用户名: 密码: 验证码:
基于压差法的透气性测试装置关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料薄膜和薄片等软包装材料在食品、药品等各种日用包装的工农业应用中具有广泛的应用,薄膜和薄片的透气性能直接影响包装质量,在薄膜和薄片生产和应用中,需要测试其透气性能。
     目前,压差法是薄膜和薄片透气性测试的主要方法之一。影响压差法测试结果的因素很多,主要有:测试装置的泄漏、测试的环境温度、温度和压力检测仪的精度、有效量程和稳定性等检测性能和测试件脱气状态等,通过适当的延长测试件的脱气时间,能大大的减少测试件脱气状态对测试结果的影响,通过提高温度和压力检测仪的精度和稳定性,尽管可以直接提高薄膜和薄片透气性测试的准确度,但必然会导致其测试成本的剧烈增长。因此,基于压差法的薄膜和薄片透气性测试装置的关键技术是减少测试装置的泄漏和提高其测试腔恒温控制的精度。
     目前,国内外基于压差法的薄膜和薄片透气性测试装置采用单密封结构,由于其泄漏相对较大,难以测试高阻隔性薄膜透气性能。因此,要重视测试装置多层密封结构的研究。查阅国内外资料,目前还没见到薄膜透气性测试装置多层密封结构设计的研究。
     环境温度是影响薄膜和薄片透气性测试结果另一重要因素,采用基于PWM的模糊PID控制对测试装置进行恒温控制,在一定的温度控制范围之内取得了一定效果,但要进一步提高恒温控制的精度,基于PWM的模糊PID温度控制方法难以实现。高精度的恒温控制方法和策略有待进一步研究。
     基于此,本文着重研究了薄膜和薄片透气性测试装置的多层密封结构设计问题,提出了薄膜和薄片透气性测试装置的双层密封结构和三层密封结构设计方法,着重研究了基于半导体制冷的薄膜和薄片透气性测试装置的传热模型和高精度恒温控制问题,建立了透气性测试装置传热数学模型,给出了一种高精度的恒温控制方法和策略。给出了薄膜和薄片透气性测试装置的设计原则。
     主要研究成果和创新点如下:
     (1)透气性测试装置双层密封结构和三层密封结构研究
     提出了薄膜和薄片透气性测试装置双层密封结构和三层密封结构设计方法,建立了描述透气性测试装置双层密封结构和三层密封结构数学模型。分析了双层密封结构和三层密封结构因泄漏而引起的压强变化特性,给出了相应的仿真和实验结果。结果表明:薄膜和薄片透气性测试装置双层密封结构和三层密封结构设计符合实际应用要求。透气性测试装置多层密封结构设计研究填补了国内外在该领域的空白。
     (2)透气性测试装置双层密封结构优化
     给出了薄膜和薄片透气性测试装置双密封结构的系统临界时间求解表达式,分析了测试装置双密封结构时间流阻容量常数特性。在总密封体积限定的条件下,得出了双密封结构的优化结构比,从理论上给出了双密封结构优化的方法。给出了相应的仿真和实验结果。结果表明:该双密封结构的优化是正确和合理的。
     (3)基于半导体制冷热的透气性测试装置传热模型研究
     首次提出和建立了基于半导体制冷热的透气性测试装置测试腔的传热数学模型从理论上给出了其温度场的解析解,给出了相应的仿真和实验结果。结果验证了该热传热数学模型和温度场解析解的正确性,为进一步研究透气性测试装置高精度的恒温控制提供了理论依据。
     (4)基于半导体制冷热的透气性测试装置高精度恒温控制研究
     提出了一种基于PWM调节的预测函数控制方法,并利用该方法对透气性测试装置腔体温度进行控制,给出了仿真和实验结果,结果表明:该方法能有效的提高温度控制系统的动态性能和稳态精度,具有实用价值。
     (5)薄膜和薄片透气性测试实验和误差分析
     采用双层密封结构设计和基于PWM调节的预测函数控制温度控制技术,对薄膜和薄片的透气性进行了测试实验,结果表明:测试结果更准确和稳定。给出了薄膜和薄片透气性测试的误差分析和相应的设计原则。
Plastic film and sheet are packaging materials for food, medicine and other daily use packaging, it is widely used in industrial and agricultural. The permeability of film and sheet direct impact packaging quality, it is necessary to permeability for its production and application.
