用户名: 密码: 验证码:
CREB-1在TGF-β3抗肝纤维化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过观察外源性转化生长因子β3(TGF-β3)对大鼠肝星状细胞(HSC)中TGF-β3启动子活性和磷酸化cAMP反应元件结合蛋白-1(CREB-1)的影响,研究TGF-β3自反馈调节信号通路中正向调节因子。
     方法:(1)构建并检测TGF-β3启动子和CRE位点突变的TGF-β3启动子荧光素酶报告基因质粒(PGL3-TGFβ3-P和PGL3-TGFβ3-MP),并判断脂质体转染法对细胞形态的影响;(2)用外源性TGF-β3诱导大鼠HSC细胞,2h后提取总RNA,通过实时荧光定量PCR法测定对照组和实验组中TGF-β3mRNA的表达情况;(3)用外源性TGF-β3诱导转染了PGL3-TGFβ3-P的大鼠HSC细胞,于不同时间点,用荧光素酶报告基因分析法检测TGF-β3启动子活性;(4)将TGF-β3启动子上的CRE结合位点基因突变,并将该突变的报告质粒与正常质粒一起转染与大鼠HSC细胞,加/不加TGF-β3进行诱导,通过荧光素酶报告基因分析法检测启动子的活性;(5)用外源性TGF-β3诱导大鼠HSC细胞,于不同时间点提取核蛋白,通过电泳迁移率分析法(EMSA)检测各时间点磷酸化CREB-1的DNA结合活性,同时采用western-blot方法检测磷酸化CREB-1各时间点的变化情况;(6)用外源性TGF-β3诱导大鼠HSC细胞,于不同时间点分别提取细胞总RNA和核蛋白,用western-bloting法检测CREB-1的表达情况以及实时荧光定量PCR检测CREB-1mRNA的表达情况。
     结果(1)电泳结果显示成功构建正常和突变的TGF-β3启动子报告基因质粒,用Lipofectamine2000脂质体转染法对大鼠HSC细胞进行转染后无明显毒性;(2)大鼠HSC细胞被外源性TGFβ3诱导2h后,TGFβ3mRNA的表达明显上升(上升3.7倍,P=0.003);(3)外源性TGF-β3处理HSC后,TGF-β3启动子活性表现出时间依赖性增高,并于诱导后24h达峰值(2.2倍于对照组,P<0.05);(4)CRE位点的缺失显示出TGF-β3启动子对外源性TGF-β3诱导HSC时的不应答,TGF-β3启动子的基础活性下降85%(P<0.05);(5)EMSA结果显示,DNA探针有很好的特异性,外源性TGF-β3可诱导磷酸化CREB-1的DNA结合活性持续增强,同时western-blot结果显示外源性TGF-β3可以引起磷酸化CREB-1表达增加;(6)外源性TGF-β3对大鼠HSC中CREB-1mRNA和CREB-1蛋白的表达无影响。
     结论(1)外源性TGF-β3可促进TGF-β3启动子活性增强,且CRE位点在外源性TGF-β3介导的TGF-β3启动子活性中发挥重要作用;(2)外源性TGF-β3可促进CRE结合蛋白磷酸化CREB-1的DNA活性及表达,但不能促进CREB-1蛋白及mRNA的表达。本研究显示TGF-β3可自身活化,CREB-1的磷酸化在该信号通路中发挥重要作用。
     目的:通过研究外源性TGF-β3对HSC中TGF-β1/smad信号通路的影响,探讨TGF-β3抗肝纤维化机制。
     方法:(1)用外源性TGF-β3(10ng/ml)处理/不处理HSC细胞,2h后提取细胞总RNA,通过实时荧光定量PCR测定TGF-β1/smad信号通路中各因子的mRNA表达情况;(2)用外源性TGF-β3(10ng/ml)处理HSC细胞,于不同时间点收集细胞总RNA和总蛋白,通过实时荧光定量PCR和western-blot测定smad7的表达情况;(3)将具有最佳抑制率的smad3siRNA干扰片段和空白质粒通过Lipofectamine2000脂质转染法导入HSC细胞中,24h后,加/不加外源性TGF-β3(10ng/ml)处理HSC细胞,2h后收集细胞总RNA,通过实时荧光定量PCR测定smad7mRNA的表达情况;(4)将具有最佳抑制率的CREB-1shRNA干扰质粒、pSRV-CREB-1表达质粒和空白质粒通过Lipofectamine2000脂质转染法导入HSC细胞中,24h后,加/不加外源性TGF-β3(10ng/ml)处理HSC细胞,2h后收集细胞总RNA,通过实时荧光定量PCR测定smad7mRNA的表达情况;(5)将CREB-1shRNA干扰质粒、pSRV-CREB-1表达质粒和空白质粒导入HSC细胞中,24h后,加/不加外源性TGF-β1(10ng/ml)处理HSC细胞,2h后收集细胞总RNA,通过实时荧光定量PCR测定smad7mRNA的表达情况;(6)将HSC细胞用ERK抑制剂(20mM)、JNK抑制剂(20mM)、p38抑制剂(20mM)和PKA抑制剂(5mM)预处理30分钟,然后加/不加外源性TGF-β3(10ng/ml),2h后收集细胞总RNA,通过实时荧光定量PCR测定smad7mRNA的表达情况。
     结果:(1)在HSC中,外源性TGF-β3可诱导smad6低表达(1.5倍于对照组)和smad7高表达(3.6倍于对照组),其差异具有统计学意义(P≤0.001),但外源性TGF-β3对TGF-β/smad信号通路中的其他因子均无影响;(2)外源性TGF-β3可在短时间诱导HSC中smad7的大量表达,1hmRNA达到顶峰(4.1倍于对照组),2h蛋白达到最高,随后这一诱导作用逐渐下降,但24h其差异具有统计学意义(P<0.05);(3)在HSC中, smad3的降低可显著抑制基础状态(非外源性TGF-β3诱导)smad7的表达,同时也可阻断外源性TGF-β3对smad7的诱导作用,与空白质粒对照组相比,其下降50%,有显著统计学意义(P<0.05);(4)在HSC中,降低或过表达CREB-1蛋白均不能影响正常状态下smad mRNA的表达,然而降低CREB-1可显著抑制外源性TGF-β3对smad7的诱导作用,与空白质粒对照组相比,其下降42%,有显著统计学意义(P<0.05),过表达的CREB-1也可加强外源性TGF-β3对smad7的诱导作用,与空白质粒对照组相比其差异有统计学意义(P<0.05);(5)经过激酶抑制剂的预处理后,外源性TGF-β3对smad7的诱导作用明显受到p38抑制剂的影响,与阳性对照组相比下降40%(2.64±0.37),其差异有统计学意义(P<0.05),然而各激酶抑制剂不影响基础状态下smad7mRNA的表达,ERK抑制剂、JNK抑制剂和PKA抑制剂均不能影响外源性TGF-β3对smad7的诱导。(6)在HSC中,外源性TGF-β1可诱导smad7mRNA的表达(1.5倍于对照组,P<0.05),然而抑制或过表达CREB-1均不能影响外源性TGF-β1对smad7的诱导作用,与阳性对照组相比,其差异没有统计学意义(P>0.05)。
     结论:(1) TGF-β3促进HSC中smad7的表达;(2)smad3是调控smad7的关键转录蛋白;(3)TGF-β3通过p38活化CREB-1,后者入核参与调节smad7的表达。因此,TGF-β3可能通过活化CREB-1辅助smad3稳定调节HSC中smad7的表达,提示CREB-1可能是一个十分重要的抗肝纤维化蛋白。
