).
     (8) Analysis of bio-oil-phenolic resin and common phenolic resin using FTIR,13C-CP/MAS and GPC. It is found that the hydroxymethyl on the class structure of polyphenols of bio-oil and hydroxymethyl on structural units of phenol occurred copolycondensation reaction during the curing process. The degree of polymerization improved with the addition of bio-oil. Bio-oil components can be better embedded in the resin curing system eventually.
     (9) Analysis of bio-oil-phenolic resin and common phenolic resin using DSC found that the curing temperature of bio-oil-phenolic resin slightly higher than that of common phenolic resin, so more of the curing heat was needed with the addition of bio-oil. Dynamic parameters of bio-oil-phenolic resin with bio-oil substitution rate of30%has been calculated using the method of Kissinger, included activation energy of105.3kJ/mol, frequency factor of8.32×1012s-1, reaction series of0.94.
引文
[1]蔡晓锋,张涛.生物质热解技术的现状、发展趋势及研究[J].工业锅炉,2011(2):10-12.
    [2]柴诚敬.化工原理[M].高等教育出版社,2007.
    [3]常建民.林木生物质资源与能源化利用技术.[M].科学出版社,2010.
    [4]常建民,李晓娟等.落叶松生物油/酚醛树脂胶黏剂制备刨花板的工艺研究[J].中国胶黏剂,2010.04(4):14.
    [5]常建民,郑凯,任学勇,等.落叶松树皮生物油改性酚醛树脂胶黏剂固化动力学研究[J].中国胶黏剂,2009,18(4).
    [6]常杰.生物质液化技术的研究进展[J].现代化工,2003,23(9):13-17.
    [7]陈春添.木质活性炭的生产、结构与吸附性能的关系初探[J].炭素技术,2003,(3):15-17.
    [8]陈平,费敏明.固化酚醛树脂的研究[J].热固性树脂,1990,2:20-26.
    [9]陈鸯飞,陈智琴,刘洪波.酚醛树脂中亚甲基对热降解的影响[J].高分子学报,2008,5:399-404.
    [10]陈冠益,颜蓓蓓,贾佳妮,等.生物质二级固定床催化热解制取富氢燃气[J].太阳能学报,2008,29(3).
    [11]陈丽萍.立式重力气液分离器的工艺设计[J].天然气化工,1999,24(2):36-38.
    [12]陈健,李庭琛,颜涌捷,等.生物质裂解残炭制备活性炭.华东理工大学学报,2005,31(6):821-824.
    [13]陈少锋,谢建良,邓龙江.DSC法研究聚异氰酸酯/环氧树脂胶黏剂的固化反应动力学及固化工艺[J].中国胶黏剂,2006,15(6):14.
    [14]戴先文,周肇秋,吴创之,等.循环流化床作为生物质热解液化反应器的实验研究[J].化学反应工程与工艺,2000,16(3):263-269.
    [15]杜洪双,常建民,王鹏起,等.木质生物质快速热解生物油产率影响因素分析[J].林业机械与木工设备,2007,35(3):16-20.
    [16]付旭峰,仲兆平,肖刚,等.生物质在流化床中热裂解的实验研究[J].动力工程,2009,29(6):585-589.
    [17]高月静,李郁忠,寇晓康,等.高固体含量酚醛树脂的固化特征及动力学研究[J].高分子材料科学与工程,1999,15(3):45-47.
    [18]郭慕孙,李洪钟主编.流态化手册[M],北京:化学工业出版社,2007,5.
    [19]黄国胜.添加剂对生物质热解影响研究[D].安徽,安徽理工大学,2009.
    [20]何芳,易维明,柏雪源.国外利用生物质热解生产生物油的装置[J].山东工程学院学报,1999,13(3):61-64.
    [21]何芳,徐梁,柏雪源,等.生物质热解过程吸热量.太阳能学报,2006,27(3):237-241.
    [22]何文昌,王文亮,冶敏,等.生物质快速热裂解液化基础研究进展[J].木材加工机械,2011,(1):26-31.
