用户名: 密码: 验证码:
MAPKs通路在兔骨关节炎软骨细胞表达MMP-1/-13中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     骨关节炎(osteoarthritiS,OA)是一种慢性、退变性关节疾病,是老年人最常见的关节疾病。OA以中老年患者多见,女性多于男性。60岁以上的人群中患病率可达50%,75岁的人群则达80%。随着老龄社会的到来,OA已成为导致老龄者病废的主要疾病之一,造成的社会负担和医疗费用在不断增加。目前研究认为,OA是由多种因素引起关节软骨退变而导致的关节疾病,其病因尚不明确,其发生与年龄、肥胖、炎症、创伤及遗传因素等有关。
     众多的细胞因子在OA的发病过程中有重要的作用,其中白介素-1(IL-1)和肿瘤坏死因子-α(TNF-α)最为重要。它们通过自分泌或旁分泌的形式作用于关节滑膜细胞和软骨细胞,产生金属蛋白酶(MMPs)、一氧化氮(NO)和前列腺素E2(PGE2)等,抑制蛋白多糖和Ⅱ型胶原的合成,促进细胞外基质(ECM)降解,最终引起关节炎。虽然细胞因子学说并不能完全解释OA的病理机制,但是关节软骨的退变离不开炎症因子的作用。相关的研究表明,IL-1β和TNF-α与相应的受体结合后,可经丝裂原活化蛋白激酶(mitogen-actirated proteinkinases,MAPKs)途径和核因子-κB(nuclear factor-κB,NF-κB)途径进行细胞内信号转导,最终引起MMPs增高、自由基生成、细胞凋亡等一系列过程,从而参与了OA的发病。然而目前对IL-1β和TNF-α通过MAPKs引起MMP-1/-13具体通路研究以及它们之间的异同并不清楚。
     本实验应用real-time PCR和western blot等技术,研究IL-1β和TNF-α作用于兔关节软骨细胞后MMP-1/-13的变化以及不同,进一步研究其对MAPKs各通路蛋白的影响,并应用MAPKs抑制剂和IL-1β联合作用,分别阻断各MAPKs通路,观察对MMP-1/-13的影响。通过实验明确各MAPKs通路在骨关节炎关节软骨细胞MMP-1/-13表达增高中的具体调节作用,为进一步研究在OA发病中软骨细胞MMP-1/-13增高的分子机制提供理论基础。
     第一部分IL-1β和TNF-α对兔关节软骨细胞表达MMP-1/-13和NO的影响
     目的体外培养兔关节软骨细胞,观察IL-1β和TNF-α对体外培养的兔关节软骨细胞MMP-1,-13和NO表达的影响,明确它们之间的不同。
     材料和方法取新西兰兔关节软骨,体外分离培养关节软骨细胞并鉴定。分别用IL-1β和TNF-α作用于关节软骨细胞不同时间(8h,16h,24h,36h)。以real-time PCR技术检测MMP-1/-13mRNA的变化。另外收取细胞培养上清液,用Western blot检测MMP-1/-13蛋白变化,并用Griess反应测定NO的变化。
     结果通过倒置显微镜下细胞形态学检查,甲苯胺蓝染色和Ⅱ型胶原染色,证明所培养细胞是软骨细胞。IL-1β能引起MMP-1/-13表达的增高,MMP-1随着时间延长持续增高,而MMP-13增高后维持在一高水平。TNF-α并不能引起它们的增高。IL-1β和TNF-α都可以引起NO的表达增高。
     结论兔关节软骨细胞可以被成功分离和培养。IL-1β能使得MMP-1和MMP-13表达增高,但两者增高趋势不同。TNF-α并不能引起兔关节软骨细胞MMP-1/-13的增高。IL-1β和TNF-α都可以促进NO的分泌增加。
     第二部分IL-1β对兔关节软骨细胞MAPKs信号通路蛋白表达的影响
     目的观察IL-1β对兔关节软骨细胞MAPKs各条通路蛋白表达的影响。
     材料和方法将体外培养的软骨细胞随机分为空白对照组和用IL-1β(10ng/ml)作用不同时间组(作用时间分别为15min,30min,45min,60min),用Western blot方法检测软骨细胞中ERK1/2、JNK1/2和p38通路总蛋白和活性蛋白(磷酸化蛋白)的表达。
     结果在IL-1β作用下,与对照组比较,1h内各MAPKs通路总蛋白没有明显变化;而各磷酸化蛋白在作用15min后表达明显增高,p-ERK1/2增高维持至60min,p-JNK1/2在15min增高至顶峰后,开始下降,至60min时回到正常水平;p-p38增高到30min后开始下降,至60min时回到正常水平。各组与对照组比较差异有统计学意义。
     结论IL-1β不能引起MAPKs通路总蛋白的变化,却能明显引起磷酸化蛋白的增高。
     第三部分MAPKs通路在兔骨关节炎软骨细胞表达MMP-1/-13和NO中的作用
     目的应用MAPKs各条通路阻滞剂抑制骨关节炎软骨细胞,观察对MMP-1/-13和NO的影响,明确其各条通路在MMP-1/-13表达中的作用。
     材料和方法体外培养兔关节软骨细胞,设置空白对照组和IL-1β(10ng/ml)作用组,各MAPK通路阻滞剂ERK,PD98059(20μM)、JNK,SP600125(25μM)、p38,SB230585(10μM)作用细胞30min后,加入IL-1β(10ng/ml)共同作用24h,应用real-time PCR检测MMP-1/-13mRNA的变化。收取细胞培养上清液,用Griess反应测定NO的变化。
     结果IL-1β作用后软骨细胞MMP-1/-13mRNA表达增高,加入阻滞剂后,MMP-1/-13表达明显下降。ERK通路阻滞剂PD98059抑制作用29.6%(MMP-1),39.2%(MMP-13);p38通路阻滞剂SB203580抑制作用47.7%(MMP-1),37.7%(MMP-13);JNK通路阻滞剂SP600125抑制作用为55.4%(MMP-1),52.2%(MMP-13)。P38通路抑制剂SB203580能明显抑制NO表达。
     结论在兔骨关节炎软骨细胞MMP-1,13表达增高中,MAPKs通路起了重要的作用。对于MMP-1表达,可能是JNK和p38通路起主要作用,而MMP-13表达,起主要作用的是ERK和JNK通路。P38通路参与了IL-1β诱导的NO表达。
Background