     Now, Differential pressure method is one of the most widely used methods for testing film and sheet permeability. There are many factors to affect the test result which based on the differential pressure. Such as the leakage of test system, the environment temperature, the capability that included detector accuracy, effective range and stability of the temperature and pressure test device and the degasification of the film. It can greatly reduce impact of test results through appropriate extend the test pieces degassing time. Although it can improve the accuracy of permeability testing by increasing the accuracy and stability of the detector, it will inevitably lead to rapidly increase cost of test. Therefore, the key technology is control the permeability test device leakage and the environment temperature stable.
     Now, at domestic and foreign, the permeability test device based on Differential pressure method is single seal structure.For hign barrier film permeability test, it is difficult to test by single seal structure test device. Therefore, we should pay attention to research multi-layer seal structure of permeability test device. Access to domestic and foreign, there is not research multi-layer seal structure for permeability test device.
     The environment temperature is another important factor that affects the permeability test results.It can to achieve some effect in a certain range by using he fuzzy PID control on the PWM to control the test device.To improve the accuracy of temperature control, it is difficult to achieve by use the fuzzy PID control on the PWM. Therefore, it need to further research higher precision temperature control method and strategy.
     Based on this, this paper focuses on research multilayer seal structure of permeability test device, the design method of double and three seal structure are give. This paper focuses on research heat transfer model and temperature control of permeability test system which based on TEC, the heat transfer mathematical model of permeability test device is build. A higer accuracy temperature control method and strategy is given. The design principle of film and sheet permeability test device is give.
     Main research results and the innovations are as followed:
     (1) Research on double and three seal structure of permeability test device.
     Propose the design method of double and three seal structure for film and sheet permeability test device, established mathematical model for double and three seal structure of film and sheet permeability test device. Analyze the pressure changing characteristic of the double and three seal structure which caused by leakage. Give the corresponding simulation and experimental results, the result show that the double and three seal structure of permeability test device accord with the application requirement. The gap is filled in the field of permeability test at domestic and foreign by permeability test device seal structure.
     (2) Optimization of the double seal structure of permeability test device.
     Give the system critical time solution expression of double seal structure of permeability test device. Analyze the time flow resistance capacitance constant characteristic of the test device. At the condition of the total seal volume was limited, obtain the optimize structure rate of the double seal structure. Give double seal structure optimization method in theory. Give the corresponding simulation and experimental results, the result show that the optimization of the double seal structure is correct and reasonable.
     (3) Research on heat transfer model of permeability test device based on TEC.
     The first time propose and build the heat transfer mathematical model of the permeability test device which based on TEC. Give the analytic solutions of the temperature field in theory. Give the corresponding simulation and experimental results, the result show that the correctness of the transfer mathematical model and the analytic solutions of the temperature field. Provide the theory evidence for the deeper research the temperature control of film and sheet permeability test device.
     (4) Research on higer accuracy temperature control of permeability test based on the TEC.
     Propose a predict function control method based on the PWM for temperature control. Use the method to control the temperature of the permeability test device's cavity. Give the corresponding simulation and experimental results, the result show that the temperature control could effectively advance the dynamic properties and steady state precision of temperature control system, the method has pratical value.
     (5) Experiment and error analysis of film and sheet permeability test.
     Use the technology of double seal structure design and PFC temperature control based on the PWM. the permeability test experiment is done for film and sheet, the results show that test results are more accurate and stable. The error analysis and corresponding design discipline of film and sheet permeability test device are given.
