用户名: 密码: 验证码:
胰岛素及酪蛋白酶解物对新生IUGR仔猪肝脏生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究胰岛素及酪蛋白酶解物对新生IUGR(Intrauterine Growth Retardation,IUGR)仔猪肝脏生长发育的影响,试验比较了新生IUGR仔猪及人工饲喂牛乳、牛乳补加胰岛素、酪蛋白或酪蛋白酶解物三天后IUGR仔猪肝脏的重量,蛋白质、DNA和RNA含量,肝脏中肝糖原含量、超氧化物歧化酶活性、丙二醛含量、过氧化氢酶活性、谷胱甘肽过氧化物酶活性、肝酯酶活性、苹果酸脱氢酶活性以及血浆中游离脂肪酸含量、谷草转氨酶活性、谷丙转氨酶活性、超氧化物歧化酶活性、丙二醛含量、总胆固醇含量、甘油三酯含量、肝酯酶活性、胰岛素和IGF-I含量。
     试验一选择“苏太猪”初生仔猪5窝,每窝选择3头IUGR仔猪,分别分到新生组(A)、牛乳组(M)、牛乳补加胰岛素(60IU/L)组(I)。A组出生后立即宰杀,M组和I组人工饲喂3天,每3小时喂一次,饲喂量为每次30mL/kgBW,3天后屠宰取样,测定与肝脏生长发育相关的指标。
     与新生仔猪相比,人工饲喂三天后,仔猪体重无明显变化,但仔猪的肝脏重量显著升高(P<0.05),I组仔猪肝脏的蛋白质、DNA、RNA含量都有上升的趋势,但由于个体差异,变化不显著(P>0.05)。M组和I组的肝糖原比A组略有下降,但血糖含量显著上升(P<0.05),脂代谢相关的酶变化剧烈,除血浆游离脂肪酸下降之外(P<0.01),血浆总胆固醇、甘油三酯和肝脏中苹果酸脱氢酶在饲喂三天后都极显著上升(P>0.01),I组血浆中肝酯酶含量高于其他两组,但差异不显著(P>0.05)。M组、I组丙二醛含量下降(P<0.05),超氧化物歧化酶活性有明显上升(P>0.05),肝脏中过氧化氢酶和谷胱甘肽过氧化物酶活性显著上升(P<0.05),血浆中谷草、谷丙转氨酶也显著上升(P<0.05),但除了谷胱甘肽过氧化物酶外,M组和I组之间无显著差异(P>0.05)。I组血浆胰岛素含量极显著高于A组,也极显著低于M组(P<0.05),IGF-I含量变化不大。结果表明,口饲胰岛素能刺激新生IUGR仔猪肝脏的生长发育及功能的成熟。
     试验二选择初生苏太猪5窝,每窝选择3头IUGR仔猪,分别分到新生组(A)、牛乳+酪蛋白组(C)和牛乳+酪蛋白酶解物组(CH)。A组仔猪出生后立即屠宰取样;C组和CH组分别用1.5%酪蛋白溶液和1.5%酪蛋白酶解液取代10%(v/v)的牛乳,人工饲喂3天后屠宰取样。
     添加酪蛋白酶解物的试验结果总体与添加胰岛素类似。试验发现,虽体重略有下降,但C组和CH组的仔猪肝脏重量均有大幅增加(P>0.05),CH组仔猪肝脏中DNA含量显著增加(P<0.05),蛋白质和RNA含量也有增加趋势(P>0.05)。过氧化物歧化酶、过氧化氢酶和谷丙转氨酶活性CH组显著升高(P<0.05),丙二醛含量显著下降(P<0.05).人工饲喂三天后,血浆游离脂肪酸水平显著下降,肝脏内苹果酸脱氢酶活性和血浆中甘油三脂含量显著上升(P<0.05),而总胆固醇和肝酯酶活性无显著变化(P>0.05).血浆中的IGF-I和胰岛素含量三个试验组无显著差异。试验表明,酪蛋白及酪蛋白酶解物可以促进IUGR仔猪肝脏的生长发育,提高肝脏的抗氧化能力,增强糖脂代谢能力。
In order to investigate the effects of insulin and casein hydrolysate on the growth and development of liver in intrauterine growth retardation (IUGR) piglets, the experiment compared the difference of liver weight, content of protein, DNA and RNA, activities of superoxide dismutase(SOD), hepatic lipase(LP), glutamine-oxaloacetic transaminase(GOT), glutamic-pyruvic transaminase(GPT), contents of free fatty acid(FFA), malonddialdehyde (MDA), total cholesterol(TC), triglyceride (TG), insulin, insulin-growth factor I(IGF-I) in plasma and activities of SOD, HL, catalase(CAT), glutathione peroxidase(GSH-Px), malate dehydrogenase(MDH), contents of glycogen, MDA in liver among newborn piglets, piglets bottle-fed for 3 days with cow-milk and cow milk supplemented with insulin, casein or casein hydrolysate.
     In the first experiment, fifteen Sutai IUGR piglets were selected from five litters, three piglets from every litter, and divided into three groups: newborn group(N), milk group(M) and milk supplemented with insulin (60IU/L) group(I), five IUGR piglets in every group. Compared with group A, liver weight and glycose in plasma of IUGR piglets bottle-fed for 3 days was increased significantly(P<0.05), the content of protein, DNA and RNA was increased (P<0.05). The content of TG, TC, MDH was significant increasedtotal proteolytic activity of protease in stomach but total milk-clotting activity of gastric protease was decreased(P<0.01), while FFA in plasma was decreased(P<0.01). Content of MDA of IUGR piglets in group I was decreased and the activities of SOD, GSH-Px, CAT, GOT, GPT was increased significant(P<0.05). The content of insulin in plasma of IUGR piglets bottle-fed for 3 days was in a high level(P<0.01).
     The results show that oral insulin can stimulate the growth of liver of the IUGR piglets and the maturity of function.
     In the second experiment, fifteen Sutai piglets were selected from five litters, three IUGR piglets from every litter, and allotted to three groups: newborn group(A), casein group(C) and casein hydrolysate group(CH), five IUGR piglets in every group. The piglets in group C and CH were fed milk substituted 1.5% casein and 1.5% hydrolysed casein solution for 10% (v/v) milk for 3 days. After the piglets were fed artificially for 3 days, the result showed in this experiment is similar to experiment one. Although the body weight was decreased, the liver weight of group C and group CH was increased quickly ( P>0.05 ), while the content of DNA in the liver in IUGR piglets of group CH was increased significantly (P<0.05) , and the content of RNA and protein was increased rapidly at the same time (P>0.05) . The activities of SOD, CAT and GPT were increased obviously ( P<0.05 ), in contrast, the content of MDA decreased (P<0.05). After the piglets were fed manually for 3 days, the level of FEA in plasma was decreased significantly, and the level of the MDH in the liver and the TG in plasma was risen up (P<0.05 ), but the level of TC and HL kept alike. The content of IGF-I and insulin in three groups had no significant changes ( P>0.05 ). The data indicated that the casein and casein hydrolysate could promote the growth and development of the liver in IUGR piglets, also they could enhance the capability of the antioxidant and the metabolism of glycose and grease in the liver of IUGR piglets.
引文
[1] 王恬,马玉敏.乳源性生长因子在新生反刍动物胃肠道生长发育中的作用[J].动物营养学报,1999,11:37~44.
    [2] Westrom B R, Ekman R, Svendsen L, et al. Level of immunoreactive insulin, neurotensin, and bombesin in porcine colostrums and milk [J]. Pediatr Gastroenterol Nutr, 1987, 6: 460~465.
    [3] Goldfine I D: Molecular and Cellular Biochem 48(1):3,1982.
    [4] De Pablo F, dela Rosa E J: The developing CNS: ascenario for the action of proinsulin, insulin and insulin-like growth factors[J]. Trends Neurosci, 1995, 18:143~150.
    [5] Straus D S: Growth-stimulatory actions of insulin in vitro and in vivo[J]. Endocr Rev, 1984, 5: 356~369.
    [6] 王恬,许若军,郑春田,等.胰岛素及IGF-Ⅰ对仔猪胃肠道生长发育的营养调控[A].见:中国畜牧兽医学会.第四届中国畜牧兽医青年科技工作者学术研讨会论文集[C],江苏扬州:中国学木兽医学会,2001:114~117.
