用户名: 密码: 验证码:
超低温冻融对近红外光谱法测定土壤磷、钾含量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对近红外光谱分析技术对土壤全磷、全钾、速效磷、速效钾和有效钾含量的测定分析精度不高、预测偏差较大的研究现状,本研究为提高近红外光谱分析技术对土壤中全磷、速效磷、全钾、速效钾、有效钾含量的分析精度,用液氮对土壤样品进行了超低温冻融处理,分析超低温冻融处理对土壤养分组成及近红外和红外光谱的影响,初步确定了与有关磷、钾养分含量相关的波长或谱带,并运用化学计量学方法分析超低温冻融处理对土壤磷、钾养分的近红外光谱定量模型及预测精度的影响,研究结果如下:
     用液氮对235个土壤样品进行冻融处理,测定了处理前后土壤的养分含量及近红外光谱,土壤经冻融处理后,全磷和全钾含量未发生变化,速效磷和速效钾含量显著增加,有效钾含量变化不显著,近红外光谱的吸光度也发生了改变。对长期定位试验站的棕壤和温室土壤的光谱进行比较,初步确定了土壤磷素和钾素较敏感的近红外光谱谱带为1000nm~1890nm、1980nm~2200nm、2200nm~2380nm。经过对土壤养分与近红外光谱相关系数的研究,确定了不同磷、钾养分对近红外光谱吸收的影响谱带,并通过建立近红外定量模型进一步确认谱带的归属,使用这些谱带范围的波长建立的近红外模型明显优于使用全波长范围建立模型的效果。
     通过对土壤的近红外光谱定量模型的比较分析,在诸多光谱预处理方法中选择均值中心化和一阶导数对光谱预处理后建模的效果较好。用偏最小二乘回归、人工神经网络和主成分回归三种回归方法建立土壤全磷含量的近红外定量模型,采用偏最小二乘回归法建立的定量模型,土壤进行冻融处理与未处理相比,近红外定量模型的决定系数和预测精度提高了很多(未冻融处理:RC~2=0.949,SEC=0.224,Rp~2=0.942,SEP=0.299,RPD=3.064;冻融处理:RC~2=0.953,SEC=0.214,Rp~2=0.957,SEP=0.273,RPD=3.355)。采用人工神经网络法建立的全磷含量的近红外定量模型,土壤未进行冻融处理的模型预测效果较差,但样品经过冻融处理后,模型预测精度有了很大提高,预测效果也很好(未冻融处理:RC~2=0.967,SEC=0.341, Rp~2=0.952,SEP=0.470,RPD=1.949;冻融处理:RC~2=0.979,SEC=0.153,Rp~2=0.985,SEP=0.168,RPD=5.452)。采用主成分回归建立的土壤全磷含量的近红外定量模型,样品冻融处理后模型效果虽变好,但预测精度较低,没有达到无损定量的要求。
     未经过超低温冻融处理的土壤样品,采用偏最小二乘回归、人工神经网络和主成分回归三种回归方法建立的土壤速效磷含量的近红外定量模型的效果均不理想,没有达到对土壤速效磷含量无损定量的要求。土壤样品经冻融处理后,采用三种回归方法建立的近红外定量模型的效果都变好(偏最小二乘回归:RC~2=0.893,SEC=34.007,RP~2=0.918,SEP=30.845, RPD=3.167;人工神经网络: RC~2=0.967, SEC=30.970, RP~2=0.952,SEP=31.325,RPD=3.539;主成分回归:RC~2=0.862,SEC=36.588,RP~2=0.892,SEP=43.276,RPD=2.562),偏最小二乘回归和人工神经网络法建立的近红外模型可以对土壤速效磷含量进行快速无损测定。
     使用偏最小二乘回归、人工神经网络和主成分回归三种方法建立的土壤样品冻融前后全钾含量的近红外定量模型的效果都不好,预测偏差较大,都没达到对土壤全钾含量进无损定量的要求。
     使用偏最小二乘回归、人工神经网络和主成分回归三种回归方法建立土壤速效钾含量的近红外定量模型,其中采用偏最小二乘回归法建立的近红外模型,土壤进行冻融处理与未处理相比,近红外模型的决定系数和预测精度提高了很多(未冻融处理:RC~2=0.928,SEC=52.038,Rp~2=0.922,SEP=58.701,RPD=2.911;冻融处理:RC~2=0.942,SEC=47.422,Rp~2=0.938,SEP=42.340,RPD=4.035)。采用人工神经网络法建立的近红外定量模型对土壤未进行冻融处理的预测效果较差,但土壤经过冻融处理后建立的模型的预测精度有了很大提高,预测效果也变好(未冻融处理:RC~2=0.878,SEC=71.239,Rp~2=0.867,SEP=93.338,RPD=1.831;冻融处理:RC~2=0.896,SEC=30.556,Rp~2=0.893,SEP=53.814,RPD=3.175),说明土壤冻融处理后使用偏最小二乘回归和人工神经网络方法建立的近红外定量模型可以对速效钾含量进行无损定量检测。采用主成分回归建立的土壤速效钾含量的近红外定量模型,土壤样品经冻融处理后模型效果虽变好,但预测精度较低,没有达到无损定量的要求。
     使用偏最小二乘回归、人工神经网络和主成分回归三种方法建立的土壤有效钾含量的近红外定量模型,未经过冻融处理的土壤样品的近红外模型效果不好,预测精度不理想,但对土壤样品进行冻融处理后,使用人工神经网络法建立的土壤有效钾含量的近红外模型较好,RC~2=0.912,SEC=62.047,RP~2=0.917,SEP=42.810,RPD=5.192,说明该模型可以应用于对土壤有效钾含量进行快速测定。
Because of the low accuracy and large prediction deviation using NIRS to measure soilP and K content in present study, the soil samples were carried on ultra-lowtemperature freeze thawing treatment using liquid nitrogen in this study. The effect ofultra-low temperature freeze thawing treatment on soil nutrients, near-infrared and infraredspectroscopy were analyzed. The wavelength and spectroscopy related to soil nutrients wereestablished and the effect of NIR quantitative calibration model and predication accuracywere analyzed using the soil which carried on ultra-low temperature freeze thawingtreatment, the conclusions are as follows:
     The soil nutrient and NIR of235soil samples treated ultra-low temperature freezethawing treatment using liquid nitrogen were measured in this study, the result indicated thattotal P and total K contents of treated soil did not change, while available P and K contents oftreated soil increased significantly, effective P content did not change significantly and theNIR absorbance also changed too. The long-term positioning brown soil and greenhouse soilspectrum were also measured, it can be identified the sensitive bands affected by P and Kwere1000nm~1890nm,1980nm~2200nm, and2200nm~2380nm. The effected spectrumof P, K contents to NIR absorption bands were determined through studying the correlationcoefficient between soil contents with NIR and quantitative calibration model were alsoestablished to identify the spectrum band. The result showed that the model established usingthe range of these bands was much better than that using full wavelength range.
     Compared to the calibration model, the mean centralization and first derivative were thebest pretreatment methods. The calibration models were established by PLSR, ANN and PCRtechniques to relate NIR spectral data to the total P content. In PLSR model, the coefficient ofdetermination and prediction accuracy are improved after treatment,(before freeze thawingtreatment, Rc~2=0.949, SEC=0.224, Rp~2=0.942, SEP=0.299, RPD=3.064; after freeze thawingtreatment, Rc~2=0.953, SEC=0.214, Rp~2=0.957, SEP=0.273, RPD=3.355). The calibrationmodel established by ANN had low prediction accuracy for unhanded soil, but had higherprediction accuracy for treated soil (before treatment, Rc~2=0.967, SEC=0.341, Rp~2=0.952,SEP=0.470, RPD=1.949; after treatment: Rc~2=0.979, SEC=0.153, Rp~2=0.985, SEP=0.168, RPD=5.452). The calibration model established by PCR had low prediction accuracy, so itcan not get the non-destructive quantitative requirements.
     The calibration models were established by PLSR, ANN and PCR techniques to relateNIR spectral data to content of unhandled soil available P, the result showed that all themodels can not reach non-destructive quantitative requirements. However, after treatment, themodels were better.(PLSR: RC~2=0.893, SEC=34.007, RP~2=0.918, SEP=30.845, RPD=3.167;ANN: RC~2=0.967, SEC=30.970, RP~2=0.952, SEP=31.325, RPD=3.539; PCR: RC~2=0.862,SEC=36.588, RP~2=0.892, SEP=43.276, RPD=2.562). The model established by PLSR andANN can non-destructively detect available P content rapidly.