引文
[1]苏远,赵德坚.压差对塑料薄膜透气性能的影响[J].包装工程,2003,24(3):49-53.
    [2]苏远.塑料薄膜透气性能的测试[J].中国包装工业,2003,(2):44-45.
    [3]涂志刚,吴曾青,麦堪成.阻隔性塑料包装薄膜的发展[J].包装工程2003,24(6):1-13.
    [4]史兆侠.阻隔性塑料包装的最新应用[J].国外塑料,2008,(11):76-77.
    [5]周加彦,赵江.正确认识材料的阻隔性[J].包装工程.2007.28(8):238-239.
    [6]康亚芬,汪仁煌.透气性测试技术研究[D].广东工业大学,2009.
    [7]GB/T1038-2000《塑料薄膜和薄片气体透过量试验方法—压差法》[s].
    [8]赵江.压差法是药品用软包装材料透气性测试的首选方法[.J].中国制药备,2008,(2):30-32.
    [9]判上诚司,市田郁.透气性测试装置[P],日本烟草产业株式会社,ISSN1008-4274.
    [10]姜允中.气体阻隔性检测装置[P].济南兰光机电技术有限公司,200820174120.3.2009.07.
    [11]王蓉佳,赵江,张为胜.阻隔性检测设备发展现状[J].塑料包装,2010(1):23-26.
    [12]张为胜.隔阻性测试技术最新进展[J].塑料包装,2007(3):25-29.
    [13]康亚芬,汪仁煌,蔡建新等.一种透气性测试装置[J].广东工业大学,2009,(1):51-54.
    [14]越后纪康,奥村英树.透气性测量方法及透气性测量装置[P]:中国,200310124712.6.2004-()7.
    [15]Lemon D K. Technology evaluation for space station atmospheric leakage[R]. PNL-7269.DE90-00784.1990.
    [16]Rodriguez P L.Markevitch R. Two-level series seal leakage rate snalysis and testing summary[R]. NASA TM2503604,1999.
    [17]Levy S. Design criteria for zero leakage connectors for launch vehicles[R].NASA-CR-250560,2001.
    [18]沈公槐,彭衷鸿.串联密封系统泄漏率的测定[J].控制工程,1998,(2):1-5.
    [19]龙伟.双密封结构泄漏过程浅析[J].真空与低温,2001,7(3):184-186.
    [20]刘阳,孙冲,崔展鹏等.串联密封结构的泄漏规律研究[J].真空科学与技术学报,2004,24(2):142~148.
    [21]刘阳,于建平.多极串联密封系统泄漏仿真与实验研究[J].真空科学与技术学报.2005,(2):127-133.
    [22]张井岗.过程控制与自动化仪表.[M].北京.北京大学出版社.2007.
    [23]席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [24]郑威,石红瑞.PI型广义预测控制算法在模拟氯化聚乙烯生产温度控制中的应用[J].化工自动化与仪表.2009,36(1):23-26.
    [25]张云广,沈炯等.基于多模型切换的过热汽温广义预测控制[J].华东电力.2009,39(1):164-168.
    [26]华志刚,吕剑虹等.状态变量与预测控制技术在600MW机组再热汽温控制中的研究与应用[J].中国电机工程学报.2005,25(12):103-107.
    [27]Eduardo Gallestey,Alec Stothert, Marc Antoine et al. Model predictive control and the optimization of power plant load while considering lifetime consumption[J].IEEE Trans. Power Systems.2002,17(2):186-191.
    [28]黄涵洲等.预测控制的研究现状[J].北京工业大学学报.1997.23(2):123-128.
    [29]胡国龙,孙优贤.预测控制进展及其应用研究[J].电力系统及其自动化学报.2003.15(1):109-114.
    [30]席裕庚等.预测控制性能研究的新进展[J].控制理论与应用.2000.17(4):469-475.
    [31]席裕庚,李德伟.预测控制定性综合理论的基本思路和研究现状[J].自动化学报.2008.34(10)1225-1234.