    [7] Hill D J, Nilner R D G. Insulin as a growth factor[J]. Rediatr Res, 1985, 9: 879~886.
    [8] Bergeron J M, Rachubinski R, Searle N et al. Polypeptide hormone receptors in vivo: demonstration of insulin binding to adrenal gland and gastrointestinal epithelium bu quantitative radioautography[J]. J Histochem Cytochem,1980, 28: 824~835.
    [9] Sodoyez-Goffaux F, Sodoyez J C, De Vos C J. Insulin receptors in the gastrointestinal tract of the rat fetus: quantitative autoradiographic studies[J]. Diabetologia, 1985, Jan, 28(1): 45~50.
    [10] Rao R K. Luminal processing of epidermal growth factor in mouse gastrointerstinal tract in vivo. Peptide, 1995, (16): 505~513.Shen W H, Xu R J. Gastrointestinal stability and absorption of insulin in suckling pigs [J]. Comp Biochem Physiol A Mol Integr Physiol, 2000, 125(3): 389~401.
    [11] Shen W H, Xu R J. Stability and distribution of orally administered epidermal growth factor in neonatal pigs[J]. Life Science, 1998, (63): 809~820.
    [12] Shen W H, Xu R J. Stability of insulin-like growth factor-Ⅰ in the gastrointestinal lumen in neonatal pigs[J]. Pediatr. Gastroenterol Nutr. 2000 Mar; 30: 299~304.
    [13] 吴琼珠,平其能.以硬脂酸纳米为载体的胰岛素小肠吸收部位研究[J].中国药科大学学报,2002,88(3):192.
    [14] Wester T J, Fiortto M L et al. Feeding colostrum increases circulating insulin-like growth factor in newborn pigs independent of endogenous growth hormone secretion[J]. Journal of Animal Science, 1998, (76): 3003~3009.
    [15] Gan L S, Hsyu P H, Pritchard et al. Mechanism of intestinal absorption of ranitidine and ondansetron: transport across Caco-2 cell monolayers[J]. Pharm Res, 1993, 10, 1722.
    [16] Ranade V V. Drug delivery systems 5A.Oral drug delivery[J]. Clin Pharmacol, 1991, 31(1): 2.
    [17] Verschraagen M, Koks C H, Schellens J H, et al. P-glycoprotein system as a determinant of drug interactions: the case of digoxinverapamil[D]. Pharmacol Res, 1999, 40(4): 301.
    [18] Hamilton G, Theyer G, Baumgartner G. Calcium antagonists as modulators of multi—drug resistant tumor cells[J]. Wien Med Wochensehr, 1993, 143(19~20): 526.
    [19] 陈慰浙,余心如.胶体金—胰岛素探针的制备与鉴定[J].浙江医科大学学报,1995,24(3):109.
    [20] 沈峰,王恬(导师).胰岛素及酪蛋白酶解物对新生IUGR仔猪肠道生长发育的影响[D].南京:南京农业大学硕士学位论文,2005.
    [21] 周衍椒,张镜如.生理学[M].人民卫生出版社,1984:469~470.
    [22] 林桂娟,王恬(导师).酪蛋白酶解物和胰岛素对新生仔猪肝脏功能发育的影响[D].南京:南京农业大学硕士学位论文,2004.
    [23] 邹仕庚,王恬,郑春田,等.胰岛素和酶解配方乳对初生仔猪胃肠道生长发育影响的研究[J].动物营养学报,2001,213(1):19~24.
    [24] Shulman R J, Tivey D R, Sunitha I, et al. Effect of oral insulin on lactase activity, mRNA, and posttranscriptional processing in the newborn pig[J]. J Pediatr Gastroenterol Nutr, 1992, 14 (2):166~172.
    [25] Mosinger B, Placer Z, Koldovsky O. Passage of insulin through the wall of the gastro-intestinal tract of the infant rat[J]. Nature, 1959, 184 (Suppl 16): 1245~1246.
    [26] Kelly W A. Passage of insulin through the wall of the gastro-intestinal tract of the infant mouse[J]. Nature, 1960, 186: 971~977.
    [27] Asplund J M, Grummer R H, Phillips P H. Absorption of colostral gammaglobulins and insulin by the newborn pig[J]. J Anim Sci, 1962, 21: 412~413.
    [28] Pierce A E, Risdall P C, Shaw B. Absorption of oral administrated insulin by the newly born calf[J]. J Physiol, 1964, 171: 203~215.
    [29] 郑春田,邹仕庚,王恬,等.胰岛素和酶解配方奶粉对初生仔猪小肠生长发育影响[J].畜牧兽医学报,1999,30(5):405-413.
    [30] 霍永久,王恬(导师).乳源活性肽对新生仔猪小肠发育影响及其作用机理的研究[D].南京:南京农业大学博士学位论文,2005.
    [31] Garlick P J, Fern M, Preedy V R. The effect of insulin infusion and food intake on muscle protein synthesis in postabsorptive rats[J]. Biochern J, 1983, 210(3):669~676.
    [32] Ballard F J, Nield M K, Francis G L, et al. The relationship between the insulin content and inhibitory effects of bovine colostrum on protein breakdown in cultured cells[J]. J Cell Physiol,1992, 110(3): 249~254.
    [33] Kinouchi T, Koizumi K, Kuwata T, et al. Crucial role of milk-borne insulin in the development of pancreatic amylase at the onset of weaning in rats[J]. Am J Physiol, 1998, 275(6), R1958~1967.
    [34] Xu R J. Development of the Newborn GI Tract and its Relation to Colostrum/Milk Intake: a Review[J]. Reprod Fertil Dev, 1996, 8: 35~48.
    [35] Donovan S M, McNeil L K, Jimenez-Flores R, et al. Insulin-like factors and insulin-like factor binding protein in porcine serum and milk throughout lactation[J]. Pediatric Research, 1994, 36(2): 159~168.
    [36] Mauras N, Horber F F, Haymond M W: Low does recombunant human insulin like growth factor Ⅰ fails to affect protein anabolism but inhibits islet secretion in humans[J]. J Clin Endocrinol Metab, 1992, 75: 119~1197.
    [37] Bird A R, Croom Wo J, et al. Peptide regulation of intestinal glucose absorption[J]. J Anim Sci, 1996, 7 4: 2523~2540.
    [38] Park J H, Vanderhoof J A, Blackwood D, et al. Characterization of type Ⅰ and type Ⅱ insulin like growth factor receptor in an intestinal epithelial cell line[J]. Endocrinology, 1990, 126(6): 2988~3005.
    [39] Ranke M B, Elmlmger M : Functional role of insulin-like growth factor binding proteins[J]. Horm Res, 1997, 48(Suppl): 9~15.
    [40] Thakur A, Sase M, Lee J et al : Ontogeny of insulin like growth factor Ⅰ in a rabbit model of growth retardation[J]. Journal of Surgical Research, 2000, 91: 135~140.
    [41] Unterman T G, Simmons K A, Glick R P: Circulating levels of insulin, insulin like growth factor-Ⅰ (IGF-Ⅰ), IGF-Ⅱ and IGF binding proteins in the small for gestational age fetal rat[J]. Endocrine Society, 1993,132: 337~326.
    [42] 丁晓春,冯星.生长激素及胰岛素样生长因子对新生儿生长发育调控的观察[J].中国实用儿科杂志,2003,7:402-404.
    [43] Wollman H A. Intrauterine growth restriction: definition and etiology[J]. Horm.Res, 1998, 49:1~6.
    [44] Xu R J, Wang T. Gastrointestinal absorption of insulin-like growth factor Ⅰ in neonatal pigs[J]. J Pediatr Gastroenterol Nutr, 1996, 23: 430~437.
    [45] Donovan S M, Chao J C et al. Orally administered iodinated recombinan human insulin-like growth factor poorly absorbed by the newborn piglet[J]. Gastroenterol Nutr, 1997, (24): 174~182.
    [46] Burrin D G, Wester T J, Davis T A et al. Orally administered IGF-Ⅰ increases intestinal mucosal growth in formula-fed neonatal pigs[J]. Am.J.Physiol. 1996, 270: 1(185~1091.
    [47] Playford R J, Hanby A M, Gschmeissner S et al. The epidermal growth factor receptor is present on the basolateral, but not the apical surface of enterocytes in the human gastrointestinal tract[J]. Gut 1996, 39: 262~266.