Aims: Previous studies have demonstrated that transforming growth factor-β3(TGF-β3) protected liver against fibrosis in vivo and vitro, but itsregulation is poorly understood. In addition, the cAMP-responsiveelement (CRE) in TGF-β3promoter is recognized as an importantregulatory site for TGF-b3auto-regulation. Thus, we hypothesize thattranscription factor CRE-binding protein-1(CREB-1) regulates theauto-induction of TGF-β3in rat hepatic stellate cells (HSC).
     Methods:1) Construct TGF-β3promoter and CRE-mutant TGF-β3promoterluciferase reporter plasmid PGL3-TGFβ3-P and PGL3-TGFβ3-MP),and confirm the correction of these plasmids. Additionally, check thecytotoxisity of Lipofectamine2000.2) HSC were treated with or without exogenous TGF-β3for2h, the total RNA were extracted andReal-time PCR was performed to detect the mRNA expression ofTGF-β3.3) HSC were transinfected with PGL3-TGFβ3-P, then treatedwith or without exogenous TGF-β3for series time, and the promoteractivity of TGF-β3were tested by luciferase reporter assay.4) HSCwere transinfected with PGL3-TGFβ3-MP, then treated with orwithout exogenous TGF-β3for24h, and the promoter activity ofTGF-β3were tested by luciferase reporter assay.5) HSC were treatedwith or without exogenous TGF-β3for series time, then nuclearproteins were extracted, phospho-CREB-1expression were examinedby western blot and the DNA-binding activity of phospho-CREB-1were detected by electrophoretic mobility assay (EMSA).6) HSC weretreated with or without exogenous TGF-β3for series time, total RNAand nuclear proteins were extracted, western blot and real-time PCRwere performed to detect the mRNA and protein expression ofCREB-1.
     Results:1) Agarose gel electrophoresis indicated that the construction ofPGL3-TGFβ3-P and PGL3-TGFβ3-MP were correct, andLipofectamine2000had no significant effect on HSC status.2)Exogenous TGF-β3significantly increased TGF-β3mRNA expression in HSC after, there is3.7-fold up-regulation compared with control.3)Exogenous TGF-β3induced the activity of PGL3-TGF-β3-P at6h,peaked at24h (10.68_0.57,2.2-fold higher than control group,P<0.05), and decreased at48h.4) the promoter activity ofPGL3-TGF-β3-MP containing the mutational CRE site was completelyblocked in the presence of exogenous TGF-β3, and there was nosignificantly statistical difference between treatment group and controlgroup (P>0.05). Additionally, TGF-β3promoter activity was decreasedby85%compared with PGL3-TGF-β3-P, when the CRE site wasmutated.5) EMSA indicated that CRE probe showed a good specificityin binding with phospho-CREB-1, and exogenous TGF-β3dramatically increased the complex formation at CRE site in atime-dependent manner, with a peak level occurring at1h (2.4-foldhigher than control group, P<0.05) after TGF-β3treatment, andmaintained for the next11h.6) Exogenous TGF-β3had no effect onmRNA and protein expression of CREB-1in HSC.
     Conclusion: TGF-β3can trigger its auto-regulation, the phosphorylation ofCREB-1plays a important role in this signaling by binding to the CREsite in TGF-β3promoter.
     Aims and Background: Test the effect of transforming growth factor-β3(TGF-β3) on TGF-β/smad signaling pathway in rat hepatic satellitecells (HSC), due to find out the mechanism which contributes toTGF-β3-resisted liver fibrosis. cAMP-responsive element bindingprotein-1(CREB-1) is an important transcription factor in TGF-β3auto-regulation signaling pathway.