    [23]何芳,易维明,柏雪源,等.几种生物质热解反应动力学模型的比较[J].太阳能学报,2003,24(6):771-775.
    [24]蒋琳.生物质热解液化流化床内流动特性的研究[D].重庆大学,2006.
    [25]金国淼.石油化工设备设计选用手册-除尘器[M].化学工业出版社,2008.
    [26]金涌,祝京旭,等.流化态工程原理[M].北京:清华大学出版社,2001.
    [27]李乾军,章名耀.三维喷动流化床流动特性数值模拟[J].燃烧科学与技术,2007,13(4):309-313.
    [28]李林,张鹏远.木焦油部分替代苯酚合成酚醛树脂胶黏剂的研究[J].粘接,2009,30(12):59-64.
    [29]李晓娟,常建民等.催化剂对生物油-酚醛树脂胶黏剂性能的影响[J].粘接,2009.05(10):64-65.
    [30]李晓娟,常建民等.落叶松生物油-酚醛树脂胶黏剂的研制及性能研究[J].粘接,2009.05(10):61-63.
    [31]梁大明.中国煤质活性炭[M].北京:化学工业出版社,2008.
    [32]梁伟,王铁军,张琦,等.生物质快速热解油水相溶液超声乳化特性[J].燃料化学学报,2009,37(6).
    [33]梁庚煌,运输机械手册[M],化学工业出版社,1983.
    [34]林木森,蒋剑春.生物质快速热解技术现状[J].生物质化学工程,2006,40(1):21-26.
    [35]刘光启,马连湘,刘杰.化学化工物性数据手册[M].化学工业出版社,2002.
    [36]刘荣厚,鲁楠,曹玉瑞,等.旋转锥反应器生物质热裂解工艺过程及实验[J].沈阳农业大学学报,1997,28(4):307-311.
    [37]刘荣厚,武丽娟,李天舒.生物质快速热裂解制取生物油的研究[J].林业工程科技创新与建设现代农业-2005年中国农业工程学会学术年会论文集第四分册.
    [38]龙恩深,周杰,陈金华.生物质快速热解液化的实验[J].重庆大学学报,2009,32(5).
    [39]马路,常建民等.落叶松树皮快速热解油的成分分析研究[J].中国人造板,2008.04(4):8-11.
    [40]马路,赵勇,等.落叶松树皮热解油酚醛树脂胶黏剂的制备与性能表征[J].林产工业,2007,1.
    [41]马校飞.生物质热解液化实验研究[D].重庆大学,2005.
    [42]马志刚,吴树志,白云峰.生物质能利用技术现状及进展[J].能源工程,2008.
    [43]马新辉,物质热解液化装置与流化床冷态模拟研究[D].郑州大学,2006.
    [44]齐国利,董笕,翟明,等.间歇式给料的生物质快速热解制油的实验研究[J],现代化工2006,26(8):37-39.
    [45]任强强,赵长遂.升温速率对生物质热解的影响[J].燃料化学学报,2008,36(2).
    [46]任学勇,高雪景,王鹏起,等.新型流化床式生物质热裂解液化设备设计与实验.现代化工.2011年6月,31(增刊1):359-362.
    [47]任学勇,王鹏起,常建民,等.林木剩余物快速热裂解液化技术探析及展望[J].林业机械与木工设备,2008,36(9):13-16.
    [48]任学勇,王鹏起,车颜喆,等.流化床式生物质快速热解设备监控系统的设计与开发[J].化工机械,2011,38(2):166-169.
    [49]任学勇,张继宗,常建民,等.林木生物质热裂解液化制备胶黏剂技术经济分析[J].科技导报,2011,29(17):68-71.
    [50]任学勇,常建民,王鹏起,等BL-SCFB-2型生物质快速热解液化设备的研发[J].第二届中国林业学术大会-S11木材及生物质资源高效增值利用与木材安全论文集.