    [48] Shen W H, Xu R J. Stability and distribution of orally administered epidermal growth factor in neonatal pigs[J]. Life Science, 1998, (63): 809~820.
    [49] Westrom B R, Svendsen J, Ohlsson B G, et al. Intestinal transmission of macromolecules in the neonatal pig[J]. Biol Neonate, 1984,46,20-26.
    [50] Weaver L T , Walker W A. Uptake of macromolecules in the neonate[A]. In: Lebenthal E, ed. Human gastrointestinal development[C].New York:Raven Press,1989:731~48.
    [51] Schober D A, Simmen F A, Hadsell DL,el al. Perinatal expression of type I IGF receptors in porcine small intestine[J]. Endocrinology 1990,126:1125-1132.
    
    [52] 许若军,王锋.乳源性生物活性肽生物学作用及其应用[J].动物医学进展,2000,21(2):8—11.
    [53] Shen W H, Xu R J. Stability of Epidermal growth factor in the gastrointestinal lumen of suckling and weaned pigs[J]. Life Sci, 1996, (59): 197-208.
    [54] Rao R K. Luminal processing of epidermal growth factor in mouse gastrointerstinal tract in vivo[J]. Peptide, 1995, (16): 505-513.
    [55] Bird A R, Croom W J. Jejunal glucose absorption is enhanced by epidermal growth factor[J]. J Nutr, 1994, (124): 231-240.
    [56] Carpenter G. Epidermal growth factor is amajor growth-promoting agent in human milk[J]. Science, 1980, (210): 198-199.
    [57] Poulsen S S. On the role of epidermal growth factor in the defence of the gastroduodenal mucosa[J].Scand J Gastocenterol, 1978,128(suppl)(22): 20-21.
    [58] Oka Y, Ghishan F K, Greene H L. Effect of mouse epidermal growth factor /urogastroneon the functional maturation of rat intestine[J]. Endocrinology, 1983, (124): 107-112.
    [59] Malo C, Menard D. Influence of epidermal growth factor on the development of suckling mouse intestinal mucosa[J]. Gastroenterology, 1982, (83): 28-25.
    [60] Jaeger L A, Lamar C H, Cline T R, Cardons B A. Effect of orally administered epidermal growth factor on the jejunal mucous of weaned pigs[J]. Am J Vet Res, 1990, (51): 471-474.
    [61] James P S, Smith M W, Tivey D R. Epidermal growth factor selectively increases maltase and sucrase activities in neonatal piglet intestine [J]. J Physiol, 1987, (393): 583-594.
    [62] Nabuurs M J A. Weaning piglets as a model for studying path physiology of diarrhea[J]. Vet Quarterly, 1998, 20(13): 42-45.
    [63] Konturek S J. Role of epidermal growth factor in gastro-protection and ulcer healing[J]. Scand J Gstroenterol, 1988, (23): 129-133.
    [64] Hardin J A, Wong J K, Cheeseman C I, et al. Effect of luminal epidermal growth factor on enterocyte glucose and proline transport[J]. Am J physiol, 1996, (271): 509-515.
    [65] Xu R J, Doan Q C, Regster G O. Detection and characterization of transforming growth factor-beta in procine colostrums [J]. Biol Neonate. 1999, (75): 59-64.
    [66] Rogers M L, Goddard C, Regester Go. Transforming growth factor in bovine milk: concentration stability and molecular massforms[J].J Endocrinol, 1996, (151): 77-86.
    [67] Pakkanen R, Aalto J. Growth factors and antimicrobial factors of bovine colostrums [J]. Int Dairy J, 1997,(7): 285~297.
    [68] Koyama S, Podolsky D K. Differential expression of transforming growth factors a and β in rat intestinal epithelial cells[J]. Journal of clinical Investigation, 1989, (83): 1786~1773.
    [69] Saksela O, Moscatelli D, Rifkin D B. The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activity in capillary endothelial cells[J]. J Cell Biol, 1987, (105): 957~963.
    [70] Heimark R L, Twardzik D R, Schwartz S M. Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets[J]. Science, 1986, (233): 1078~1080.
    [71] Muller G, Behrens J, Nussbaumer U, et al. Inhibitory action of transforming growth factor beta on endothelial cells[J]. Pro Natl Acad Sci USA[J].1987, (84): 5600~5604.
    [72] Robberts A B, Sporn M B. Physiological actions and clinical applications of transforming growth factor-β (TGF-β)[J].Growth Factors, 1993, (8): 1~9.
    [73] Lettero J J, Geiser A G, Kulkarni A B, et al. Maternal rescue of transforming growth factor-beta null mice[J]. Science, 1994, (264): 1936~1938.
    [74] Christ M, Mc Carteney-Francis N L, Julkami A B. Immunodes regulation in TGF-beta deficient mice[J]. J Immunol, 1994, (153): 1936~1946.
    [75] 柴宁莉.神经营养因子及其受体与胃肠动力的关系[J].国外医学(消化系疾病分册).2002,22(3):159~161.
    [76] Arye He, Brunett C A, Goldfine I D. Role of Myogenin in myoblast differentiation and its regulation by fibroblast growth factor[l]. J Biol Chem, 1990, (265): 5960~5963.
    [77] Vernon R K, Space L J. Effects of basic fibroblast growth factor and heparin on Follical. Stimulating hormone-induced steroidgenesis by bovine granulosacells[J]. J Anim Sci, 1994, (72): 2969~2702.
    [78] Miyake H, Hara I, Gohji K, et al. Expression of basic fibroblast growth factor is associated with resistance to cisplation in a human bladder cancer cell line[J]. Cancer lett, 1998, (123): 121~126.
    [79] Kitts D D. Can J. Physiol Pharmacol[J], 1994, 72:423
    [80] Brantl V, Tsschemacher H, Lottspeich E Novel opioid peptide derided from casin (β-casomorphins) Ⅰ: Isolation from bovine casein peptone[J]. Hoppe-Seylers Z Physiol Chem, 1979, 360: 1211~1216.
    [81] Lottspeich F. Novel opioid peptide derided from casein(β-casomorphins) Ⅵ: synthetic peptides corresponding to components from bovine casein peptone[J]. Hoppe-Seylers Z Physiol Chem, 1980, 361: 1835~1838.
    [82] Meisel H, Frister H. Chemical characterization of bioactive peptides from in vivo digests of casein[J]. J Dairy Res, 1989, 56: 343~349.
    [83] 石岗.生物活性肽在动物生产中的应用[J].畜牧与兽医.2002,34(7):38~40.
    [84] 王梅,沈辉.食物蛋白酶解物中的生物活性肽[J].氨基酸和生物资源,1997,19(1):40~43.
    [85] 吴金节,章孝荣,陶勇.β-酪啡肽对公山羊血清FSH、LH和T水平的影响[J].安徽农业大学学报,2001,28(2):152~155.
    [86] 张佳程.乳蛋白中的生物活性序列[J].食品与发酵工业,1996,6:54~57.
    [87] Flat A M, et al. Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities[J]. J Dairy Science, 1993, 76(1): 301~310.
    [88] Maruyama S, Nakagomi K, Tomizuka N, et al. Angiotensin l-converting enzyme inhibitor derived from an enzymatic hydrolysate of casein Ⅱ: Isolation of bradykininopotentiating activity on the uterus and the ileum of rates[J]. Agric Biol Chem, 1985, 49(5): 1405~1409.
    [89] Kohmura M, Nio N, Kubo K, et al. Inhibition of angiotensin converting enzyme by synthetic peptides of human β-casein[J]. Agric Biol Chem, 1989, 53: 2107~2114.
    [90] Jolles P, Levy-Toledano S, Fiat A M, et al. Analogy between fibrinogen and casein: effect of an undecapeptide isolated from κ-casein on platelet function[J]. Eur J Biochem, 1986, 158: 379~382.
    [91] Andrieux A. Amino acid sequences in fibrinogen mediating its interaction with its platelet receptor, GP Ⅱb Ⅲa[J]. J Biol Chem, 1989, 264: 9258~9264.
    [92] Maruyama S, Suzuki H. A peptide inhibitor of angiotensin Ⅰ converting enzyme in the tryptic hydrolysate of casein[J]. Agric Biol Chem, 1982, 46(5): 1393~1394.
    [93] Hata Y, Yamamoto M, Oimi M, et al. Am J Clin Nutr[J], 1996, 64: 767.
    [94] Nakamura Y, Yamamoto N, Sakkai K, et al. J Dairy Res[J], 1995, 78: 777.