     Osteoarthritis is a chronic degenerative disease of joint and the most prevalent form of arthritis in ages.OA increase in prevalence with age and is more common in women than in men.Approximately 50 percent of persons over 60 years old and 80 percent of 75 years old persons suffer from this disease.With the coming of aging society,OA is becoming a major cause of disability in elderly people and the social burden and use of medical expense are expect to increase.OA is characterized by degeneration of articular cartilage and it's etiology is not clear. Multiple factors are involved in the pathogenesis of OA,including age, obesity,inflammation,trauma and genetic factor etc.
     Multiple cytokines are known to affect the progression of OA,in which Interleukin-1(IL-1) and tumor necrosis factor-α(TNF-α) are most important cytokines.IL-1βand TNF-αcan affect synovial fibroblasts and chondrocyte through an autocrine or paracrine manner,stimulate them to secret matrix metailoproteinases(MMPs),nitric oxide(NO),prostaglandin E2(PGE2),etc.They can inhibit progeoglycan and typeⅡcollagen synthesis,cleave different components of the cartilage Extracellular matrix(ECM),induce OA in end.Though inflammatory is not enough to elucidate the mechanism of OA pathogenesis,the major events in OA pathogenesis is correlated with inflammatory cytokines.According to the previous researches,IL-1βand TNF-αcombined with their receptor in cell membranes,then activated the signal transduction pathways that regulate gene expression including increased expressiong of MMPs,free radicals generation and chondrocyteapoptosis and so on.These pathways include mitogen-activated protein kinases(MAPKs) and nuclear factor-κB(NF-κB) signaling pathways.The mechanisms through which IL-1βand TNF-αincrease the expression of MMP-1/-13 and the difference between them have not been fully elucidated.
     In our study,Quantitative Polymerase Chain Reaction(Real-time PCR) and Western blot analysis are used to observe the different expression of MMP-1/-13 of IL-1βand TNF-αon rabbit articular chondrocytes, evaluate the MAPKs signal pathways protein expression in chondrocytes, then use inhibitors of MAPKs to block IL-1βinduced elevated expression of MMP-1/-13.We examined and compared the signaling pathways required to induce MMP-1 and MMP-13 production,it will provide a basis for further study of MMPs up-regulating mechanism in OA.
     PartⅠIL-1βand TNF-αon expression of MMP-1/-13 and NO in articular chondrocytes of rabbit
     Objectives Isolated and cultivated rabbit articular chondrocytes. To observe the effect of IL-1βand TNF-αon expression of MMP-1/-13 and NO in chondrocytes,compared the difference between them.