    [32]王蕊,苗宝增.啤酒发酵过程P-Fuzzy-PI结合Smith预估补偿控制[J].酿酒科技,2007,156(6):65-67
    [33]刘红军等.时变大滞后系统的自适应灰色预测PID控制[J].华北电力大学学报.2004,31(5):44-47.
    [34]孙慧,张燕.大滞后非线性系统PID型多步预测控制[J].河北师范大学学报.2007,31(6):734-737.
    [35]李华,侯岩松.不稳定大时滞过程的串级PID控制[J].电机与控制学报.2006,10(6):601-604.
    [36]曹刚,俞海斌,徐巍华等.大时滞不稳定对象的PID控制[J].仪器仪表学报.2005,26(3):301-303.
    [37]严兴华,王钦若等. IMC-PID在大惯性大滞后系统中的应用及仿真[J].广东有色金属学报.2006,16(3):217-220.
    [38]李学明,李志军等.电厂过热汽温系统DMC-PID控制仿真研究[J].热力发电,2005(2):24-26.
    [39]Hu BG,George KI,Raymond G.New methodology for analytical and optimal design of fuzzy PID control[J]. IEEE Trans on Fuzzy Systems,1999,7(5):521-538
    [40]AVISIOLI.Tuning of PID controllers with Fuzzy Logic[J]. IEEE Proc Control Theory Control Theory Application.2001,148(1):1-8.
    [41]REZNIK L,BOURMISTROV A. PID plus fuzzy controller structures as a design base of industrial applications[J]. Engineering Application of Artificial Intelligence. 2000,13(4):419-430.
    [42]Hu BG,George KI,Raymond G.New methodology for analytical and optimal design of fuzzy PID control[J]. IEEE Trans on Fuzzy Systems.1999,7(5):521-538.
    [43]刘娜,汪仁煌等.薄膜透气性测试中基于半导体的恒温控制[J].广东工业大学学报,2008(1):69-70.
    [44]何凌等.一种基于改进的模糊Smith控制主动队列管理算法[J].东北大学学报(自然科学版).2007,28(12):1673-1676.
    [45]杨延西等.火电厂锅炉主汽温模糊免疫PID-Smith预控制[J].系统仿真学报.2005.17(11):2756-2758.
    [46]孙建平等.大纯滞后系统的模糊-Smith控制及参数优化[J].仪器仪表学报.2006.27(4):427-429.
    [47]TIAN F. WANG H H. A kind of fuzzy-Smith control for the long time-delay system. Industry Instrument and Automation,2004(1):36-38.
    [48]刘川来. Fuzzy-Smith控制器在蒸汽煅烧炉温控中应用.微计算机信息.2006.22(12)::34-36.
    [49]BECERRA V M.GARCES F R.NASUTO S J. An efficient parameterization of dynamic neural networks for nonlinear system identification[J].IEEE Trans Neural Networks.2005.16(4):983-988.
    [50]韩敏等.基于通用学习网络的控制器设计[J].仪器仪表学报.2005.26(3) :249-254.
    [51]韩敏,韩冰.一种通用学习网络自适应算法及其在预测控制中的应用[J].控制理论与用.2006,23(6):900-905.
    [52]张世超,姜波等.基于遗传算法的时变纯滞后系统的在线辨识与控制[J].计算机应用与软件.2005.22(5):102-104.
    [53]季春光等.基于神经网络的时变大滞后系统的Smith预估控制[J].哈尔滨工业大学学报.2003,35(3):303-306.
    [54]杨鹏等.基于RBF神经网络的改进多变量预测控制[J].控制工程.2009,16(1):39-41.
    [55]张燕,王繁珍等.基于递归神经网络的多变量系统预测控制[J].南开大学学报(自然科学版),2006,39(1):49-53.
    [56]张日东,王树青.基于神经网络的非线性系统多步预测控制[J].控制与决策,2005,20(3):332-336.