    [51]任学勇,王文亮,王鹏起,等.流化床式木材快速热解设备加热功率的确定[J].木材加工机械,2010,4:1-4.
    [52]孙锐,姚娜,栾积毅,等.生物质快速热解焦炭的比表面积和孔隙结构[C].中国动力工程学会第四届青年学会会议,2009,1.
    [53]王鹏起,常建民,杜洪双,等.喷动流化床在生物质快速热解技术中的应用[J].北华大学学报,2007,1.
    [54]王鹏起,常建民,王雨,等.落叶松木材生物油组分分析与表征[J].农业工程学报,2010,26(S2):269-273.
    [55]王庭慰,陈瑞珠,赵刚.端异氰酸酯聚醚增韧环氧树脂固化动力学研究[J].粘接,2001,22(6):4-6.
    [56]王树荣,骆仲泱,董良杰,等.生物质闪速热裂解制取生物油的实验研究[J].太阳能学报,2002,23(1):4-10:
    [57]王树荣,骆仲映,董良杰,等.几种农林废弃物热裂解制取生物油的研究[J].农业工程学报,2004,20(2):246-247.
    [58]王树荣,骆仲泱,谭洪,等.生物质热裂解生物油特性的分析研究[J].工程热物理学报,2004,25(6):1049-1052.能源,2010,28(24):75-79.
    [59]王益群.生物质在流化床中热解过程的动力学数值模拟[D].中国科学技术大学博士学位论文,2008.
    [60]王鹏起,常建民,张忠涛.新型喷动循环流化床落叶松木材快速热解实验研究[J].林产工业,2009,36(5):41-44.
    [61]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业社,2003:199-201.
    [62]吴建章,李东森.通风除尘与气力输送[M].北京,中国轻工业出版社,2009.
    [63]吴少华,栾积毅,孙锐,等.生物质快速热解气相成分析出规律[J].太阳能学报,2009,30(11).
    [64]吴逸民,赵增立,吴文强,等.基于裂解气质联用分析的生物质逐级热解研究[J].燃烧化学学报,2010,38(2).
    [65]肖志英.流化床反应器设备设计计算[J].河北化工,2004(4):55-59.
    [66]徐保江,李美玲,曾忠.生物质热解液化技术的应用前景[J].源研究与信息,1999,15(2):19-24.
    [67]徐俊明,蒋剑春,孙云娟,等.反应精馏催化改性生物质热解油[J].太阳能学报,2009,30(2).
    [68]徐卫兵,鲍素萍,沈时骏,等.酚醛树脂/蒙脱土纳米复合材料的制备及固化反应动力学研究[J].高分子学报,2002(4):457-461.
    [69]薛江涛.流化床煤热解气化过程中焦油析出特性研究[D].浙江大学,2005.
    [70]严晓龙,袁兵,余春江,等.考虑水分影响的木材热解过程数学模拟[J].消防科学与技术,2005,24(6).
    [71]杨湄,刘昌盛,黄凤洪等.秸秆热解液化制备生物油技术[J],中国油料作物学报,2006,28(2):228-232
    [72]杨续来,Charles U. Pittman Jr.,朱锡锋.固体酸催化烯烃改性生物油酚类化合物研究[J].高等学校化学学报,2010,(31)7.
    [73]赵建辉,龙恩深.生物质快速热解液化传热模型与实验研究[D].重庆大学硕士论文,2006.
    [74]余国琮,化工机械工程手册,化学工业出版社,2003.
    [75]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005:289-304.
    [76]张立塔.喷动流化快速热解中试技术及其产物应用研究[D].北京,北京林业大学,2010.
    [77]张立塔,常建民,任学勇,等.落叶松木屑快速热解炭制备活性炭工艺及结构表征[J].东北林业大学学报,2011,39(4):96-98.
    [78]张立塔,常建民,王鹏起,等.一种林木剩余物快速热解副产炭制备活性炭的方法[P].中国专利:201010127847.8.
    [79]张忠河.“固-气-液”联产的生物质能源转换工艺及产物利用的研究[D].河南,河南农业大学,2011.