     The effect of calibration models established using PLSR, ANN, and PCR for unhandledand treated soils were not very good and had great prediction deviation. These calibrationmodels can not reach our requirements that detect soil available K content non-destructively.
     The calibration models were established by PLS, ANN and PCR techniques to relateNIR spectral data to content of unhandled soil available K. In the three calibration models,PLSR was the best to detect available K content. In PLSR model, the coefficient ofdetermination and prediction accuracy were improved after treatment,(before freeze thawingtreatment, Rc~2=0.928, SEC=52.038, Rp~2=0.922, SEP=58.701, RPD=2.911; after freezethawing treatment, Rc~2=0.942, SEC=47.422, Rp~2=0.938, SEP=42.340, RPD=4.035). Theprediction accuracy was low for unhandled soil using ANN calibration model, but it washigher for treated soil.(before freeze thawing treatment, Rc~2=0.878, SEC=71.239, Rp~2=0.867,SEP=93.338, RPD=1.831; after freeze thawing treatment, Rc~2=0.896, SEC=30.556,Rp~2=0.893, SEP=53.814, RPD=3.175). It can be concluded that models using ANN andPLSR can detect available K content non-destructively. Model established using PCR hadlow prediction accuracy and could not reach non-destructive quantitative requirements.
     In PLSR, ANN, and PCR models for measuring effective K content of unhandled soil,The results were not very good, but the model established by ANN for treated soil was better,RC~2=0.912, SEC=62.047, RP~2=0.917, SEP=42.810, RPD=5.192, so it can be used to detecteffective K content non-destructively.
引文
1.鲍士旦主编.2000.土壤农化分析.北京:中国农业出版社.
    2.蔡绍松,张建慧,董海平,等.2008.采用AOTF近红外技术检测土壤成分.全国第二届近红外光谱学术会议论文集.长沙:125-131.
    3.陈斌,孟祥龙,王豪.2007.连续投影算法在近红外光谱校正模型优化中的应用.分析测试学报,26(1):66-69.
    4.陈鹏飞,刘良云,王纪华,等.2008.近红外光谱技术实时测定土壤中总氮及总磷含量的初步研究.光谱学与光谱分析,28(2):295-298.
    5.褚小立,袁洪福,陆婉珍.2004.在线近红外光谱过程分析技术及其应用.现代科学仪器,2:3-21
    6.诸小立,袁洪福,王艳斌,陆婉珍.2004.近红外稳健分析校正模型的建立一样品温度的影响.光谱学与光谱分析,24(6):666-671.
    7.杜昌文,周桂勤,邓晶,等.2009.基于中红外光谱的土壤矿物表征及其鉴定.农业机械学报,8:154-158.
    8.方利民,林敏.2008.基于独立分量和神经网络的近红外多组分分析方法.分析化学,36(6):815-818.
    9.冯新沪,史永刚.2002.近红外光谱及其在石油产品分析中的应用.北京:中国石化出版社.
    10.郭哗,苟玉慧,汤真,等.2001.人工神经网络近红外光谱法用于粉末药品美的康的非破坏定量分析.分析化学研究报告,29(1):121.
    11.郭立鹤,韩景仪.2006.红外反射光谱方法的矿物学应用.岩石矿物学杂志,25(3):251-256.
    12.何挺,王静,程烨,等.2006.土壤水分光谱特征研究.土壤学报,43(6):1027.
    13.何绪生.2004.近红外反射光谱分析在土壤学的应用及前景.中国农业科技导报,6(4):71-76.
    14.阂顺耕,李宁,张明祥.2004.近红外光谱分析中异常值的判别与定量模型优化.光谱学与光谱分析,24(10):1205-1209.
    15.胡建东,肖建军,田瑞华,等.1998.YN型快速土壤肥料养分测定仪的研制.河南农业大学学报,32(2):171-175.
    16.吉海彦,严衍禄.1999.主成分-人工神经网络在近红外光谱定量分析中的应用.分析测试学报,18(3):12-15.
    17.籍保平.2000.近红外光谱技术在农产品加工中的应用.粮油加工与食品机械,(6):31-33.