    [57]于标.大纯滞后系统一种新预估模糊控制[J].工业仪表与自动化装置.2006.6:9-12.
    [58]戴文战,楼海川.非线性系统神经网络预测控制研究进展[J].控制理论与应用.2009.26(5):521-530.
    [59]HUOHB, ZHONGZD, ZHUX J, etal. Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model[J]. Journal of Power Sources,2008,175(1): 441-446.
    [60]ZEYBERK Z, CENKAYA S, HAPOGLU H, etal. Generalized delta rule(GDR) algorithm with generalized predictive control(GPC)for optimum temperature tracking of batch polymerization[J]. Chemical Engineering Science,2006,61(20): 6691-6700
    [61]LUCH, TSAI C C. Generalized predictive control using recurrent fuzzy neural networks for industrial processes[J]. Journal of Process Control,2007,17(1):83-92.
    [62]HUANG M Z, MAY WAN JQ, etal. Simulation of a paper mill wastewater treatment using a fuzzy neural network[J]. Expert Systems with Applications,2009, 36(3):5064-5070.
    [63]SENIZ E. Predictive modeling of human operators using parametric and neuro-fuzzy models by means of computer based identification experiment[J]. Engineerir Applications of Artificial Intelligence,2008,21(2):259-268.
    [64]PENG H, WU J, GARBA I, etal. Nonlinear system modeling and predictive control using the RBF nets based quasilinear ARX model[J]. Control Engineering Practice 2009,17(1):59-66.
    [65]MOHAMMADM A. MONTAZERIA, POSHTANJ, etal. Wiener neural idendf cation and predictive control of a more realistic plug flow tubular reactor[J]. Chen ical Engineering Journal,2008,138(3):274-282.
    [66]SEYABRKA, CAO Y. Differential recurrent neural network based predictiv control [J]. Computers& Chemical Engineering,2008,32(7):1533-1545.
    [67]SEYABRKA, CAO Y Nonlinear system identification for predictive control usin continuous time recurrent neural networks an d automatic differentiation[J]. Journa of Process Control,2008,18(6):568-581.
    [68]ZOLTAN K N. Model based control of a yeast fermentation bioreactor usin optimally designed artificial neural networks[J]. Chemical Engineering Journal, 2007,127(3):95-109.
    [69]LUIZ A D, CRUZ M. Constructive learning neural network applied to identification and control of a fuel ethanol fermentation process[J]. Engineering Applications of Artificial Intelligence,2009,22(2):201-215.
    [70]WU X J, ZHU X CAO G et al. Predictive control of SOFC based on a GA-RBF neural network model [J]. Journal of Power Sources,2008,179(1):232-239.
    [71]KAOUTHERL, FAOUZIB, MEKKIK. Multicriteria optimization in nonlinea predictive control[J]. Mathematics and Computers in Simulation,2008,76(5/6): 363-374.
    [72]YU D W, YU D L. Multi. rate model predictive control of a chemical reactor basec on three neural models[J]. Biochemical Engineering Journal,2007,37(1):86-97.
    [73]AGGELOGIANNAKI E, HARALAMBOS S. Nonlinear model predictive contro for distributed parameter systems using data driven artificial neural network models[J]. Computers and Chemical Engineering,2008,32(6):1225-1237.
    [74]AHMMED S I, MOHAMED A H, NAYEF M G. Mathematical model and advancec control for gas phase olefin polymerization in fluidized bed catalytic reactors [J]. Chinese Journal of Chemical Engineering,2008,16(1):84-89.
    [75]WU Y L, LU J G, SUNY X. An improved differential evolution for optimization of chemical process[J]. Chinese Journal of Chemical Engineering,2008,16(2):228-234
    [76]NAND K, SINGH S E Simulated response of NN based identification and predictive control of hydro plant[J]. Expert Systems with Applications.2007,32(1):233-244.
    [77]ELENI A. HAR A I. AMBOS S. DIM ITROM S K. Model predictive temperature control in long ducts by means of a neural network approximation tool[J]. Applied Thermal Engineering,2007,27(14/15):2363-2369.