     Materials and methods Harvest articular cartilage from New Zealand rabbit knee joints to carry out rabbit chondrocytes culture and identification.IL-1β和TNF-αare used to treat chondrocytes in different time(8h,16h,24h,36).Real-time PCR were carried out to detect the expresion of MMP-1/-13mRNA in chondrocytes,collect culture supernatants to determine the expression of MMP-1/-13 protein by western blot and to detect the NO concentration with Griess method.
     Results Through cell morphologic and immunocytochemistry identification by inverted microscope,cultured chondrocytes were identified.IL-1βcan induce elevated expression of MMP-1/-13,MMP-1 production accumulated as the time prolonged in 36h,MMP-13 increased and remained in a high level in 36h.TNF-αcannot stimulate either of them production from rabbit chondrocytes.Both IL-1β和TNF-αresult in increasing amounts of NO concentration.
     Conclusions Isolated and cultured rabbit articular chondrocytes successfully.IL-1βcan induce production of MMP-1 and MMP-13,their increasing trend is different.TNF-αdid not induce either of them in chondrocytes.Both of IL-1βand TNF-αcan stimulate NO expression.
     PartⅡIL-1βand TNF-αon expression of MAPKs signal transduction protein in articular chondrocytes of rabbit
     Objective To observe the effect of IL-1βon expression of MAPks signal transduction protein in articular chondrocytes of rabbit.
     Materials and methods Rabbit articular chondrocytes were cultivated in vitro and randomly divided into the control group,IL-1βtreated group in 15min,30min,45min and 60min groups.Western blot was performed on whole cell extracts to detect respective expression of total ERK1/2, JNK1/2,p38 MAPKs and active form(phosphorylation of MAPK).
     Results As chondrocytes exposed to IL-1βfor 60mins,the levels of the respective total MAPKs remained constant.IL-1βtime-dependently stimulated the phosphorylation of ERK,p38 and JNK MAPKs in these cells in 15mins.The ERK phosphorylation was sustained up to 60min but phosphor-iNK was peaking at 15min and phosphor-p38 activation levels started declining by 30min,the amount of active p38 and JNK decreased by 60min.The differences among each group and the control groups had statistical significance.
     Conclusions IL-1βcannot induce the expression of total protein of MAPKs,but increased the phosphor-MAPKs in early time obviously.
     PartⅢEffect of MAPKs pathways on expression of MMP-1/-13 in articular chondrocytes of rabbit osteoarthritis
     Objective To observe the expression of MMP-1/-13 in articular chondrocytes of osteoarthritis after inhibition of IL-1β-induced MMP-1/-13 expression by MAPKs inhibitors,to evaluate the effect of different MAPKs signal pathways.