     Methods:1) HSC were treated with or without exogenous TGF-β3(10ng/ml)for2hours, then total RNA were extracted and the factors in TGF-β/smad signaling pathway were detected by Real-time PCR.2) HSCwere treated with exogenous TGF-β3in series time, then total RNA andtotal protein were collected, Real-time PCR and western-blot wereperformed to examine the expression of smad7.3) The most efficiencysmad3siRNA was chosen, control plasmid and siRNA-smad3weretrans-infected into HSC by following Lipofectamine2000protocol, after24h culture, cells were treated with or without exogenous TGF-β3for2hours, then total RNA were collected, smad3and smad7expression wasdetected by Real-time PCR.4) According to the Lipofectamine2000 protocol, control plasmid, shRNA-CREB-1and pSRV-CREB-1weretrans-infected into HSC, after culturing for24h, cells were exposed withor without exogenous TGF-β3for2hours, then total RNA werecollected, CREB-1and smad7expression was detected by Real-timePCR.5) HSC were pretreated with ERK inhibitor (20mM), JNKinhibitor (20mM), p38inhibitor (20mM) and PKA inhibitor (5mM) for30min, then cells were presented with or without exogenous TGF-β3for2hours, total RNA were collected and smad7expression wasdetected by Real-time PCR.6) Similarly to method4, HSC weretrans-infected with control plasmid, shRNA-CREB-1and pSRV-CREB-1,after24h culture, cells treated with or without exogenous TGF-β1(10ng/ml) for2hours, then smad7mRNA expression was tested byReal-time PCR.
     Results:1) Exogenous TGF-β3significantly increased the expression ofsmad6and smad7in HSC, the induction is1.5-fold and3.6-fold higherthan that in control (P≤0.001),but Exogenous TGF-β3had no effect onthe expression of smad3, smad4, TGF-β type1receptor, TGF-β type2receptor, smurf1and smurf2(P>0.05).2) Exogenous TGF-β3increasedsmad7expression rapidly, peak at1h after the stimulation (4.1-foldhigher compared to control), but the induction of protein was decreased after2hours stimulation, all of the inductions had statistic significancewithin12hours (P<0.05).3) In HSC, smad3deficiency markedlyreduced the smad7mRNA expression in the basal condition (50%reduction), which was trans-infected with control plasmid withoutexogenous TGF-β3treatment (P<0.05). Also, smad3deficiencyobviously inhibited exogenous TGF-β3-induced smad7expression, thatis an approximated a half reduction compared to the positive control(P<0.05).4) The inhibition or over-expression of CREB-1could notinfluence the expression of smad7in HSC (P>0.05), but CREB-1deficiency significantly inhibited exogenous TGF-β3-induced smad7expression (42%reduction, P<0.05), while the over-expression ofCREB-1enhanced the induction of smad7mediated by exogenousTGF-β3(P<0.05).5)After the pretreatment of inhibitors, there were nochanges of smad7in basal condition, but p38inhibitor obviouslyblocked the induction of smad7by exogenous TGF-β3, that is a40percent decreasing (P<0.05), while other inhibitors (ERK inhibitor, JNKinhibitor and PKA inhibitor) had no effect on the induction of smad7by exogenous TGF-β3stimulation (P>0.05).6) In basal condition,exogenous TGF-β1also increased smad7mRNA expression in HSC(1.5-fold higher than control, P<0.05), but this induction is lower than it by exogenous TGF-β3. Additionally, the inhibition and over-expressionof CREB-1had no effect on exogenous TGF-β1-induced smad7expression in HSC (P>0.05).
     Conclusion:1) TGF-β3increases smad7expression in HSC.2) smad3is animportant transcriptional regulator for smad7.3) CREB-1is critical forTGF-β3-induced samd7in HSC.4) TGF-β3activates CREB-1by p38inHSC. Taken together, TGF-β3might activate both smad3and CREB-1,and CREB-1is an important co-transcriptional factor which enhancesthe binding of smad3with DNA, caused a continuous induction ofsmad7in HSC, and CREB-1might contribute to resist liver fibrosis.
引文
1. Anthony, P. P., K. G. Ishak, N. G. Nayak et al. The morphologyof cirrhosis: recommendations on definition, nomenclature, andclassification by a working group sponsored by the World HealthOrganization. J Clin Pathol,1978,31:395–414.
    2. Gressner, A. M. and R. Weiskirchen. Modern pathogenetic conceptsof liver fibrosis suggest stellate cells and TGF-β as majorplayers and therapeutic targets. J Cell Biol Med,2006,10:76–99.
    3. Bataller, R. and D. Brenner. Liver fibrosis. J Clin Invest,2005,115:209–218.
    4. Ramadori, G. and B. Saile. Portal tract fibrogenesis in theliver. Lab Invest,2004,84:153–159.
    5. Forbes, S. J., F. P. Russo, and V. Rey. et al. A significantproportion of myofibroblasts are of bone marrow origin in liverfibrosis. Gastroenterology,2004,126:955–963.
    6. Carpino, G., A. Franchitto, S. Morini, et al. Activated hepaticstellate cells in liver cirrhosis: a morphologic andmorphometrical study. It J Anat Embryol,2004,109:225–238.
    7. Geerts, P. D. History, heterogeneity, developmental, biology,and functions of quiescent hepatic stellate cells. Sem LiverDis,2001,21:311–335.
    8. Friedman, S. L. The cellular basis of hepatic fibrosis-mechanisms and treatment strategies. N Engl J Med,1993,328:1828–1835.
    9. Yoshiji, H., S. Kuriyama, and R. Noguchi. et al. Ameliorationof liver fibrogenesis by dual inhibition of PDGF and TGF-β withcombination of Imatinib mesylate and ACE inhibitor in rats. IntJ Mol Med,2006,17:899–904.