    [95] Nakamura Y, Yamamoto N, Sakkai K, et al. J Dairy Res[J], 1995, 78: 1253.
    [96] Nagai T, et al. Effect of casein phosphopeptides on fertilization in vitro of bovine oocytes matured in cultrue[J]. Animal Science and Technology, 1996, 67(12): 1037~1042.
    [97] 周文华,陈伟华,邹思湘等.饲喂β-酪啡肽对大鼠免疫功能影响的研究[J].畜牧与兽医,2002,34(2):13~15.
    [98] Chen H M, Muramoto K, Yamauchi F, et al. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean peptide[J]. J. Agric Food Chem, 1996, 44: 2619~2623.
    [99] 邱隽,王小雪,李琳等.乳蛋白活性肽的延缓衰老作用研究[J].中国公共卫生,2002,18(3):312~313.
    [100] 郑华,傅伟龙.牛乳酪蛋白水解物对小鼠生长的影响[C].全国动物生理生化第六次学术会议论文摘要汇编,1999,84.
    [101] 郑华,傅伟龙.酪蛋白水解物对小鼠生长及免疫功能的影响[J].华南农业大学学报,2000,21(3):71~74.
    [102] 张莉莉,王恬(导师).大豆蛋白与酪蛋白酶解物对小鼠免疫功能影响的比较研究[D].南京:南京农业大学硕士学位论文,2004.
    [103] 沈峰,薛萍,胡文琴,等.酪蛋白酶解物对断奶小鼠肠道生长的影响[J].家畜生态学报, 2004, 25(4): 37~39.
    [104] Ciaustre J, Toumi F, Trompette A, et al. Effects of pepfides derived from dietary proteins on mucus secretion in rat jejunum[J]. Am J Physiol Gastrointest Liver Physiol, 2002, 283(3): G521~G528.
    [105] Green G M, Miyasaka K. Rat pancreatic response to intestinal infusion of intact and hydrolyzed protein[J]. Am J Physiol Gastrointest Liver Physiol,1983,245(3): G394~398.
    [106] Hira T, Hara H, Aoyama Y. Stimulative effect of a casein hydrolysate on exocrine pancreatic secretion that is independent of luminal trypsin inhibitory activity in rats[J]. Biosci Biotechnol Biochem,1999 Jul;63(7): 1192~1196.
    [107] Sysoev IuA, Kremer luN, Shlygin G K. Nature of the stimulating action of parenterally administered casein hydrolysate on gastric secretory function[J]. Vopr Pitan. 1982,2:31-35.
    [108] 乐国伟,施用晖,蔡学林,等.酶解酪蛋白与相应氨基酸混合物对雏鸡组织蛋白质合成的影响[J].畜牧兽医学报,1998,29(1):10~16.
    [109] Trompette A, Claustre J, Caillon F, et al. Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum[J]. J Nutr, 2003,133(11): 3499~3503.
    [110] Hodgkinson S M, Moughan P J, Reynolds G W, et al. The effect of dietary peptide concentration on endogenous ileal amino acid loss in the growing pig [J]. J Brit Nutr, 2000, 83(4): 421~430.
    [111] 庞广昌,王秋韫,陈庆森.生物活性肽的研究进展理论基础与展望[J].食品科学,2001,22(2):80~84.
    [112] Hodgkinson S M, Moughan P J, Reynolds G W, et al. The effect of dietary peptide concentration on endogenous ileal amino acid loss in the growing pig [J]. J Brit Nutr, 2000, 83(4): 421~430.
    [113] Ziegler F, Ollivier J M, Cvnober L, et al. Efficiency of enteral nitrogen support in surgical patients: small peptides v non-degraded proteins [J]. Gut, 1990, 31(11): 1277~1283.
    [114] Hemell O, Lonnerdal B. Nutritional evaluation of protein hydrolysate formulas in healthy term infants: plasma amino acids, hematology, and trace elements[J]. Am J Clin Nutr,2003,78(2): 296~301.
    [115] Sens D A, Levine J H, Buse M G. Stimulation of hepatic and renal ornithine decarboxylase activity by selected amino acids [J]. Metabolism: Clinical & Experimental, 1983, 32(8): 787-792.
    [116] Snodgrass P J, Lin R C. Induction of urea cycle enzymes of rat liver by amino acids [J]. Nutr, 1981, 111(4): 586~601.
    [117] 常中义,江波,王璋.酪蛋白水解物对轮枝链霉菌SK-1产谷氨酰胺转胺酶的影响[J].郑州工程学院学报,2001,22(1):66~68.
    [118] Beaumont J E, Rees E D, Luke R G. Insulin resistance in uremia: amino acid metabolism [J]. Nephron, 1977, 19(6): 322~327.
    [119] Rerat A, Nunes C S, Mendy F, et al. Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusions of a milk enzymic hydrolysate or of free amino acids [J]. J British Nutr, 1988, 60(1): 121~136.
    [120] Gannon M C, Nuttall F Q. Acute effects of ingestion of carbohydrate, protein, or fat on cardiac glycogen metabolism in rats [J]. Metabolism: Clinical & Experimental, 1987, 36(6): 595~600.
    [121] Alvarez M J, Diez A, Lopez B C, et al. Short-term modulation of lipogenesis by macronutrients in rainbow trout (Oncorhynchus mykiss) hepatocytes [J]. J Brit of Nutr, 2000, 84(5): 619~628.
    [122] Ueda H, Yokoyama A. Dietary protein sources modify the cholesterol-lowering effect of saponins in chicks [J]. J Poultry Sci, 2001, 38(3): 225~233.
    [123] Coutinho E M; Ferreira H S, Assuncao M L, et al.. The use of protein hydrolysate improves the protein intestinal absorption in undernourished mice infected with Schistosoma mansoni[J]. Rev Soc Bras Meal Trop, 2002,35(6):585~590.
    [124] Defilippi C, Gomez E. Effect of casein and casein hydrolysate on small bowel motility and D-xylose absorption in dogs[J]. Neurogastroenterol Motil. 1995,7(4):229-34.
    [125] Ait-Oukhatar N, Peres J M, Bouhallab S, et al. Bioavailability of caseinophosphopeptidebound iron[J]. J Lab Clin Meal, 2002,140(4): 290~294.
    [126] Kitts D D, Yuan Y V. Caseinphosphopeptides and calcium bioavailability[J]. Trends Food Sci Technol, 1992, 3: 31~35.
    [127] 牟光庆,鹿保鑫,王新,等.酪蛋白磷酸肽(CPP)对铁吸收影响的研究[J].黑龙江八一农垦大学学报,2001,13(1):70~73.
    [128] 李登赴,刘丽.新生仔猪肝脏胰腺和胃发育的初步研究[J].贵州畜牧兽医,2003,27(6):2~3.
    [129] 罗莉,林杜梅,叶元土,等.莱克多巴胺对草鱼胴体代谢和转氨酶活性的影响[J].西北农业大学学报,1997,19(3):275~278.
    [130] 饶绍琴,邓君,杨明清.脐血和新生儿肝脏酶类活性的对比研究[J].四川省卫生管理干部学院学报,1998,12,17(4):207~208.
    [131] 陈昌辉,赵相发,杨以桡等.性别,孕周,身长体重指数和日龄对早期新生儿血化学指标的影响[J].中国优生与遗传杂志,1995,16(3):16.
    [132] Bohme H J, Aparmann G, Hofmann E. Biochemistry of liver development in the perinatal period[J]. Experientia, 1983, 39: 473~483.
    [133] Komoda T, Koyama I, Nagata A, et al. Ontogetic and phylogetic studies of intestine, hepatic, and placental alkaline phosphatases evidence that intestine alkaline phosphatase is a late evolutionary development[J]. Gasctroent, 1986, 91: 277~286.
    [134] Lyonnet S, Coupe C, Girard J, et al. In vivo regulation of glycolytic and gluconeogenic enzyme gene expression in new born rat liver[J]. J Clin Invest, 1988, 81: 1682~1689.
    [135] Adams S H, Alho C S, Asins G, et al. Gene expression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in a poorly ketogenic mammal: effect of starvation during the neonatal period of the piglet[J]. Biochem J, 1997, 324: 65~73,
    [136] 周伦江,邵良平,李国平.甘露寡聚糖和粪链球菌对雏鸡和哺乳仔猪血液SOD和GSH-Px活性的影响[J].福建农业大学学报,1999,28(2):200~203.