     Materials and methods Articular chondrocytes of rabbit were cultivated in vitro and randomly divided into negative control group,IL-1βtreated group,other groups were pretreated for 30min with each indicate MAPK inhibitor[ERK inhibitor PD98059(20μM);JNK inhibitor SP600125(μM);p38 inhibitor SB203580(μM)],then subsequently treated with rhIL-1β(10ng/ml) for 24h.Following each treatment,the expression of MMP-1/-13 mRNA was evaluated by real-time PCR.
     Results IL-1βcan increase the expression of MMP-1/-13 and MAPKs inhibitors inhibited IL-1β-induced MMP-1/-13 expression in chondrocytes. The ERK1/2 pathway inhibitor,PD98059,attained 29.6%(MMP-1) and 39.2% (MMP-13) inhibition of MMP-1/-13 induction in chondrocytes;P38 inhibitor, SB203580 caused 47.7%reduction of MMP-1 and and 37.7%(MMP-13);Inhibitor of JNK,SP600125 achieved 55.4%suppression of MMP-1 and 52.25 of MMP-13 in chondrocytes.P38 inhibitor SB203580 can inhibit the NO expression effectively.
     Conclusions These results suggest the involvement of MAPKs,in the IL-1 induction of MMPs in chondrocytes.MAPKs signal pathways play an important role in expression of articular chondrocytes of osteoarthritis. For MMP-1 expression,JNK and p38 maybe important,but to MMP-13 the important pathways are ERK and JNK.p38 is involved in the IL-1 induced NO production.
引文
1.中华医学会骨科分会.骨关节炎诊治指南(2007年版)[J].中华骨科杂志,2007,27(10):793-796.
    2.Meulenbelt I,Seymour AB,Nieuwland M,et al.Association of the interleukin-1 gene cluster with radiographic signs of osteoarthritis of the hip[J].Arthritis & Rheumatism,2004,50(4):1179-1186.
    3.Glodring MB,Goldring SR.Osteoarthritis[J].J Cell Physiol,2007,213(3):626 - 634,.
    4.任志伟,俞永林,姜建元.骨关节炎相关性细胞因子研究进展[J].国外医学·骨科学分册.2005,26(4):234-237.
    5.Goldring SR,Goldring MB.The role of cytokines in cartilage matrix degeneration in osteoarthritis[J].Clin Orthop Relat Res,2004,(427Suppl):S27-36.
    6.Massicotte F,Fernandes JC,Martel-Pelletier J,et al.Modulation of insulin-like growth factor 1 levels in human osteoarthritic subchondral bone osteoblasts[J].Bone,2006,38(3):333-341.
    7.Goldring MB:Osteoarthritis and cartilage:the role of cytokines[J].Curr Rheumatol Rep,2000,2(6):459-465.
    8.Loetscher H,Pan YC,Lahm HW,et al.Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor[J].Cell,1990,61(2):351-9.
    9.Kobayashi M,Squires GR,Mousa A,et al.Role of Interleukin-1 and Tumor Necrosis Factor in Matrix Degradation of Human Osteoarthritic Cartilage[J].Arthritis Rheum,2005,52(1):128-135.
    10.Benito MJ,Veale DJ,Fitzgerald O,et al.Synovial tissue inflammation in early and late osteoarthritis[J].Ann Rheum Dis,2005,64(9):1263-1267.
    11.Jacques C,GossetM,Berenbaum F,et al.The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation[J].Vitam Horm,2006,74:371-403.
    12. LinksAida Y, Maeno M, Suzuki N, et al. The effect of IL-1 β on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes[J]. Life Sci. 2005, 77(25) :3210 - 3221.
    