    [80]赵俊成,孙立,易维明.在管式炉中生物质热解的机理[J].山东理工大学学报(自然科学版),2004,18(2):33-36.
    [81]郑凯.落叶松树皮热解油改性酚醛树脂胶黏剂的研究[D].北京:北京林业大学出版社,2007:18.
    [82]郑凯,常建民.落叶松树皮热解油-酚醛树脂胶的固化特性[J].中国人造板,2007,9
    [83]郑凯,闫振,常建民.植物酚类PF树脂胶的研究现状及发展趋势[J].木材工业,2007,21(1):9-11,14.
    [84]钟文其.喷动流化床流体动力学特性及放大规律研究[D],东南大学,2007.
    [85]周密,闫立峰,郭庆祥,朱清时.非预混燃烧模型模拟流化床生物质气化器中富氢气体的制备[J].物理化学学报,2006(2):73-80.
    [86]朱锡锋,生物质热解原理与技术[M].合肥:中国科学技术大学出版社,2006:19-21.
    [87]朱锡锋,陆强.生物质快速热解制备生物油[J].科技导报,2007,25(21):69-75.
    [88]Amen-Chen C, Riedl B, Roy C. Softwood bark vacuum pyrolysis oil-PF resols for bonding OSB Panels. Part II. Thermal analysis by DSC and TG. Holzforschung 2002,56:273-80.
    [89]Amen-Chen C, Riedl B, Wang XM, et al. Softwood bark vacuum pyrolysis oil-PF resols for bonding OSB Panels. Part III. Use of propylene carbonate as resin cure accelerator. Holzforschung 2002; 56:281-8.
    [90]Branca C, Giudicianni P, DiBlasi C. GC/MS Characterization of Liquids Generatd from Low-Temperature Pyrolysis of Wood[J]. Ind.Eng. Chem.Res., 2003,42 (14):2190-3202.
    [91]Bridgwater A V. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass[J]. Catalysis Today, 1996, 29: 1-4.
    [92]Bridgwater A V,D.Meier. An overview of fast pyrolysis of biornass[J]. Organic Geochemistry.1999,30:1479-1493
    [93]Beaumont O, Schwob Y. Influence of physical and chemical parameters onwood pyrolysis[J]. Industrial& Engineering Chemistry Process Design, 1984, 23(4):637-641.
    [94]Beis S H,Onay O,Kockar M. Fixed-bed pyrolysis of saffower seed: infuence of pyrolysis parameters on product yields and compositions[J]. Renewable Energy 2002, 26:21-32.
    [95]Boukis I,Ph. Grammelis P, Bezergianni S, et al.CFB air-blown flash pyrolysis. Part I: Engineering design and cold model performance[J].Fuel, 2007, 86(10-11):1372-1386.
    [96]Babu B V, Chaurasia A S. Pyrolysis of biomass:improved models for simultaneous kinetics and transport of heat, mass and momentum[J]. Energy Conversion and Management.2004, 45(9-10):1297-1327.
    [97]Babu B V, Chaurasia A S. Modeling for pyrolysis of solid particle:kinetics and heat transfer effects[J]. Energy Conversion and Management.2003,44(14):2251-2275.
    [98]Blasi C D.Heat momentum and mass transport through a shrinking biomass particle exposed to thermal radiation [J]. Chemical Engineering Science, 1996,51 (7):1121-1132.
    [99]Chan W C R, Kelbon M., Krieger B B. Modeling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle[J]. Fuel 1985,65:1505-1513.
    [100]Cao Qing, Jin Lie, Bao Weiren. Investigations into the characteristics of oils produced from co-pyrolysis of biomass and tire[J]. Fuel Processing Technology,2009,90(3):337-342.
    [101]Chan F, Riedl B, Wang XM, et al. Performance of pyrolysis oil-based wood adhesives in OSB. Forest Products J 2002; 52:31-8.