    10. Leonard Lu, Alexandrina S Saulis, W Robert Liu,et al. TheTemporal Effects of Anti-TGF-β1,2, and3Monoclonal Antibodyon Wound Healing and Hypertrophic Scar Formation. J Am Coll Surg,2005,201:391–397.
    11. Bissell DM, Roulot D, George J. Transforming growth factorbeta and the liver. Hepatology,2001,34(5):859-67.
    12. Nagashio Y. Inhibition of TGF-beta decreases pancreaticfibrosis and p rotects the pancreas against chronic injury inmice. Lab Invest,2004,84(12):1610-1618.
    13. Leask, A, Abraham, DJ. TGF-β signaling and the fibroticresponse. FASEB J,2004,18(7),816–827.
    14. Chadjichristos C, Ghayor C. Down-regulation of humantypeⅡcollagen gene exp ression by TGF-beta I in articularchondrocytes involves SP3/SP1ratio. Biol Chem,2002,277(6):43903-43917.
    15. Rieder H, Armbrust T, Meyer Z, et al. Contribution ofsinusoidal endothelial liver cells to liver fibrosis: expression of TGF-beta1receptors and modulation of plasmin2generating enzymes by TGF2beta1. Hepatology,1993,18(4):937-944.
    16. Massague J. TGF-beta signal transduction. Annu RevBiochem,1998,67:753-791.
    17. Dibrov A, Kashour T, Amara FM. The role of transforming growthfactor beta signaling in messenger RNA stability. Growth Factors,2006,24:1-11.
    18. Shek FW, Li KF, Mann J, Williams EJ et al. Transforming growthfactor beta3(TGF-[beta]-3) express anti-fibrotic propertiesin pancreatic stellate cells. Gut,2004,53: supplement A16
    1. Scott L. Friedman. Hepatic fibrosis—Overview. Toxicology,2008,254:120–129.
    2. David A. Brenner. Molecular pathogenesis of liver fibrosis.Transactions of the American clinical and climatologicalassociation,2009,120:361-368.
    3. Leask, A, Abraham, DJ. TGF-β signaling and the fibroticresponse. FASEB J,2004,18(7),816–827.
    4. Leonard Lu, Alexandrina S Saulis, W Robert Liu, et al. TheTemporal Effects of Anti-TGF-β1,2, and3Monoclonal Antibodyon Wound Healing and Hypertrophic Scar Formation. J Am CollSurg,2005,201:391–397.
    5.李琪,周霞,余娇,徐可树,等.重组转化生长因子β3基因对大鼠肝纤维化细胞模型胶原合成及沉积的影响.中华医学杂志,2008,88:1273-1278.
    6.刘萍,高晓亮,余娇,徐可树,等.重组2型腺相关病毒-转化生长因子β3对实验性肝纤维化大鼠肝脏组织病理学和I型胶原表达的影响.中华肝脏病杂志,2009,17:446-450.
    7. Zhang Y, Liu P, Gao X, Qian W, Xu K. rAAV2-TGF-β3decreasescollagen synthesis and deposition in the liver of experimentalhepatic fibrosis rat.Digesive Diseases and sciences. Dig DisSci,2010,55(10):2821-30.
    8. Guangming Liu, Wei Ding, Jill Neiman, and Kathleen M. Mulder.Requirement of Smad3and CREB-1in Mediating TransformingGrowth Factor-β (TGF-β) Induction of TGF-β3Secretion. Thejournal of biological chemistry,2006,281(40):29479–29490.
    9. Caiyan Zhao, Wei Chen, Liu Yang,et al. PPARγ agonists preventTGFβ1/Smad3-signaling in human hepatic stellate cells.Biochemical and Biophysical Research Communications,2006,2(350):385-391.
    10.Hakvoort T, Altun V, Van Zuijlen PP, et al. Transforming growthfactor–beta (1),-beta(2),-beta(3), basic fibroblast growthfactor and vascular endothelial growth factor expression inkeratinocytes of burn scars. Eur Cytokine Netw,2000,11(2):233-239.
    11.R Hosokawa; K Nonaka; M Morifuji; L Shum; M Ohishi. TGF-[beta]3decreases type I collagen and scarring after labioplasty.Journal of Dental Research,2003,82(7):558-564.
    12.Kohama K, Nonaka K, Hosokawa R, et al. TGF-beta-3promotesscarless repair of cleft lip in mouse fetuses. J Dent Res,2002,81(10):688-694.
    13.Hosokawa R, Nonaka K, Morifuji M, et al. TGF-β3decreasestype I collagen and scarring after labioplasty. J Dent Res,2003,82(7):558-64.
    14.Massagué J.How cells read TGF-beta signals. Nat Rev Mol CellBiol,2000,1:169-178.
    15.Sanderson N, Factor V, Nagy P, et al. Hepatic expression ofmature transforming growth factor b1in transgenic miceresults in multiple tissue lesions. Proc Natl Acad Sci,1995,92:2572-2576.
    16.Montminy, M. Transcriptional regulation by cyclic AMP. AnnualReview of Biochemistry,1997,66:807-822.
    17.Yamamoto, K.R., Gonzalez, G.A.,et al. Phosphorylation-inducedbinding and transcriptional efficacy of nuclear factor CREB.Nature,1997,334:494-498.
    18.Elsa C. Chan, Fan Jiang, et al. Prostacyclin receptor suppressescardiac fibrosis: Role of CREB phosphorylation. Journal ofMolecular and Cellular Cardiology,2010,49:176-185.
    19.Dongmei Xing, Joseph A. Bonanno. Effect of cAMP onTGFβ1-Induced Corneal Keratocyte–MyofibroblastTransformation. Investigative Ophthalmology&Visual Science,2009,50(2):626-633.