    18.解宪丽,孙波,郝红涛.2007.土壤可见光-近红外反射光谱与重金属含量之间的相关性.土壤学报,44(6):982-993.
    19.金同铭,崔洪昌.1994.检测草毒果中多组分的新方法-近红外光谱法.华北农学报,9(2):120-123.
    20.金同铭,刘玲,唐晓伟,等.1994.用近红外光谱法测定大白菜的营养成分.华北农学报,9(4):104-110.
    21.兰翠玲,张淑华,蒋毅民.2005.钾的N-酰化牛磺酸配合物的合成、表征及其晶体结构.无机化学学报,21(1):87-90.
    22.李方敏,廖宗文,艾天成.2004.平衡施肥理论与肥料高效利用.磷肥与复肥,19(5):66-70.
    23.李伟.2006.近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量.吉林大学硕士学位论文.
    24.李伟,张淑慧,张倩,等.2007.近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量.农业工程学报,23(1):55-59.
    25.梁逸曾,俞汝勤.2003.化学计量学.北京:高等教育出版社.
    26.刘爱秋,邓晓建.2006,近红外光谱分析技术及其在农业领域的应用.西南农业学报,16(2):98-102.
    27.刘建学,吴守一,方如明.1998.近红外光谱分析在农产品方面的应用于展望.江苏理工大学学报,19(3):1-5.
    28.刘建学,吴守一,方如明.2001.基于近红外光谱的神经网络预测大米直链淀粉含量.农业机械学报,32(2):55-70.
    29.刘强,罗长兵,陈绍江,孟庆翔.2007.近红外光谱分析青贮玉米NDF中判别异常光谱的研究.光谱学与光谱分析,27(5):1514-1515.
    30.芦永军,曲艳玲,朴仁官,等.2004.近红外光谱分析技术定标和预测中的相似样品剔除算法.光谱学与光谱分析,24(2):158-161.
    31.鲁如坤.1998.我国土壤氮、磷、钾的基本状况.土壤学报,26(3):280-286.
    32.鲁如坤.1998.土壤植物营养学原理和施肥.北京:化学工业出版社.
    33.鲁如坤.1999.土壤农业化学分析方法.北京:中国农业科技出版社.
    34.陆婉珍.2010.近红外光谱仪器.北京:化学工业出版社.
    35.陆婉珍,袁洪福,徐广通,等.2000.现代近红外光谱分析技术.北京:中国石化出版社.
    36.吕英华,秦汉月.2002.测土与施肥.中国农业出版社.
    37. l. Norris, k. h. Landa.1979.在近红外区测定单色一起参数的快速方法.光学仪器,4:74-77.
    38.彭玉魁,张建新,何绪生,等.1998.土壤水分、有机质和总氮含量的近红外光谱分析研究.土壤学报,35(4):553-559.
    39.彭玉魁.2001.近红外光谱分析技术及其在农业中的应用.陕西农业科学,3:25-33.
    40.任秀珍,郭宏儒,贾玉山,等.2009.近红外光谱技术在饲草分析中的应用现状及展望.光谱学与光谱分析,29(3):635.
    41.邵学广,蔡文生,徐筱杰,译.2003.化学计量学:统计学与计算机在分析化学中的应用.北京:科学出版社.
    42.舒庆尧,吴殿星,夏英武.1999.用近红外反射光谱测定小样本糙米粉的品质性状.中国农业科学,32(4):92-97.
    43.舒庆尧,吴殿星,夏英武,等.1999.稻米表观直链淀粉含量近红外光谱测定技术校正设置的优化.浙江大学学报,25(4):343-346.
    44.舒庆尧,吴殿星,夏英武,等.1999.近红外光谱技术测定精米粉样品表观直链淀粉含量的研究.中国水稻科学,13(3):189-192.
    45.宋海燕,何勇.2007.基于OSC和PLS的土壤有机质近红外光谱测定.农业机械学报,35,(12):113.
    46.孙建英,李赞民,郑立华,等.2006.基于近红外光谱的北方潮土土壤参数实时分析.光谱学与光谱分析,26(3):426.
    47.王新忠,王熙,王智敏.2002.精准农业与变量施肥技术.黑龙江八一农垦大学学报,12,(4):25-27.