    [78]HUI YAN G Z J, GUIW H. Nonlinear system modeling and robust predictive control based on RBF-ARX model [J].Engineering Applications of Artificial Intelligence,2007,20(1):1-9.
    [79]ZHANG B, ZHANG W D. Adaptive predictive functional control of a class of nonlinear systems.ISA Transactions,2006,45(2):175-183.
    [80]JULIAN S V, JIN Y C, JAY F. Adaptive control for output feedback nonlinear systems in the presence of modeling errors[J]. Automatica,2002.38,1761-1767.
    [81]GE S, LEE T H. Adaptive neural network control of nonlinear system with unknown time delays[J]. IEEE Tram on Neural Networks,2003,48(11):2004-2011.
    [82]NUNEZ A, SAEZ D, OBLAK S, SKRJANC I. Fuzzy model based hybrid predictive control [J].ISA Transactions,2009,48(1):24-31.
    [83]OBLAK S, SKRJANC L. Multivariable fuzzy predictive control of a MIMO non-linear system[c]//Proceedings of the IEEE International Symposium on Intelligent Control, Limassol, Cyprus:IEEE Computer Society Press,2005:1029-1034.
    [84]GE S, LEE T H. Adaptive Neural Network Control of Nonlinear System with Unkn-own Time Delays[J]. IEEE Tram on Neural Networks,2003,48(11):2004-2011.
    [85]Kuntze H B,Jacubasch A,Richalet J.On the predictive functional control of an elastic industrial robot Proceedings of the IEEE Conference On decision and Control[C] Piscataway.NJ.USA:IEEE.1986.1877-1881.
    [86]SU Cheng li, LI Ping. Adaptive predictive functional control based on Takagi-Sugeno model an dits application to pH process[J]. J. Cent. South Univ Technol. 2010.17(2):363-371.
    [87]YANG Xiyun, XU Lingfeng, LIU Yibing, XU Daping. Multivariable predictive function control for doubly fed induction generator[C]//IEEE International Conference on Control and Automation. New York:IEEE Press,2007.1:80-83.
    [88]BOUHENCHIR H. CABASSUD M, LELANN M V Predictive functional control for the temperature control of a chemical batch reactor[J]. Computers and Chemical Engineering,2006,30(6):1141-1154.
    [89]ZHANG Quan ling, WANG Shu qing. Nonlinear predictive functional control using Hammerstein models [J]. Journal of Zhejiang University:Engineering Science, 2002,36(2):119-122.
    [90]QIN S BEDGWELL T A A survey of industrial model predictive control technology [J]. Control Engineering Practice,2003,11(7):733-764.
    [91]SKRJANC I. BLAZIC S. Predictive functional control based on fuzzy model:Des-ign and stability study[J]. Journal of Intelligent and Robotic Systems.2005,43(2/4) 283-299.
    [92]LEPETIC M, SKRJANC I, CHIACCIARINI H G, MATKO D. Predictive functional control based on fuzzy model:Magnetic suspension system case study [J]. Engine-ering Applications of Artificial Intelligence.2003.16(5/6):425 - 430.
    [93]ZHANG Bin, ZHANG Wei-dong. Adaptive predictive functional control of a class of nonlinear systems[J]. ISA Transactions.2006.45(2):175-183.
    [94]ZHAO Hua qi, CAO Jun, LI Zhi wei, LIU Ya qiu. Nonlinear predictive functional control of recursive subspace model using support vector machine[C]//J Proceedings of the Chinese Cotrol and Decision Conference. Shenyang:Northeastern University Press,2008:4909-4913.
    [95]金晓明,王树青.先进控制技术及应用[J].化工自动化及仪表,1999,26(6):74-79.
    [96]王国玉等.预测函数控制及应用研究[.J].系统仿真学报.2002,14(8):1087-1091
    [97]张泉灵,王树青.化学反应温度跟踪预测函数控制的研究与应用[J].控制理论与应用,2001,18(4):559-563.