    20.Xiaoqiu Liu, Shu Qiang Sun, and Rennolds S. Ostrom. Fibrotic LungFibroblasts Show Blunted Inhibition by cAMP Due to DeficientcAMP Response Element-Binding Protein Phosphorylation. Journalof pharmacology and experimental therapeutics,2005,315:678–687.
    21.Y. Tan a, Z.P. Lv a, X.C. Bai, X.Y. Liu, X.F. Zhang. TraditionalChinese medicine Bao Gan Ning increase phosphorylation of CREBin liver fibrosis in vivo and in vitro. Journal ofEthnopharmacology,2006,105:69–75.
    22.Min-Huei Liang,a Jens R. Wendland,b and De-Maw Chuanga.Lithium inhibits Smad3/4transactivation via increased CREBactivity induced by enhanced PKA and AKT signaling. Mol. Cell.Neurosci,2008,37:440–453.
    23.Andreia M. Ionescu et al. CREB Cooperates With BMP-StimulatedSmad Signaling to Enhance Transcription of the Smad6Promoter.Journal of cellular physiology,2004,198:428–440.
    1. Gauldie J, Bonniaud P, Sime P,et al. TGF-beta, Smad3and theprocess of progressive fibrosis. Biochem Soc Trans,2007,35(Pt4):661-4.
    2. Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signalingin fibrosis. Growth Factors,2011,29(5):196-202.
    3. Lan HY, Chung AC. Transforming growth factor-β and Smads.Contrib Nephrol,2011,170:75-82.
    4. L nn P, Morén A, Raja E, Dahl M, Moustakas A. Regulating thestability of TGFbeta receptors and Smads. Cell Res,2009,19(1):21-35.
    5. Sarah Ross, Caroline S. Hill. How the Smads regulatetranscription. The International Journal of Biochemistry&CellBiology,2008,40:383–408.
    6. Zhang Y, Qian W, Xu K, et al. rAAV2-TGF-β3decreases collagensynthesis and deposition in the liver of experimental hepaticfibrosis rat.Digesive Diseases and sciences. Dig Dis Sci,2010,55(10):2821-30.
    7. Deng L, Li Y, Huang JM, Zhou Gy, Qian W, Xu Ks. Effects of p-CREB-1on transforming growth factor-β3auto-regulation in hepaticstellate cells. J Cell Biochem,2011,112(4):1046-54.
    8. Chan EC, Dusting GJ, Guo N, et al. Prostacyclin receptorsuppresses cardiac fibrosis: Role of CREB phosphorylation.Journal of Molecular and Cellular Cardiology,2010,49:176-185.
    9. Han S, Ritzenthaler JD, Rivera HN, et al. Peroxisomeproliferator-activated receptor-gamma ligands suppressfibronectin gene expression in human lung carcinoma cells:involvement of both CRE and Sp1. Am J Physiol Lung Cell MolPhysiol,2005,289(3):L419-28.
    10. Lan HY, Chung AC. Transforming growth factor-β and Smads.Contrib Nephrol,2011,170:75-82.
    11. Nagarajan RP, Zhang J, Li W, Chen Y. Regulation of Smad7promoter by direct association with Smad3and Smad4. J BiolChem,1999,274(47):33412-8.
    12. Stopa M, Anhuf D, Terstegen L et al. Participation of Smad2,Smad3, and Smad4in transforming growth factor beta(TGF-beta)-induced activation of Smad7. THE TGF-beta responseelement of the promoter requires functional Smad binding elementand E-box sequences for transcriptional regulation. J Biol Chem,2000,275(38):29308-17.
    13. Guangming Liu, Wei Ding, Jill Neiman, et al. Mulder.Requirement of Smad3and CREB-1in Mediating Transforming GrowthFactor-β (TGF-β) Induction of TGF-β3Secretion. The journalof biological chemistry,2006,281(40):29479–29490.
    14. Houglum K, Lee KS, Chojkier M. Proliferation of hepaticstellate cells is inhibited by phosphorylation of CREB on serine
    133. J Clin Invest,1997,99(6):1322-8.
    15. Hosokawa R。Nonaka K,Morifuji M,et a1.TGF-beta3decreasestype I collagen and scarring after labioplasty.J DentRas,2003,82(7):558-564.
    16. Kohama K,Nonala K,Hosokawa R,et a1.TGFbeta-3promotesacarless mpair of cleft lip in mouse fetuses.J Dent Res,2002,81(10):688-694.
    17. Shek FW,Li KF。Mann J,et a1.Transforming growth factor beta3(TGF-beLa3) expresses anti-fibrasis properties in pancreaticstellate cells.Gut,2004,53(Suppl):A16-A25.
    18.余姣,周霞,徐可树,等.大鼠肝星状细胞TGFβ3/TGFβ1mRNA比值与TGFβ1、MMP-9、MMP-1表达的关系.中华肝胆外科杂志,2009,15(8):608-611.
    19.余姣,周霞,徐可树,等. TGFβ1和β3基因对大鼠肝星状细胞MMP-2、MMP-9和TIMP-1表达的影响.中华临床感染病杂志,2008,1(3):159-162.
    20.李琪,周霞,徐可树,等.重组转化生长因子β3基因对大鼠肝纤维化细胞模型胶原合成及沉积的影响.中华医学杂志,2008,88:1273-1278.
    21.刘萍,高晓亮,徐可树,等.重组2型腺相关病毒-转化生长因子β3对实验性肝纤维化大鼠肝脏组织病理学和I型胶原表达的影响.中华肝脏病杂志,2009,17:446-450.