    [137] Yuan H T, Bingle C D and Kelly F J. Differential patterns of antioxidant enzyme mRNA expression in guinea pig lung and liver during development[J]. Biochem Biophys Acta, 1996, 1305: 163~171.
    [138] 时浩,毛鑫智,荣杰.大鼠胎儿和新生儿肝脏某些功能发育变化的特点[J].中国应用生理学杂志,1998,14(2):143~145.
    [139] Yu X X, Drackley J K and Odle J. Food deprivation changes peroxisomal beta-oxidation activity but not catalase activity during postnatal development in pig tissues[J]. J Nutr, 1998, 128: 1114~1121.
    [140] 闫震,汤春生.IGF系统与胎儿生长发育[J].国外医学妇幼保健分册,2004,15(1):17~19.
    [141] Verhaeghe J, Van Bree R, Van Herck E, et al. C-peptide, insulin-like growth factors Ⅰ and Ⅱ, and insulin-like growth factor binding protein-1 in umbilical cord sernm[J]. Corraecol, 1995, 169: 89~97.
    [142] Fant M, Munro H, Meses A C. An autocrine/paracrine role for insulin-like growth factors in the regulation of human placenta growth[J]. J Clin Endocrinol Metab, 1986, 63(4): 499.
    [143] Slater M, Murphy C R. Differentiao expression of insulin-like growth factors in the uterine epithelium and extracellular matrix during early pregnancy[J]. Matrix Biol, 1999, 18(6): 579~584.
    [144] Lee C Y, Chung C S and Simmen F A. Ontogeny of porcine insulin-like growth factor system[J]. Mol Cell Endocrinol, 1993, 93: 71~80.
    [145] Hart V K, Matsell D G, Delhanty P J, et al. IGF-binding protein mRNAs in the human fetus: tissue and cellular distribution of development expression[J]. Horm Res, 1996, 45:160~166.
    [146] Peng M, Pelletier G, Palin M F, et al. Ontogeny of IGFs and IGFBPs mRNA levels and tissue concentrations in liver, kidney and skeletal muscle of pig[J]. Growth Dev Aging, 1996, 60: 171~187.
    [147] 陈知水摘,夏穗生校.降压神经肽基因在大鼠生长发育各期肝脏上的表达[J].国外医学外科学分册,1994(1):35~36.
    [148] 唐震,李晓宇,何龙,等.人胚胎脂质代谢相关基因的表达谱[J].中国动脉硬化杂志,2003,11(3):203~206.
    [149] Rehakova Z, Trebichavsky I, Sinkora J, et al. Early ontogeny of monocytes and macrophages in the pig[J]. Physiol Res, 1998, 47: 357~363.
    [150] 张秀泉,严隽鸿.胎儿宫内生长迟缓的研究与进展[J].国外医学妇产科学分册,1994,21(1):27~30.
    [151] 董彦亮.胎儿宫内发育迟缓的病因[J].中国实用妇科与产科杂志,2002,18(1):6~8.
    [152] Behrman K J. Nelson textbook of pediatrics[M], 16th edition. W. B. Saunders Company 2000: 477~485.
    [153] Albertsson-Wildand K, Boguszewski M and Karlberg J. Children born small-for-gestation age: postnatal growth and hormonal status[J]. Horm Res, 1998, 49: 7~13.
    [154] Barker D J, Hales C N, Fall C H D, et al. Type 2 (non-insulin dependent) diabetes mellitus, hypertension, and hyperlipidaemia (Syndrom X): relation to reduced fetal growth[J]. Diabetologia, 1993, 36: 62~67.
    [155] Simmons R A, Templeton L J and Gertz S J. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat[J]. Diabetes, 2001, 50: 2279~2286.
    [156] 李玉玲,舒沪英.子宫胎盘血流量与宫内发育迟缓[J].中华妇产科杂志,1989,24(2):108.
    [157] 刘映磷.高危妊娠监护治疗学[M].北京:北京医科大学、中国协和医科大学联合出版社,1997:87.
    [158] Snijders R J M, Sherrod C, Gosden C M, et al. Fetal growth retardation: Associated malformations and chromosome abnormalities[J]. Am J Obstet Gynecol, 1993, 168: 547~555.
    [159] Lansdown A B, Coid C R, Ramsden D B. Mitigation of virus-induced fetal growth retardation in mice by dietary casein hydrolysate [J]. Nature, 1975, 254(5501): 599~600.
    [160] Resnik R. Intrauterine growth restrition[J]. Obstet Gynecol, 2002, 99: 490~496.
    [161] Krebs C, Macara L M, Leiser R, et al. Intruterine growth restricion with absent end-diastolic flow velocity in the umbilical artey is associated with maldevelopment of the placental terminal villous tree[J]. Am J Ostet Gynecol, 1996, 175: 1534~1542.
    [162] Ulm M R, Plockinger B, Pirich. Umbilical arteries of babies born to cigarette somerkers generate less prostacyclin and contain less arginine and citrulline compared with those of babies born to control subjects[J]. AM J Obstet Gynecol, 1995, 172: 1485.
    [163] Kliegman R M, Johnston V L. The metabolism and endocrinology of intrauterine growth retardation[M]. In: William W H. Neonatal Nutrition and Metabolism, 1991, 392~418.
    [164] Sangild P T, Foltmann B, Cranwell P D. Development of gastric protease in fetal pigs and pigs from birth or thirty six days of age. The effect of adrenocorticotropin (ACTH) [J]. J Dev Physiol,1991, 16: 229~238.
    [165] Turvey A, Sangild P T, Cranwell P D, et al. An immunohistochemical study of the development and localization of zymogens for the gastric proteases in fetal, neonatal and weaned pigs[M]. In: Souffrant W B, Hagemeister H. Proceeding of the Ⅵth International Symposium on Digestive Physiology in Pigs. EEAP publication, No.80, Rostock, Germany, 1994, 208~211.
    [166] Cranwell P D. The development of neonatal gut and enzyme systems[M]. In: Varley M A. The neonatal pig: Development and survival. CAB Oxford, UK, 1995, 99~154.
    [167] Xu R J, Mellor D J, Brittles M J, et al. Impact of intrauterine growth retardation on the gastrointestinal tract and the pancreas in newborn pigs [J]. J Pediatr Gastroenterol Nutr, 1994, 18: 231~240.
    [168] Chiang S H, Pettigrew J E, Clarke S D, et al. Digestion and absorption of fish oil by neonatal piglets[J]. J Nutr, 1989, 119: 1741~1743.
    [169] Jensen M S, Jensen S K, Jakogsen. Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas[J]. J Anim Sci, 1997,75(2):437~445
    [170] Li F C, Jian Y N, Shen T F. Development of lipase in nursing piglets[J]. Proc Natl Sci Counc Repub China B, 2001, 25(1): 12~16.
    [171] Efird R C, Armstrong W D, Herman D L. The development of digestive capacity in the young pigs: effect of age and weaning system[J]. J Anim Sci, 1982, 55(6): 1371~1387.
    [172] Widdowson E M. Intrauterine growth retardation in the pig. Ⅰ: Organ size and cellular development at birth and after growth to maturity[J]. Biol Neonate, 1971, 19: 329~340.
    [173] Pond W G, Maurer R R and Klint J. Fetal organ response to maternal protein deprivation during pregnancy in swine[J]. J Nurt, 1991, 121: 504~509.
    [174] 许建平,马庭元,闻良珍.川芎嗪治疗胎儿宫内生长迟缓中氧自由基与血栓素B_2、6-酮-前列腺素la的相关性研究[J].中国中西医结合杂志,1998,18(5):265~268.
    [175] 顾扬,王晓玲.妊娠期脂质过氧化作用与围产儿预后的关系[J].中国优生优育,2000,11(2):72~75.
    [176] Karowicz-Bilinska A, Suzin J and Sieroszewski P. Evaluation of oxidative stress indices during treatment in pregnant women with intrauterine growth retardation[J]. Med Sci Monit, 2002, 8: CR211~216.
    [177] 张剑白,陈淑丽,孙玲娣,等.过氧化脂质、谷胱甘肽过氧化物酶和维生素E在新生儿窒息病理损伤机制中的作用[J].临床儿科杂志,1995,13(6):364~365.