    [102]Cetin N S,Ozmen N.Use of organosolv lignin in phenol-formaldehyde resins for particleboard production:II.Particleboard production and properties[J].In tJAdhes Adhes,2002,22(6):481~486.
    [103]Dong-Bin Fan, Jian-Min Chang.On the Cure Acceleration of Oil-Phenol-Formaldehyde Resins with Different Catalysts, The Journal of Adhesion. 2010 (86):834-843
    [104]Demirbas A, Arin G. An overview of biomass pyrolysis[J]. Energy Sources. 2002 24(5):471-482.
    [105]Diebofd J P, Czernik S, Scahill J W, Philips S D, Feik C J. Hot-gas filtration to remove char from pyrolysis vapours produced in the vortex reactor at NREL. in: Milne TA, editor. Biomass Pyrolysis Oil Properties and Combustion Meeting. NREL, 1994, 90-108.
    [106]Franco C, Pinto F, Gulyurtlu I, et al. The study of reactions influencing the biomass steam gasification process[J]. Fuel, 2003,82:835-842.
    [107]Demirbas, A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis 2004, 71(2):803-815.
    [108]Di Blasi.Colomba, Branca.Carmen, Santoro.Antonio, Perez Bermudez, Raul Alberto. Weight loss dynamics of wood chips under fast radiative heating[J]. Journal of Analytical and Applied Pyrolysis, 2001,57(1).
    [109]Dominguez, A; Menendez, JA; Inguanzo, M, et al.Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresource Technology,2006,97(10):1185-1193.
    [110]Franco C, Pinto F, Gulyurtlu I, et al. The study of reactions in fluencing the biomass steam gasification process[J]. Fuel, 2003,82:835-842.
    [111]Gidaspow D, Bezburuah R, Ding J.Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Apporach .In Fluidization VII, Porceedings of the 7th Engineeirng Foundation Conference on Fluidization,1992,47:75-82.
    [112]Ginzburg B Z.Liquid fuel(oil) from halophilic algae:A renewable source of non-polluting energy[J].Renewable Energy, 1993,3(2/3): 249-252.
    [113]Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity, 2nded. Academic Press, London, 1982.
    [114]Haykiri-Acma H, et al.Effect of heating rate on the pyrolysis yields of rapeseed[J].Renewable Energy, 2005:1-8.
    [115]Islam M N, Zailani R.Pyrolytic oil from fluidized bed pyrolysis of oil palm shell and its characterisation[J]. Renew Energy 1999, 17:73-84.
    [116]Jeffrey M H. Wood pyrolysis in a high temperature environment[D]. Wisconsin-Madison University. 1999
    [117]J.J.M.Orfao, F.J.A.Antunes, J.L.Figueiredo. Pyrolysis kinetics of lignocellulosic material-three dependent reactions model[J]. Fuel, 1999, 78 (3).
    [118]Jun Shena, Xiao-Shan Wanga, Manuel Garcia-Pereza, et al. Effects of particle size on the fast pyrolysis of oil mallee woody biomass[J]. Fuel, 2009, 10 (88).
    [119]Link J,Zeilstra C,Deen N,Kuipers H.Validation of a discrete partcle model in a 2D spout-fluid bed using non-intrustive optical measuring techniques [J].Canadlan Journal of Chemical Engineering.2004,82(1):30-36.
    [120]Mathew J H. A numerical model for biomass pyrolysis[D].Iowa State University,2005
    [121]Maniatis K, Baeyens J, Roggeman G, et al. Flash pyrolysis of biomass in an entrained bed reactor, In: 6th EC Conference on Biomass for Energy[J], Industry and Environment, 1991,4:22-26.
    [122]Manuel Garcia-Perez, Xiao Shan Wang, Jun Shen, et al. Fast Pyrolysis of Oil Mallee Woody Biomass: Effect of Temperature on the Yield and Quality of Pyrolysis Products[J]. American Chemical Society, 2008,47 (6).