    48.王艳斌,袁洪福,陆婉珍.2000.人工神经网络用于近红外光谱测定柴油闪点.分析化学研究报告,28(9):1070-1073.
    49.王艳斌,袁洪福,陆婉珍.2001.近红外分析方法测定润滑油基础油粘度指数.润滑油,16(6):53-56.
    50.王艳斌.2000.人工神经网络在近红外分析方法中的应用及深色油品的分析.石油化工科学研究院博士学位论文.
    51.王艳艳.2007.基于不同土质土壤的光谱特性及快速分析仪器的研究.浙江大学硕士学位论文.
    52.吴瑾光.1994.近代傅里叶变换近红外光谱技术及应用.北京:科学技术文献出版社.
    53.吴静珠,王一鸣,张小超.2006.近红外光谱分析中定标集样品挑选方法研究.农业机械学,37(4):59-61.
    54.吴昀昭,田庆久,季峻峰,等.2003.土壤光学遥感的理论、方法及应用.遥感信息,(1):40.
    55.肖武,李小昱,李培武,等.2008.基于傅里叶变换特征提取的近红外光谱土壤水分检测研究.全国第二届近红外光谱学术会议论文集.长沙:133-137.
    56.徐广通,袁洪福,陆婉珍.2001.近红外光谱定量校正模型适应性研究.光谱学与光谱分析.21(4):459-463.
    57.徐广通,袁洪福,陆婉珍.2000.现代近红外光谱技术及应用进展.光谱学与光谱分析,20(2):13-142.
    58.徐广通,刘泽龙,杨玉蕊,等.2002.近红外光谱法测定柴油组成及其应用.石油学报,18(4):65-71.
    59.徐永明,蔺启忠,黄秀华,等.2005.利用可见光/近红外反射光谱估算土壤总氮含量的实验研究.地理与地理信息科学,21(1):19-22.
    60.严衍禄,赵龙莲,李军会,等.2000.现代近红外光谱分析的信息处理技术.光谱学与光谱分析,(6):777-780.
    61.严衍禄主编.2005.近红外光谱分析基础与应用.北京:中国轻工出版社.
    62.杨南林,程翼宇,吴永江.2003.中药材三七中皂苷类成分的近红外光谱快速无损分析新方法.化学学报,61(3):393-398.
    63.杨曙明,张瑜.1997.近红外光谱分析技术及其在饲料质量分析中的应用.分析测试仪器通讯,7(4):215-220.
    64.杨曙明,张瑜.1999.应用近红外光谱分析技术迅速分析饲料质量.分析测试学报,18(1):1-9.
    65.应义斌,刘燕德,傅霞萍.2006.基于小波变换的水果糖度近红外光谱检测研究.光谱学与光谱分析,26(1):63-66.
    66.应义斌,刘燕德,傅霞萍.2004.苹果有效酸度的近红外漫反射无损检测.农业机械学报,36(6):124-126.
    67.于飞健,阂顺耕,巨晓棠,等.2002.近红外光谱法分析土壤中的有机质和氮素.分析试验室,21(3):49-51.
    68.袁洪福,陆婉珍.1999.近红外光谱技术正在掀起一场分析效率革命.现代仪器,5:19-24.
    69.袁洪福,陆婉珍.1998.现代光谱分析中常用的化学计量学方法.现代科学仪器,5:6-9.
    70.张淑娟,王凤花,张海红,等.2009.柿子可溶性固形物含量的可见-近红外光谱检测.山农业工程学报,29(6):483-487.
    71.张淑华,蒋毅民,肖瑜,周忠远.2003.钾的配合物C9H10KNO4S的合成、晶体结构及生物活性.无机化学学报,2003,19(5),17-20.
    72.张雪莲,李晓娜,武菊英,等.2010.不同土壤类型总氮的近红外光谱技术测定研究.光谱学与光谱分析,30(4):906.
    73.张月玲.2006.绿茶品质相关成分的近红外定标模型的初步建立.浙江大学硕士学位论文.
    74.张子仪,陈雪秀,任鹏等.1992.近红外光谱分析技术.北京:中国农业科技出版社.
    75.中国土壤学会.2000.土壤农业化学分析方法.北京:中国农业科技出版社.