    [178] Bauer R, Gedrange T, Walter B, et al. Influence of hypoxia and hyperthermia upon peroxidative and glutathione status in growth-restricted newborn piglets[J]. Exper Toxicol Pathol, 1998b, 50: 31~33.
    [179] Barth A, Bauer R, Gedrange T, et al. Influence of hypoxia and hypoxia/hypercapnia upon brain and blood peroxidative and glutathione status in normal weight and growth-restricted newborn piglets[J]. Exper Toxicol Pathol, 1998, 50: 402~410.
    [180] Ogata E S, Swanson S L, Collins J W, et al. Intrauterine growth retardation: altered hepatic energy and redox states in the fetal rat[J]. Pediatr Rse, 1990, 27: 56~63.
    [181] Lane R H, Flozak A S, Ogata E S, et al. Altered hepatic gene expression of enzyme involved in energy metabolism in the growth-retarded fetal rat[J]. Pediatr Rse, 1996, 39: 390~394.
    [182] Merzouk H, Meghelli-Bouchenak M, el-Korso N, et al. Low birth weight at term impairs cord serum lipoprotein compositions and concentrations[J]. Eur J Pediatr, 1998, 157: 321~326.
    [183] Lane R H, Kelley D E, Gruetzmacher E M, et al. Uteroplacental insufficiency alters hepatic fatty acid-metabolizing enzymes in juvenile and adult rats[J]. Am J Physiol, 2001a, 280: R183~R190.
    [184] Vileisis R A, Fain J and Oh W. Fatty acid synthesis in rat fetuses with intrauterine growth retardation [J]. Met Clin Exp, 1982, 31: 217~222.
    [185] Jones J N, Gercel-Taylor C and Taylor D D. Altered cord serum lipid levels associated with small for gestational age infants[J]. Obstetr Gynecol, 1999, 93: 527~531.
    [186] Kind K L, Clifton P M, Katsman A I, et al. Restricted fetal growth and the response to dietary cholesterol in the guinea pig[J]. Am J Physiol, 1999, 277: R1675~1682.
    [187] Muriel H, Gilles M, Yves L, et al. The cortisol-cortisone shuttle in children born with intrauterine growth retardation[J]. Pediatr Res, 1999, 46: 189~193.
    [188] Tenhola S, Martikainen A, Rahiala E, et al. Serum lipid concentrations and growth characteristics in 12-year-old children born small for gestational age[J]. Prdiatr Res, 2000, 48: 623~628.
    [189] Hajek Z, Drbohlav P, Ceska R, et al. The spectrum of lipids in the intrauterine growth retarded fetus and in the parents[J]. Ceska Gynekol, 2000, 65: 123~127.
    [190] Davis T A, Fiorotto M L, Bun'in D G, et al. Intrauterine growth restriction does not alter response of protein synthesis to feeding in newborn pigs[J]. Am J Physiol Endocrinol Metab,1997, 272:E877~E884.
    [191] 姚裕家,白波,李炜如,等.鼠血清胰岛素样生长因子水平改变与追赶生长的关系研究[J].中华围产医学杂志,2001,4(1):42~44.
    [192] Boguszewski M, Bjarnason R, Jansson C, et al. Hormonal status of short children born small for gestational age [J]. Acta Paediatr, 1997, 423:189~192.
    [193] Straus D S. Nutritional regulation of hormones and growth factor s that control mammalian growth[J]. FASEBJ, 1994,8: 6~12.
    [194] Thierior-Prevost G, Boccara J F, Francoual C, et al. Serum insulin-like growth factor 1 and serum growth-promoting activity during the first postnatal year in infants with intrauterine growth retardation [J]. Pediatr Res, 1988, 24: 380~383.
    [195] Giuckman P D, Harding J E. The physiology and pathophy siology of intrauterine growth retardation[J]. Horm Res, 1997,48(Suppl):11~16
    [196] Skarsgard E D, Amii L A, Dimmitt R A, et al. Fetal therapy with rhlGF-I in a rabbit model of intrauterine growth retardation[J]. J Surgical Res, 2001,99(1): 142~146.
    [197] Bloomfield, Frank H, Bauer M K, et al. Amniotic IGF-I supplements improve gut growth but reduce circulating IGF-I in growth-restricted fetal sheep[J]. Am J Physiol. Endocrinology And Metabolism,2002,282(2): E259~E269.
    [198] Schoknecht P A, Ebner S, Skottner A, et al. Exogenous insulin-like growth factor-I increases weight gain in intrauterine growth-retarded neonatal pigs [J]. Pediatr Res, 1997, 42(2): 201~207.
    [199] Muaku S M, Thissen J P, Gerard G, et al. Postnatal catch up growth induced by growth hormone and insulin like growth factor I in rat swith intrauterine growth retardation caused by maternal protein malnurtrition[J]. Pediatric Res, 1997,42(3):370~377.
    [200] Woodall S M, Breier B H, Johnston B M, et al. Administration of growth hormone or IGF- I to pregnant rats on a reduced diet throughout pregnancy does not prevent fetal intrauterine growth retardation and elevated blood pressure in adult offspring[J]. J Endo,1999, 163:69~77.
    [201] 李贵瑜,孙长学.胎盘表皮生长因子受体的表达改变与胎儿宫内生长迟缓的关系研究[J].中国实用妇科与产科杂志.2000,16(1):29~31.
    [202] Lansdown A B, Coid C R, Ramsden D B. Mitigation of virus-induced fetal growth retardation in mice by dietary casein hydrolysate [J]. Nature, 1975, 254(5501): 599-600.
    [203] Putet G, Rigo J, Salle B, et al. Supplementation of pooled human milk with casein hydrolysate: energy and nitrogen balance and weight gain composition in very low birth weight infants[J]. Pediatric Res, 1987, 21(5): 458-461.
    [1]Xu R J, Mellor D J, Brittles M J, et al. Impact of intrauterine growth retardation on the gastrointestinal tract and the pancreas in newborn pigs[J]. J Pediatr Gastroenterol Nutr, 1994, 18:231~240.
    [2]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folin phenol reagent[J].J Biol Chem, 1951, 193:265~275.
    [3]Johnson L R, Chandler A M. RNA and DNA of gastric and duodenal mucosa in antractomized and gastrin-treated rats [J]. Am J Physiol, 1973, 224:937~940.
    [4]Giles K W, Myers A. An improved diphenylamine method for the estimation for deoxyribonucleic acid [J]. Nature, 1965, 206: 93.
    [5]Fleck A, Begg D. The estimation of ribonucleic acid using ultraviolet absorption measurements [J]. Biochemica Biophysica Acta, 1965, 108:333~339.
    [6]Vies J V D. Two methods for the determination of glycogen in liver[J]. Biochem J, 1954, 57:410~416.
    [7]陈小萍,林国斌,郑丽红.影响动物肝糖原测定因素的分析[J].中国卫生检验杂志,1999,9(4):281~282.
    [8]李立群.血中游离脂肪酸的测定[A].上海医学生化检验所主编.临床生化检验.上海:上海科技出版社,1979:168~170.
    [9]李晓亮,王伟,黄晋果.硫磷铁光度试剂法测定鸡蛋中胆固醇含量的探索[J].山西农业大学学报,1996,16(2):188~190.
    [10]王同明.生物化学检验技术[M].南京:江苏科技出版社,1995:112~116.
    [11]季建平,吴再彬,刘歧山,等.超氧化物歧化酶超微量快速测定法[J].南京铁道医学院学报,1991,10(1):27~30.
    [12]和文洲,崔云龙,王志玲.血清过氧化氢酶简便测定方法[J].医学检验杂志,1991,6(2):98~99.
    [13]邓修惠,黄学梅,李伟道,等.改良DTNB比色法测定血清GSH-Px活性[J].重庆医学,2000,29(5):445.
    [14]黄虹.血清脂质过氧化代谢产物丙二醛测定方法的改进[J].镇江医学院学报,1999,9(3):457~458.
    [15]张蓉,刘宇,刘秉文.血浆脂蛋白及肝脂蛋白的比色测定法[J].华西医大学报,1996,27(1):106~110.
    [16]杨利国,胡少昶,魏平华,等.酶免疫测定技术[M].南京:南京大学出版社,1998:105~110.
    [17]Dahgvist A. Assay of intestinal disaccharidases[J]. Anal Biochem, 1968, 22: 99~107.
    [18]Read L C, Upton F M, Francis G L, et al. Changes in the growth-promoting activity of human milk during lactation[J]. Pediatr Res, 1984, 18(2):133~139.