    [123]Miller, R.S, J.Bellan. A generalized biomass pyrolysis model based on super imposed cellulose, hemicellulose and lignin kinetics[J]. Combust sci. and tech, 1997, 12 (6).
    [124]Nowakowski, D. J. and A. V. Bridgwater, et al. (). lignin fast pyrolysis:results from an international collaboration[J]. Journal Of Analytical And Applied Pyrolysis,2010,(88):53-72.
    [125]Onay O, Kockar O M. Slow, fast and fash pyrolysis of rapeseed[J]. Renewable Energy 2003, 28(15):2417-2433.
    [126]Oasmaa, Anja; Solantausta, et al. Fast pyrolysis bio-oils from wood and agricultural residues[J]. Energy and Fuels, 2010, 24 (2).
    [127]Oasmaa, A.; Kuoppala, E.; Ardiyanti, A.; et al. Characterization of hydrotreated fast pyrolysis liquids[J]. Energy and Fuels, 2010, 24 (9).
    [128]Papadikis K, Bridgwater A V, Gu S.CFD modeling of the fast pyrolysis of biomass in fluidized bed reactors, PartA: Eulerian computation of momentum transport in bubbling fluidised beds[J]. ChemicalEngineeringScience,2008(63):4218-4227.
    [129]Park B-D, Riedl B, Bae H-J, et al. Differential scanning calorimetry of phenol-formaldehyde(PF) adhesives[J]. Journal of Wood Chemistry and Technologym,1999,19(3):265-286.
    [130]R.Helleur, N. Popovic, M.Ikura. Characterization and potential applications of pyrolytic char fromabl ativ e p yorlysisof us edti res,J. An al.Ap pl.Py orlysis,58-59(2001)813-824.
    [131]Shadkami, Farzad; Helleur, et al. Recent applications in analytical thermochemolysis[J]. Journal of Analytical and Applied Pyrolysis, 2010, 89 (1).
    [132]Sipila K, et al. Characterization of biomass-based flash pyrolysis oils[J]. Biomass and Bioenergy,1998,14(2):103-113.
    [133]Stenseng M, et al. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry[J]. Journal of Analytical and Applied Pyrolysis, 2001,58-59:765-780
    [134]Sensoz S, Can M. Pyrolysis of pine chips: 1.effect of pyrolysis temperature and heating rate on the product yields. Energy Sources 2002, 24(4):347-355.
    [135]Stubington.J.F. ,Aiman.S. Pyrolysis kinetics of bagasse at high heating rates[J]. Energy Fuels. 1994,8 (1).
    [136]Sukhbaatar, B., P. H. Steele, et al. use of lignin separated from bio-oil in oriented strand board binder phenol-formaldehyde resins. Bioresources. 2009, 4(2):789-804.
    [137]Sukhbaatar, Badamkhand; Steele, Philip H.; et al. Use of lignin separated from bio-oil in oriented strand board binder phenol-formaldehyde resins[J]. Bioresources, 2009, 4 (2).
    [138]Tabaddor P L, Aloisio C J, Bair H E, et al. Thermal analysis characterization of a commercial thermoplastic/thermoset adhesive[J]. Journal of Thermal Analysis and Calorimetry,2000,59(1-2): 559-570.
    [139]Vazquez G, Gonzalez-Alvarez J, Lopez-Suevos F, et al. Curing kinetics of tannin-phenol-formaldehyde adhesives as determined by DSC[J]. Journal of Thermal Analysis and Calorimetry, 2002,70(1):19-28.
    [140]Wagenaar B M, Kuipers J A M, Prins W, et al. The rotating cone flash pyrolysis reactor. Blackie Academic and Professional. 1994. vol. 2:1122-1133.
    [141]Wang Jun, Zhang Ming-xu, Chen Ming-qiang, et al. Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass[J], Thermochimica Acta,2006,444(1):110-114.
    [142]Vazquez G, Antorrena G, et al. Lignin-phenol-formaldehyde adhesives for exterior grade plywoods[J] Journal of Applied Polymer Science, 2004,92:3514-3523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700