    [98]岳俊红等.具有可测扰动典型过程的预测函数控制[J].系统仿真学报,2007,19 (16):3752-3755.
    [99]宁璀等.多变量一阶加纯滞后系统的预测函数控制[J].信息与控制.2007,36(6):702-707.
    [100]黄长征,谭建平.基于PFC的300MN模锻水压机动梁速度跟踪控制[J].中南大学学报(自然科学版),2010,41(3):966-970.
    [101]张日东,王树青.基于神经网络的非线性系统预测函数控制[J].控制理论与应用,2007,24(6):949-953.
    [102]郑军,颜文俊.基于小波函数的预测函数控制[J].控制与决策,2005,20(9):1077-1080.
    [103]谢启,杨马英.具有死区预补偿的非线性预测函数控制[J].控制工程,2003,10(5):466-468.
    [104]周洪煜,张坚.基于混合神经网络的非线性预测函数控制[J].控制理论与应用,2005,22(1):110-113.
    [105]王东风,韩璞.锅炉汽包水位系统的预测函数控制[J].华北电力大学学报,2003,30(3):44-47.
    [106]张智焕,王树青.非线性多模型控制及仿真研究[J].系统仿真学报,2003,15(7):919-921.
    [107]王晓东等.真空技术[M].北京:冶金工业出版社,2006.
    [108]李保伟,沈显威.一种半导体制冷片电源的设计[J].医疗卫生装备,2006,27(5)66-69.
    [109]秦海涛,薛晨阳.半导体制冷温控系统的设计及误差分析[J].2007,(1):39-41
    [110]庞长林.小型半导体制冷恒温控制系统的实验研究[J].仪表技术与传感器.2002(2):12-14.
    [111]江孝国等.高精度半导体激光器自稳温控系统[J].电子技术,2002,5:56-59.
    [112]焦明星等.半导体激光器温度控制系统的设计[J].激光与红外,2006,36(4):261-264.
    [113]肖建军等.半导体制冷控温酶反应检测仪[J].仪器仪表学报,2002,23(6):551-555.
    [114]张娜,于永力,田小建.半导体激光器恒温控制理论与应用[J].吉林大学学报,2002,40(3):284-287.
    [115]徐德胜.半导体制冷与应用技术[M].第2版.上海:上海交通大学出版社,1999.
    [116]张志勇,黄荣华.发动机活塞温度测量方法综述[J].柴油机设计与制造,2005(1):19-24.
    [117]刘文凯,张立武.薄壁圆筒件车削温度测量方法研究[J].机械设计与制造,2008(8):119-121.
    [118]谭贵权,谭文佳.薄膜铂热电阻元件的应用及发展[J].世界仪表与自动化,2008(4):29-30.
    [119]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [120]尹益辉,王伟平,陈裕泽.激光辐照下多层圆柱体中三维瞬态温度场的解析解[J].爆炸与冲击,2008,28(1):44-49.
    [121]赵剑衡,章冠人,刘绪发.强激光辐照下柱壳温度场的数值模拟[J].高压物理学报,1996,10(1):44-49.
    [122]袁红,赵剑衡,谭福利等.激光辐照下旋转柱壳温度场的数值模拟[J].强激光与粒子束,2005,17(5):681-684.
    [123]吴非,周建平,雷勇军.运动激光辐照圆柱薄壳温度场的数值模拟[J].国防科技大学学报,2005,27(3):10-15.
    [124]李茂德,殷亮.半导体制冷系统电极非稳态温度场的数值分析[.J].同济大学学报(自然科学版),2004,32(6):767-770.
    [125]李茂德,卢希红.热电制冷过程散热强度对制冷参数的影响分析[J].同济大学学报(自然科学版),2002,30(7):811-813.
    [126]杨惠连,张涛.误差理论与数据处理[M].天津:天津大学出版社.1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700