    [19]王恬,许若军,郑春田等.胰岛素及ICF-I对仔猪胃肠道生长发育的营养调控[A].见:中国畜 牧兽医学会.第四届中国畜牧兽医青年科技工作者学术研讨会论文集[C],江苏扬州:中国畜牧兽医学会,2001:114~117.
    [20]Shulman R J, Tivey D R, Sunitha 1, et al. Effect of oral insulin on lactase activity, mRNA, and posttranscriptional processing in the newborn pig[J]. J Pediatr Gastroenterol Nutr, 1992, 2:166~172.
    [21]Goldfine I D: Molecular and Cellular Biochem,1982, 48(1):3.
    [22]Hill D J, Nilner R D G Insulin as a growth factor [J]. Rediatr Res, 1985, 9:879~886.
    [23]Flecknell P A, Wootton R and John M. Total body-glucose turnover in normal and intrauterine growth retardated neonatal piglets[J]. Clin Sci, 1981, 60: 335~338.
    [24]Yamaguchi K, Mishina J, Mitsuishi C, et al. Neonatal hypoglycemia in infants with intrauterine growth retardation due to pregnancy-induced hypertension[J]. Acta Paediatrica Japonica, 1997, 39:S48~50.
    [25]Gopinath R, Etherton T D. Effects of porcine growth hormone on glucose metabolism of pig: II. Glucose tolerance, peripheral tissue insulin sensitivity and glucose kinetics[J]. Anita Sci, 1989, 67(3):689~697.
    [26]Lane R H, Crawford S E, Flozak A S, et al. Localization and quantification of glucose transporters in liver of growth-retarded fetal and neonatal rats[J]. Am J Physiol, 1999, 276: E135~142.
    [27]Thomas D C, Allen A Q, Cecelia C T, et al. Leucine metabolism in chronically hypoglycemic hypoinsulinemic growth-restricted fetal sheep[J]. Am J Physiol, 1997, 272: E107~117.
    [28]Le Cam A, Freychet P, Lenoir P. Degradation of insulin by isolated rat liver cells[J]. Diabetes, 1975, 24(6): 566~673.
    [29]Udrisar D P, Wanderley M I. Fluoride and phosphatidylserine induced inhibition of cytosolic insulin-degrading activity[J]. Acta Physiologica, Pharmacologica at Therapeutica Latinoamericana, 1992, 42(3): 183~196.
    [30]Suryawan A, Nguyen H V, Bush J A, et al. Developmental changes in the feeding-induced activation of the insulin-signaling pathway in neonatal pigs[J]. American Journal of Physiology-Endocrinology & Metabolism, 2001, 281(5): E908~915.
    [31]Faulconnier Y, Thevenet M, Flechet J, et al. Lipoprotein lipase and metabolic activities in incubated bovine adipose tissue explants: Effects of insulin, dexamethasone and fetal bovine serum[J]. Anim Sci, 1994, 72:184~191.
    [32]米杰,张孔来,刘善英,等.胎儿生长发育与成年期冠心病生物学危险因素的关系[J].中国医学科学院学报,1999,21(6):466~471.
    [33]Johns J N, Gercel-Taylor C and Taylor D D. Altered cord serum lipid levels associated with small for gestational age infants[J]. Obstetr Gynecol, 1999, 93: 527~531.
    [34]Vileisis R A and Oh W. Effect of increased substrate availability on fatty acid synthesis in the growth retarded fetus[J]. Met Clin Exp, 1983, 32: 90~94.
    [35]Mersouk H, Meghelli-Bouchenak M, el-Korso N, et al. Low birth weight at term impairs cord serum lipoprotein compositions and concentrations[J]. Eur Pediatr, 1998, 157: 321-326.
    [36]Lane R H, Flozak A S, Ogata E S, et al. Altered hepatic gene expression of enzymes involved in energy metabolism in the growth-retarded fetal rat[J]. Pedistr Res, 1996, 39: 390~394.
    [37]Lane R H, Kelly D E, Grnetzmacher E M, et al. Uteroplacental insufficiency alters hepatic fatty acid metabolizing enzymes in juvenile and adult rats[J]. Am J Physiol, 2001a, 280: R183~R190.
    [38]Vileisis R A, Fain J and Oh W. Fatty acid synthesis in rat fetuses with intrauterine growth retardation[J]. Met Clin Exp, 1982, 31: 217~222.
    [39]Newcomb M D, Harmon D L, Nelssen J L, et al. Effect of energy source fed to sows during late gestation on neonatal blood metabolite homeostasis, energy stores and composition[J]. J Anita Sci,1991, 69: 230~236.
    [40]虞泽鹏,乐国伟,施用晖,等.不同锌源对断奶小鼠生长及机体抗氧化能力的影响[J].畜牧与兽医,2005,37(4):1~3.
    [41]陈才勇,王恬(导师).新生仔猪脂类代谢和肝脏发育的动态变化及胎儿宫内发育迟缓的影响[D].南京:南京农业大学硕士学位论文,2003.
    [42]Kirkman H N, Galiano S, Gaetan G E The function of catalase-bound NADPH[J]. J Biol Chem, 1987, 262: 660~86.
    [43]Hu M, Mc Clements D J, Decker E A. Lipid oxidationin corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate[J]. J Agric Food Chem, 2003, 51(6):1696~1700.
    [44]许建平,马庭元,闻良珍.川芎嗪治疗胎儿宫内生长迟缓中氧自由基与血栓素B2、6一酮·前列腺素1a的相关性研究[J].中国中西医结合杂志,1998,18(5):265~268.
    [45]顾扬,王晓玲.妊娠期脂质过氧化作用与围产儿预后的关系[J].中国优生优育,2000,11(2):72~75。
    [46]Karowicz-Bilinska A, Suzin J and Sieroszewski E Evaluation of oxidative stress indices during treatment in pregnant women with intrauterine growth retardation[J]. Med Sci Monit, 2002, 8:CR211~216
    [47]林桂娟,王恬.乳源活性肽对对新生仔猪肝脏抗氧化功能的影响[J].家畜生态学报,2005,1:23~25.
    [48]Raineri I, Carlson E J, Gacayan R, et al. Strain-dependent high-level expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility[J]. Free Radic Biol Meal, 2001,31: 1018~1030.
    [49]Ranade V V. Drug delivery systems 5A.Oral drug delivery[J]. Clin Pharmacol, 1991, 31(1): 2.
    [50]Verschraagen M, Koks C H, Schellens J H, et al. P-glycoprotein system as a determinant of drug interactions: the case of digoxinverapamil[D]. Pharmacol Res, 1999, 40(4):301.
    [51]Hamilton G, Theyer G, Baumgartner G. Calcium antagonists as modulators of multi--drug resistant tumor cells[J]. Wien Med Wochensehr, 1993, 143(19~20): 526.
    [52]陈慰浙,余心如.胶体金—胰岛素探针的制备与鉴定[J].浙江医科大学学报,1995,24(3):109.
    [53]邹仕庚,王恬,郑春田,等.胰岛素和酶解配方乳对初生仔猪胃肠道生长发育影响的研究[J].动物营养学报,2001,213(1):19~24.
    [54]Mosinger B, Placer Z, Koldovsky O. Passage of insulin through the wall of the gastro-intestinal tract of the infant rat[J]. Nature, 1959, 184 (Suppl 16):1245~1246.
    [55]Bergeron J M, Rachubinski R, Searle Net al. Polypeptide hormone receptors in vivo: demonstration of insulin binding to adrenal gland and gastrointestinal epithelium bu quantitative radioautography[J]. J Histochem Cytochem,1980, 28: 824~835.
    [56]霍永久,王恬(导师).乳源活性肽对新生仔猪小肠发育影响及其作用机理的研究[D].南京:南京农业大学博士学位论文,2005.
    [57]Shen W H, Xu R J. Stability and distribution of orally administered epidermal growth factor in neonatal pigs[J]. Life Science, 1998, (63):809~820.
    [58]Wester T J, Fiortto M L et al. Feeding colostrum increases circulating insulin-like growth factor in newborn pigs independent of endogenous growth hormone secretion[J]. Journal of Animal Science,1998, (76): 3003~3009.
    [59]Gan L S, Hsyu P H, Pritchard et al. Mechanism of intestinal absorption of ranitidine and ondansetron: transport across Caco-2 cell monolayers[J]. Pharm Res, 1993, 10, 1722.