    22. Nakao, A., Afrakhte, M., Moren, A., et al. Identification ofSmad7, a TGF β-inducible antagonist of TGF-β signalling.Nature,1997,389:631–635.
    23. Hayashi, H., Abdollah, S., Qiu, Y.,et al. The MAD-relatedprotein Smad7associates with the TGFβ receptor and functionsas an antagonist of TGFβ signaling. Cell,1997,89:1165–1173.
    24. Souchelnytskyi, S., Nakayama, T., Nakao, A., et al. Physicaland functional interaction of murine and Xenopus Smad7with bonemorphogenetic protein receptors and transforming growth factor-β receptors. J. Biol. Chem,1998,273:25364–25370.
    25. Tajima, Y., Goto, K., Yoshida, M., et al. Chromosomal regionmaintenance1(CRM1)-dependent nuclear export of Smad ubiquitinregulatory factor1(Smurf1) is essential for negativeregulation of transforming growth factor-β signaling by Smad7.J. Biol. Chem,2008,278:10716–10721.
    26. Itoh S and ten Dijke P. Negative regulation of TGF-betareceptor/Smad signal transduction. Curr Opin Cell Biol,2007,19:176–184.
    27. Shi, W., Sun, C., He, B., et al. GADD34-PP1c recruited bySmad7dephosphorylates TGFβ type I receptor. J. Cell Biol,2008,164:291–300.
    28. Valdimarsdottir G, Goumans MJ, Itoh F, et al. Smad7andprotein phosphatase1alpha are critical determinants in theduration of TGF-beta/ALK1signaling in endothelial cells. BMCCell Biol,2006,7:16.
    29. William A. Sands, Timothy M. Palmer. Regulating genetranscription in response to cyclic AMP elevation. CellularSignalling,2008,20:460–466.
    30. Dongmei Xing, Joseph A. Bonanno. Effect of cAMP onTGFβ1-Induced Corneal Keratocyte–MyofibroblastTransformation. Investigative Ophthalmology&VisualScience,2009,50(2):626-633.
    31. Andreia M. Ionescu et al. CREB Cooperates With BMP-StimulatedSmad Signaling to Enhance Transcription of the Smad6Promoter.Journal of cellular physiology,2004,198:428–440.
    32. Marcin Stopa, Vladimir Benes, Wilhelm Ansorge et al. Genomiclocus and promoter region of rat Smad7, an important antagonistof TGF-β signaling. Mammalian Genome,2000,11:169–176.
    33. Mona Johannessen, Marit Pedersen Delghandi, Ugo Moens. Whatturns CREB on? Cellular Signalling,2004,16:1211–1227.
    34. Derynck R, Zhang Y, Feng XH. Smads: Transcriptionalactivators of TGF-beta responses. Cell,1998,95:737–740.
    35. Zhang Y, Feng XH, Derynck R. Smad3and Smad4cooperate withc-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature,1998,394(6696):909-13.
    36. Eresh S, Riese J, Jackson DB, et al. A CREBbinding site asa target for decapentaplegic signalling during Drosophilaendoderm induction. EMBO J,1997,16:2014–2022.
    1. Takemori H, Okamoto M. Regulation of CREB-mediated geneexpression by salt inducible kinase. J Steroid Biochem Mol Biol,2008,108(3-5):287-91.
    2. Conkright M, Montminy M. CREB: the unindicted cancerco-conspirator. Trends Cell Biol,2005,15(9):457–9.
    3. Mayr B, Montminy M. Transcriptional regulation by thephosphorylation-dependent factor CREB. Nat. Rev. Mol. CellBiol,2005,2(8):599–609.
    4. MontrminyM R,Sevarino KA,Wag2ner J A,et al. Identificationof a cyclic2AMP responsive element within the rat somatostatingene. Proc Natl Acad Sic USA,1986,83:6682~6686.
    5. Montrminy M R,Bilezikjan L M.Binding of a nuclear protein tothe cyclic2AMP response element of the somatostatin gene.Nature,1987,328:175~178.
    6. Yamamoto K K, Gonzalez G A, Biggsl W H, et al. Phosphorylationinduced binding and transcriptional efficacy of factor CREB.Nature,1988,334:494~498.
    7. Hai, T., Lin, F., Coukos, et al. Transcription factor ATF cDNAclones: an extensive family of leucine zipper proteins able toselectively form DNA-binding heterodimers. Genes Dev,1990,3:2083–2090.
    8. Meyer CJ, Alenghat FJ, RimP, et al. Mechanical control of cyclicAMP signaling and gene transcription through integrins.NatureCell Biol,2000,2(9):666-668.
    9. Kevin A W,Norma M.Transcription regulation by CREB and itsrelatives.Biochim Biophys Acta,1993, l174:221~233.
    10. Mona Johannessen, Marit Pedersen Delghandi, Ugo Moens. Whatturns CREB on? Cellular Signalling,2004,16:1211–1227.
    11. Adams S R,Harootunian A T,Buechler YJ,et al. Fluorescenceratio imaging of cyclic-AMP in single cells. Nature,1991,349:694~697.
    12. Hagiwara M, Brindle P, Harootunian A, et al. Coupling ofhormonal stimulation and transcription via the cyclic-AMPresponsive factor CREB is rate limited by nuclear entry ofprotein kinase A.Mol Cell Biol,1993,13(8):4852~4859.
    13. Richards J P,Bachinger H P,Good-man R H,et al. Analysisof the structural properties of cAMP responsive element bindingprotein(CREB) and phosphorylated CREB. J Biol Chem,1996,271(23):13716~13723.