    76.祝诗平.2003.近红外光谱品质检测方法研究.中国农业大学博士学位论文.
    77.祝诗平,王一鸣,张小超,吴静珠.2004.基于遗传算法的近红外光谱谱区选择方法.农业机械学报,35(5):152-156.
    78. V. Arcenegui, C. Guerrero, J. Mataix-Solera, J. Mataix-Beneyto, R. Zornoza, J. Morales, A.M.Mayoral,2008.The presence of ash as an interference factor in the estimation of the maximumtemperature reached in burned soils using near-infrared spectroscopy(NIR). Catena,74:177–184.
    79. B. G. Barthes, D. Bruneta, H. E. ine,F. Enjalric, S. Conche, G. T. Freschet, R. Annunzo, Toucet-LouriJ.2008.Detem in ing the distributions of soil carbon and nitrogen in particle size fractions using nearin frared reflectance spectrum of bulk soil sanples. Soil Biology&Biochem istry.,40(6):1533-1537.
    80. E. Ben-Dor, A, Banin.1995. Near-Infrared analysis as a rapid method to simultaneously evaluateseveral soil properties. Soil Science Society of America Journal,59:364-372.
    81. L. Bochereau, P. A. Beurgine.1992.method for prediction by combing data analysis and neuralnetwork: application to prediction of apple quality using near infrared spectra..Journal ofAgriculturalEngineering Research,51:207-216.
    82. S. A. Bowers, R. J. Hanks.1965. Reflectionofradiantenergyfromsoil. Soil Sci,100:130-138.
    83. D. A. Burns, E. W. Ciurczak.1992. Handbook of Near infrared Analysis. New York: MarcelDekker.
    84. J. B. Cathcart.1980. World phosphate reserves and resources Khasawneh FE, Sample EC,KamprathEJ. TheRole ofPhosphorus in Agriculture Madison, Wesconsin, USA: ASA-CSSA-SSSA,1-17.
    85. C. W. Chang, D. A. Laird, M. J. Mausbach, et al.2001. Near infrared reflectance spectroscopy-Principal com ponents regression analyses of soil properties. Soil Science Societyof Am erica Journal,65:480-490.
    86. W. C. Cheng, D. A. Laird,2002. Near-infrared reflectance spectroscopy analysis of soil C and N. SoilScience,167(2):110-116.
    87. M. Confalonieri, F. Fornasier, UrsinoA, et al.2001. The potential of near infraredreflectance spectroscopy as a t ool for the chemical characterization ofagricultural soils.Journal of Near Infrared Spect-roscope,(9):123-131
    88. R. C. Dalal, R. J. Henry.1986. Simultaneous determination of moisture, organic carbonand totalnitrogen by near infrared reflectance spectroscopy.Soil Science Society of America Journal,50(1):120-123
    89. A. M. C. Davies, P. Williams.1996. Near infrared spectroscopy: The Future Waves. Chichester, UK:NIR Publications.
    90. M. R. Ehsani, S. K. Upadhyaya, D. Slaughter, S. Shafii, M. Pelletier.1999. NIRtechnique for rapiddetermination of soil mineral nitrogen. PrecisionAgriculture,1(2):217-234.
    91. P. Grogan, S. Jonasson.2003. Controls on annual nitrogen cycling in theunder storey of a subarcticbirch forest. Ecology,84:202-218.
    92. A. Herrman, E. Witter.2002. Source of C and N contributing to the flushin mineralization uponfreeze thaw cycles in soil. Soil Biology&Biochemistry,34:1495-1505.
    93. J. J. Hopfield.1984. Neural networks and physical systems with graded response have collectiveproperties like those of two state neurons. Proceeding National Academic Science of USA,81:3088-3092.
    94. J. J. Hopfield.1982. Neuralnetworksandphysical systems with emergent collectivecomputationalabilities. Proceeding National Academic Science of USA,79:2554-2558.
    95. J. Hummel, K. A. Wprediction ofSudduth, S. E. Hollinger.2001. Soil moisture and organicmattersurface and subsurface soils using an NIR soil sensor. Computers and Electronics in Agriculture,32(2):149-165.
    96. G. R. Hunt, J. W. Salisbury.1997. Visible and near infrared spectra of minerals androcks, Silicateminerals. Ggol,1:283-300.