    [60]林桂娟,王恬(导师).酪蛋白酶解物和胰岛素对新生仔猪肝脏功能发育的影响[D].南京:南京农业大学硕士学位论文,2004.
    [61]丁晓春,冯星.生长激素及胰岛素样生长因子对新生儿生长发育调控的观察[J].中国实用儿科杂志,2003,7:402-404.
    [62]Xu R J, Wang T. Gastrointestinal absorption of insulin-like growth factor I in neonatal pigs[J]. J Pediatr Gastroenterol Nutr, 1996, 23: 430~437.
    [1]Pond W G, Maurer P R and Klint J. Fetal organ response to maternal protein deprivation during pregnancy in swine[J]. J Nutr, 1991, 121,504~509.
    [2]於朝梅,林桂娟,王恬,等.酪蛋白酶解产物对新生仔猪肝脏蛋白质代谢功能发育的影响[J].扬州大学学报(农业与生命科学版),2006,27(4):43~46.
    [3]乐国伟,施用晖,蔡学林,等.酶解酪蛋白与相应氨基酸混合物对雏鸡组织蛋白质合成的影响[J].畜牧兽医学报,1998,29(1):10~16.
    [4]Beaumont J E, Rees E D and Luck R G Insulin resistant in uremia: amino acid metabolism[J]. Nephron, 1977, 19(6): 322~327.
    [5]Rerat A, Nunes C S, Mendy F, et al. Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusions of a milk enzymic hydrolysate or of free amino acids[J]. J British Nutr, 1988, 60(1): 121~136.
    [6]杨华,傅衍,陈安国.猪血液生化指标与生产性能的关系[J].国外畜牧科技,2001,1:34.
    [7]Sens D A, Levine J H, Bush M G Stomulation of hepatic and renal omithine decarboxylase activity by selected amino acid[J]. Metabolism: Clinical & Experimental, 1983, 32(8): 787~792.
    [8]Snodgrass P J, Lin R C. Induction of urea cycle enzymes of rat liver by amino acid[J]. Nutr, 1981, 111(4): 586~601.
    [9]周顺伍.动物生物化学[M].北京:中国农业出版社,2000:151~155.
    [10]Newcomb M D, Harmon D L, Nelssen J L, et al. Effect of energy source fed to sows during late gestation on neonatal blood metabolite homeostasis, energy stores and composition[J]. J Anim Sci, 1991, 69(1):230~236.
    [11]Herpin P, Le Dividich J, Van Os M. Contribution of colostral fat to thermogenesis and glucose homoeostasis in the newborn pig[J]. J Dev Physiol, 1992, 17: 133~141.
    [12]Le Dividich J, Herpin P, Rosario-Ludovino R M. Utilization of colostral energy by the newborn pig[J]. J Anita Sci, 1994, 72:2082~2089.
    [13]Boyd G T, Kensinger R S. Metabolic precursors for milk synthesis[A]. In: Verstegen M W A(Ed). The lactation Sow[M]. Wageningen: Wageningen Press, 1998. 71‖95.
    [14]Cheng K M. Hepatic glycogen metabolism in normal developing and intrauterine growth-retarded rat fetuses[J]. Acta Obstetr Gynaecol Jap, 1988, 40: 781~788.
    [15]Bussey M E, Finley S, LaBarbera A, et al. Hypoglycemia in the newborn growth-retarded rat: delayed phosphoenolpyruvate carboxykinase induction despite increased glycogen availability[J]. Pediatr Res, 1985, 19:363~367.
    [16]Martin R J, Herbein J H, Sherritt G W, et al. Development of liver metabolism and serum hormones and metabolites in the perinatal pig[J]. Growth, 1980, 44(1): 1~11.
    [17]Kitts D D. Can J. Physiol Pharmacol[J], 1994, 72:423
    [18]吴金节,章孝荣,陶勇.β-酪啡肽对公山羊血清FSH、LH和T水平的影响[J].安徽农业大学学报,2001,28(2):152~155.
    [19]Kumar A, Oupta A, Malhotra V K, et al. Cord blood lipid levels in low birth weight newborns[J]. Indian Pediatr, 1989, 26: 571~574.
    [20]Roberts A, Nava S, Bocconi L, et al. Liver function tests and glucose and lipid metabolism in growth-restricted fetuses[J]. Obstet Gynecol, 1999, 94: 290~294.
    [21]米杰,张孔来,刘善英,等.胎儿生长发育与成年期冠心病生物学危险因素的关系[J].中国医学科学院学报,1999,21(6):466~471.
    [22]Lepine A J, Boyd R D, Welch J. Effect of colostrums intake on plasma glucose, non-esterified fatty acid and glucoregulatory hormone patterns in the neonatal pig[J]. Domest Anim Endocrinol, 1989, 6: 231~241.
    [23]Duee P H, Pegorier J P, Peter J, et al. Separate effects of fatty acid oxidation and glucagon on gluconeogenesis in isolated hepatocytes from newborn pigs[J]. Biol Neonate, 1985, 47: 77~83.
    [24]Alvarez M J, Diez A, Lopez B C, et al. Short-term modulation of lipogenesis by macronutrients in rainbow trout (Oncorhynchus mykiss) hepatocytes [J]. J Brit of Nutr, 2000, 84(5): 619~628.
    [25]Ueda H, Yokoyama A. Dietary protein sources modify the cholesterol-lowering effect of saponins in chicks [J]. J Poultry Sci, 2001, 38(3): 225~233.
    [26]Mersouk H, Meghelli-Bouchenak M, el-Korso N, et al. Low birth weight at term impairs cord serum lipoprotein compositions and concentrations[J]. Eur Pediatr, 1998, 157: 321~326.
    [27]Lane R H, Flozak A S, Ogata E S, et al. Altered hepatic gene expression of enzymes involved in energy metabolism in the growth-retarded fetal rat[J]. Pedistr Res, 1996, 39: 390~394.
    [28]Lane R H, Kelly D E, Gruetzmacher E M, et al. Uteroplacental insufficiency alters hepatic fatty acid metabolizing enzymes in juvenile and adult rats[J]. Am J Physiol, 2001a, 280: R183~R190.
    [29]Vileisis R A, Fain J and Oh W. Fatty acid synthesis in rat fetuses with intrauterine growth retardation[J]. Met Clin Exp, 1982, 31: 217~222.
    [30]Johns J N, Gercel-Taylor C and Taylor D D. Altered cord serum lipid levels associated with small for gestational age infants[J]. Obstetr Gynecol, 1999, 93: 527~531.
    [31]Johansson M B. Heterogeneity of serum lipoproteins during the fetal and neonatal development of the pig[J]. Int Biochem, 1984, 16: 1359~1366.
    [32]饶绍琴,李良忠,兰大丽,等.早期新生儿血糖、血脂、血清蛋白及酶学研究[J].四川省卫生管理干部学院院报,1997,16(2):71~73.
    [33]Elphick M C and Wilkinson A W. The effects of starvation and surgical injury on the plasma levels of glucose, free fatty acids, and neutral lipids in newborn babies suffering from various congenital anomalies[J]. Pediatr Res, 1981, 15: 313~318.
    [34]Chen H M, Muramoto, K, Yamauchi F, Nokihara K. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digest of a soybean peptide[J]. J Agric Food Chem, 1996, 44: 2621~2623.
    [35]Chen H M, Koji Muramoto, Yamauch F, et al. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein[J]. J Agric Food Chem, 1998, 46: 49~53.
    [36]张英,董绍华.氨基酸清除活性氧自由基作用的研究[J].科技通报,1997,312~315.
    [37]Rival S G, Boeriu C G, Wichers H J. Casein and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition[J]. J Agric Food Chem, 2001, 49(1): 295~302.
    [38]虞泽鹏,乐国伟,施用晖,等.不同锌源对断奶小鼠生长及机体抗氧化能力的影响[J].畜牧与兽医,2005,37(4):1~3.
    [39]林桂娟,王恬.乳源活性肽对对新生仔猪肝脏抗氧化功能的影响[J].家畜生态学报,2005,1:23~25.
    [40]Hu M, McClements D J and Decker E A. Lipid oxidation in corn oil-in-water emulations stabilized by casein, whey protein isolate, and soy protein isolate[J]. J Agric Food Chem, 2003, 51(6):1696~1700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700