    14. Pilz RB, Casteel DE. Regulation of gene expression by cyclicGMP. Circ Res,2003,93(11):1034-46.
    15. Verploegen S, Lammers JW, Koenderman L, et al. Identificationand characterization of CKLiK, a novel granulocyteCa(++)/calmodulin-dependent kinase. Blood,2000,96(9):3215-3223.
    16. Watson FL, Heerssen HM, Bhattacharyya A, et al. Neurotrophinsuse the Erk5pathway to mediate a retrograde survival response.Nat Neurosci,2001,4(10):981-988.
    17. Wu X, McMurray CT. Calmodulin kinase II attenuation of genetranscription by preventing cAMP response element-bindingprotein (CREB) dimerization and binding of the CREB-bindingprotein. J Biol Chem,2001,276(3):1735-1741.
    18. Alberts AS, Montminy M, Shenolikar S, et al. Expression ofa peptide inhibitor of protein phosphatase1increasesphosphorylation and activity of CREB in NIH3T3fibroblasts. MolCell Biol,1994,14(7):4398-407.
    19. Hagiwara M, Alberts A, Brindle P, et al. Transcriptionalattenuation following cAMP induction requires PP-1-mediateddephosphorylation of CREB. Cell,1992,70(1):105-113.
    20. Wadzinski BE, Wheat WH, Jaspers S, et al. Nuclear proteinphosphatase2A dephosphorylates protein kinaseA-phosphorylated CREB and regulates CREB transcriptionalstimulation. Mol Cell Biol,1993,13(5):2822-2834.
    21. Vallejo M,Gosse M E,Bechman W,et al. Impaired cyclic AMPdependent phosphorylation renders CREB a repressor of C/EBPinduced transcription of the somatostatin gene in an insulinomacell live.Mol Cell Biol,1995,15(1):415~424.
    22. Kouzarides T. Chromatin modifications and their function.Cell,2007,128(4):693-705.
    23. Pulak R. Manna, Matthew T. Dyson, Douglas M. Stocco. Role ofbasic leucine zipper proteins in transcriptional regulation ofthe steroidogenic acute regulatory protein gene. Molecular andCellular Endocrinology,2009,302:1–11.
    24. Jing Wang, Freda D. Miller, et al. CBP HistoneAcetyltransferase Activity Regulates Embryonic NeuralDifferentiation in the Normal and Rubinstein-Taybi SyndromeBrain. Cell,2010,18:114-125.
    25. Taylor CT, Furuta GT, Synnestvedt K, et al.Phosphorylation-dependent targeting of cAMP response elementbinding protein to the ubiquitin/proteasome pathway in hypoxia.Proc Natl Acad Sci U S A,2000,97(22):12091-6.
    26. Comerford KM, Leonard MO, Karhausen J, et al. Smallubiquitin-related modifier-1modification mediates resolutionof CREB-dependent responses to hypoxia. Proc Natl Acad Sci U SA,2003,100(3):986-91.
    27. Lamarre-Vincent N, Hsieh-Wilson LC. Dynamic glycosylation ofthe transcription factor CREB: a potential role in generegulation. J Am Chem Soc,2003,125(22):6612-3.
    28. Chan EC, Dusting GJ, Guo N, et al. Prostacyclin receptorsuppresses cardiac fibrosis: role of CREB phosphorylation. J MolCell Cardiol,2010,49(2):176-85.
    29. Xiaoqiu Liu, Shu Qiang Sun, Aviv Hassid, et al. Ostrom. cAMPInhibits Transforming Growth Factor-_-Stimulated CollagenSynthesis via Inhibition of Extracellular Signal-RegulatedKinase1/2and Smad Signaling in Cardiac Fibroblasts. MOLECULARPHARMACOLOGY,2006,70(6):1992-2003.
    30. Doser TA, Turdi S, Thomas DP, et al. Transgenicoverexpression of aldehyde dehydrogenase-2rescues chronicalcohol intake-induced myocardial hypertrophy and contractiledysfunction. Circulation,2009,119(14):1941-1949.
    31. Konhilas JP, Watson PA, et al. Exercise can prevent andreverse the severity of hypertrophic cardiomyopathy. Circ Res,2006,98(4):540-8.
    32. Richard C. Fentzke, et al. Dilated Cardiomyopathy inTransgenic Mice Expressing a Dominant-Negative CREBTranscription Factor in the Heart. J Clin Invest,1998,101(11):2415-2426.
    33. Lee KS, Cottam HB, Houglum K, et al. Pentoxifylline blockshepatic stellate cell activation independently ofphosphodiesterase inhibitory activity. Am J Physiol,1997,273(5Pt1):G1094-100.
    34. Y. Tan a, Z.P. Lv a, X.C. Bai, et al. Zhang. TraditionalChinese medicine Bao Gan Ning increase phosphorylation of CREBin liver fibrosis in vivo and in vitro. Journal ofEthnopharmacology,2006,105:69–75.
    35. Liu X, Sun SQ, Ostrom RS. Fibrotic lung fibroblasts showblunted inhibition by cAMP due to deficient cAMP responseelement-binding protein phosphorylation. J Pharmacol Exp Ther,2005,315(2):678-87.
    36. Han S, Ritzenthaler JD, Rivera HN,et al. Peroxisomeproliferator-activated receptor-gamma ligands suppressfibronectin gene expression in human lung carcinoma cells:involvement of both CRE and Sp1. Am J Physiol Lung Cell MolPhysiol,2005,289(3):L419-28.
    37. Makam M, et al. Activation of critical, host-induced,metabolic and stress pathways marks neutrophil entry into cysticfibrosis lungs. Proc Natl Acad Sci U S A,2009,106(14):5779-83.