    97. D. A. Lipson, S. K. Schmidt.2004. Seasonal changes in an alpine soilbacterial community in theColorado Rocky Mountains. AppliedEnvironment Microbiology,70:2867-2879.
    98. D. A. Lipson, S. K. Schmidt, R. K. Monson.1999. Link between microbialpopulation dynamics andnitrogen availability in an alpineecosystem. Ecology,80:1623-1631.
    99. J. R. Long.1990. Rpectroscopy calibration and quantitation using artificial neural network.AnalyticalChemistry,62(5):1791-1797.
    100. G. W. McCarty, J. B. Reeves.2003. Comparison of near infrared and mid infrared diffuse reflectancespectroscopy for field-scale measurement of soil fertility parameters. Soil Science,171(2):94-102.
    101. M. J. Morra, M. H. Hall, L. L. Freeborn.1991. Carbon and nitrogen analysis of soil fractions usingnear-infrared reflectance spectroscopy. Soil Science Society of America Journal,55(1):288-291.
    102. A. M. Mouazen, J. De Baerdemaeker, H. Ramon.2006. Effect of wavelength range on the measurem-ent accuracy of some selected soil constituents using visual-near infrared spectroscopy. Journal ofNear Infrared Spectroscopy,14:189–199.
    103. C. Müller, M. Martin, R. J. Stevens, H. J. Lauhlin, C. Kammann, J. C. G. Ottow, H. J. Jager.2002Processes leading to N2O emissions in grasslandsoil during freezing and thawing.Soil Biology&Biochemistry,34:1325-1331.
    104. M. R. Nanni, J. A. W. Dematte.1989. Soil Science Society of America Journal,70(2):393.
    105. K. H. Norris, R. F. Barnes, J. E. Moore, J. S. Shenk.1976. Predicting forage quality by infrare dreflectance spectroscopy Journal ofAnimal Science,43:889-897.
    106. T. Ozatas, F. Fayetorbay.2003. Effect of freezing and thawing processeson soil aggregate stability.Cat ena,52:1-8.
    107. P. Geladi, D. MacDougall, H. Martens. Linearization and scatter-correction for nearinfraredreflecta-nce spectra of meat. Applied Spectrotroscopy,1985,39(03),491-500.
    108. A. Pirie, Balwant S, I. Kamrunnahar.2005. Ultra-violet, visible, near-infrared, and mid-infrareddiffuse reflectance spectroscopic techniques to predict several soil properties. Australian Journal ofSoil Rese arch,43(6):713-721.
    109. J. B. Reeves III, B. A. Francis, S. K. Hamilton.2005. Specular reflection and diffuse reflectancespectroscopy of soils.Applied Spectroscopy,59(1):39–46.
    110. R. A. V. Rossel, D. J. J. Walvoort, A. B. McBratney. et al.2006.Visible, near infrared, mid infrared orcom bined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties.Geod erma,131(1-2):59-75.
    111. C. W. Schadt, A. P. Martin, D. A. Lipson, S. K. Schmidt.2003. Seasonaldynamics of previouslyunknown fungal lineages in tundra soil. Science,301:1359-1361.
    112. J. P. Schimel, J. S. Clein.1996. Microbial response to freeze-thaw circles intundra and taiga soils. SoilBiology&Biochemistry,28:1061-1066.
    113. J. Six, H. Bossuyt, S. Degryse, K. Denef.2004. A history of research onthe link between (micro)aggregates, soil biota, and soil organicmatter dynamics. Soil Tillage Research,79:7-31.
    114. H. Sjursen, A. Michelsen, M. Holmstrup.2005.Effects of freeze thawcycles and thawing on Microarthropods and nutrient availabilityin a sub-arctic soil. Applied Soil Ecology,28:79-93.
    115. F. L. Wang, J. R. Bettany.1993.Influence of freeze-thaw and flooding onthe loss of soluble organiccarbon and carbon-dioxide from soil. Journal of Environmental Quality,22:709-714.
    116. G. Xiccat, Trocinoa, A. Carazzolo, M. Meurens, L. Maertens, R. Carabano.1999. Nutritiveevaluationand ingredient prediction of compound feeds for rabbits by near-infraredreflectance spectroscopy(NIRS). Animal Feed Science and Technology,77:201-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700