    38. Xiaoqiu Liu, Shu Qiang Sun, Aviv Hassid, et al. Ostrom. cAMPInhibits Transforming Growth Factor—Stimulated CollagenSynthesis via Inhibition of Extracellular Signal-RegulatedKinase1/2and Smad Signaling in Cardiac Fibroblasts. MOLECULARPHARMACOLOGY,2006,70(6):1992-2003.
    39. Ferguson HE, et al. Electrophilic peroxisomeproliferator-activated receptor-gamma ligands have potentantifibrotic effects in human lung fibroblasts. Am J Respir CellMol Biol,2009,41(6):722-30.
    40. Sun Y, Wu F, Sun F, Huang P. Adenosine promotes IL-6releasein airway epithelia. J Immunol,2008,180(6):4173-81.
    41. He Z, Raman S, Guo Y, Reenstra WW. Cystic fibrosistransmembrane conductance regulator activation bycAMP-independent mechanisms. Am J Physiol,1998,275(4Pt1):C958-66.
    42. Wells RG. The role of matrix stiffness in regulating cellbehavior. Hepatology,2008,47(4):1394–1400.
    43. Gabbiani G. The myofibroblast in wound healing andfibrocontractive diseases. J Pathol,2003,200(4):500–503.
    44. Krizhanovsky V, Yon M, Dickins RA, et al. Senescence ofactivated stellate cells limits liver fibrosis. Cell,2008,134(4):657-667.
    45. Karl Houglum, Kwan S. Lee, and Mario Chojkier. Proliferationof Hepatic Stellate Cells Is Inhibited by Phosphorylation ofCREB on Serine133. The Journal of Clinical Investigation,1997,99(6):1322–1328.
    46. Giri SN. Novel pharmacological approaches to manageinterstitial lung fibrosis in the twenty-first century. Annu RevPharmacol Toxicol,2003,43:73–95.
    47. Srinivas SP, et al. Cell volume response to hyposmotic shockand elevated cAMP in bovine trabecular meshwork cells. Exp EyeRes,2004,78(1):15-26.
    48. Sun Y, Wu F, Sun F, Huang P. Adenosine promotes IL-6releasein airway epithelia. J Immunol,2008,180(6):4173-81.
    49. Kathleen C. Flanders and Lalage M. Wakefield. Transforminggrowth factor-β s and mammary gland involution;functional rolesand implications for cancer progression. J Mammary Gland BiolNeoplasia,2009,14(2):131–144.
    50. Min-Huei Liang,a Jens R. Wendland,b and De-Maw Chuanga.Lithium inhibits Smad3/4transactivation via increased CREBactivity induced by enhanced PKA and AKT signaling. Mol. Cell.Neurosci,2008,37:440–453.
    51. ANDREIA M. IONESCU et al. CREB Cooperates With BMP-StimulatedSmad Signaling to Enhance Transcription of the Smad6Promoter.JOURNAL OF CELLULAR PHYSIOLOGY,2004,(198):428–440.
    52. Hakvoort T, Altun V, Van Zuijlen PP, et al. Transforminggrowth factor–beta (1),-beta(2),-beta(3), basic fibroblastgrowth factor and vascular endothelial growth factor expressionin keratinocytes of burn scars. Eur Cytokine Netw,2000,11(2):233-239.
    53. R Hosokawa, K Nonaka, M Morifuji, et al. TGF-[beta]3decreases type I collagen and scarring after labioplasty.Journal of Dental Research,2003,82(7):558-564.
    54. Kohama K, Nonaka K, Hosokawa R, et al. TGF-beta-3promotesscarless repair of cleft lip in mouse fetuses. J Dent Res,2002,81(10):688-694.
    55. Hosokawa R, Nonaka K, Morifuji M, et al. TGF-β3decreasestype I collagen and scarring after labioplasty. J Dent Res,2003,82(7):558-64.
    56.李琪,周霞,徐可树,等.重组转化生长因子-β3基因对肝纤维化细胞模型胶原合成及沉积的影响.中华医学杂志,2008,88(18)1273-1278.
    57. Yi Zhang, Ping Liu, Keshu Xu,et al. rAAV2-TGF-β3decreasescollagen synthesis and deposition in the liver of experimentalhepatic fibrosis rat. Digesive Diseases and sciences,2010,55:2821–2830.
    58. Guangming Liu, Wei Ding, Jill Neiman, et al. Requirement ofSmad3and CREB-1in Mediating Transforming Growth Factor-β(TGF-β) Induction of TGF-β3Secretion. The journal ofbiological chemistry,2006,281(40),29479–29490.
    59. Henderson WR Jr, Inhibition of Wnt/beta-catenin/CREB bindingprotein (CBP) signaling reverses pulmonary fibrosis. Proc NatlAcad Sci U S A,2010,107(32):14309-14.
    60. Pulak R. Manna, Matthew T. Dyson, Douglas M. Stocco. Role ofbasic leucine zipper proteins in transcriptional regulation ofthe steroidogenic acute regulatory protein gene. Molecular andCellular Endocrinology,2009,302:1–11.
    61. Dongmei Xing and Joseph A. Bonanno. Effect of cAMP onTGF1-Induced Corneal Keratocyte–Myofibroblast Transformation.Investigative Ophthalmology&Visual Science,2009,50(2):626-633.
    62. Barlow CA, Barrett TF, Shukla A, et al. Asbestos-mediatedCREB phosphorylation is regulated by protein kinase A andextracellular signal-regulated kinases1/2. Am J Physiol LungCell Mol Physiol,2007,292(6):L1361-9.
    63. Xu ZG, Kim KS, Park HC, et al. High glucose activates the p38MAPK pathway in cultured human peritoneal mesothelial cells.Kidney Int,2003,63(3):958-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700