    13. Lopez-Armada MJ, Carames B, Martin MA, et al. Mitochondrial activity is modulated by TNFalpha and IL21beta in normal human chondrocyte cells[J]. Osteoarthritis Cartilage, 2006,14(10): 1011-1022.
    
    14. Pelletier JP, Jovanovic D, Fernandes JC, et al. Reduced progression of experimental osteoarthritis in vivo by selective inhibition of inducible nitric oxide synthase[J]. Arthritis Rheum, 1998, 41 (7): 1275-1286.
    
    15. Goldring MB, Suen LF, Yamin R, et al. Regulation of collagen gene expression by prostaglandins and interleukin-1[beta] in cultured chondrocytes and fibroblasts[J].Am J Ther, 1996, 3(1):9 - 16.
    
    16. Clancy RM, Amin AR, Abramson SB. The role of nitric oxide in inflammation and immunity[J]. Arthritis Rheum, 1998,41 (7) :1141-1151.
    
    17. CaoM, Westerhausen-Larson A, Niyibizi C, et al. Nitric oxide inhibits the synthesis of type-II collagen without altering Col2Al mRNA abundance: Prolyl hydroxylase as a possible target[J]. Biochem J, 1997, 324(Ptl):305-310.
    
    18. Pelletier JP, Caron JP, Evans C, et al. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy [J]. Arthritis Rheum. 1997, 40(6): 1012-1019.
    
    19. Kobayashi M, squireS GR, Mousa A, et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage[J]. Arthritis Rheum, 2005, 52(1): 128-135.
    
    20. Seguin CA, Bemier SM. TNFalpha suppresses link protein and type II collagen expression in chondrocytes: Role of MEK1/2 and NF-kappaB signaling pathways [J]. J Cell Physiol. 2003, 197(3): 356-369
    
    21. Page-Thomas DP, King B, Dingle JT. In vivo studies of cartilage regeneration after damage induced by catabolin/interleukin-1 [J]. Ann Rheum Dis. 1991, 50(2): 75-80.
    
    22. Van den, Berg WB. Anti-cytokine therapy in chronic destructive arthritis[J]. Arthritis Res, 2001,3(1):18-26.
    
    23. Murphy G, Knauper V, Atkinson S, et al. Matrix etalloproteinases in arthritic disease[J]. Arthritis Res 2002,4(suppl 3):S39-S49.
    
    24. Shlopov BV, Lie WR, Mainardi CL,et al. Osteoarthritic lesions: involvement of three different collagenases[J]. Arthritis Rheum, 1997,40(11): 2065-7.
    
    25. Tchetina EV, Sguires G, Poole AR, et al. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol, 2005, 32(5): 876-886.
    
    26. Tchetverikov I, Lohmander LS, Verzijl N, et al. MMP protein and activity levels in synovial fluid from patients with joint injury, inflammatory arthritis, and osteoarthritis[J]. Ann Rheum Dis, 2005, 64 (5): 694-698.
    
    27. Dahlberg L, Billinghurst RT. Selective enhancement of collagen of col lggenase-mediated cleavage of resident type collagen in cultured osteoarthritis cartilage and arrest with a synthetic inhibitor that spares collagenase-1 (matrixmetallop roteinase-1 ) [ J ]. Arthritis Rheum, 2000, 43 (3): 673-682.
    
    28. Knauper V, Lopez-Otin C, Smith B, et al. Biochemical characterization of human collagenase~3[J]. J Biol Chem, 1996, 271(3):1544 - 1550.
    
    29. Malemud CJ, Islam N, Haqqi TM, et al. Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies[J]. Cells Tissues Organs, 2003,174(1-2):34 - 48.
    
    30. Bluteau G, Conrozier C, Mathieu C, et al. Matrix metalloproteinase-1,-3, -13 and aggrecanase-1 and -2 are differentially expressed in experimental osteoarthritis[J]. Biochimica et biophysica acta, 2001,1526(2): 147-48.
    
    31. Kunisch E, Gandesiri M, Fuhrmann R, et al. Predominant activation of MAP kinases and pro-destructive/pro-inflammatory features by TNF a in early-passage synovial fibroblasts via TNF receptor-1: failure of p38 inhibition to suppress matrix metal loproteinase-1 in rheumatoid arthritis[J]. Ann Rheum Dis, 2007, 66(8):1043-51.
    32.Domagala F,Martin G,Bogdanowicz P,et al.Inhibition of interleukin-1beta-induced activation of MEK/ERK pathway and DNA binding of NF-kappaB and AP-1:potential mechanism for Diacerein effects in osteoarthritis.Biorheology.2006;43(3-4):577-87.
    33.Geng Y,Valbracht J,Lotz M.Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF-α in human articular chondrocytes[J].J Clin Invest,1996,98(10):2425 - 2430.
    34.Li WQ,Sylvester J,Liacini A,et al.Induction of matrix metalloproteinase-13 gene expression by TNF- α is mediated by MAP kinases,AP-1,and NF- κB transcription factors in articular chondrocytes[J].Exp Cell Res,2003,288(1):208-217.
    35.Davidson RK,Waters JG.Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage[J].Arthritis Res Ther.2006,8(4):R124.
    36.亓建洪,赵庆华,刘延菊等。白细胞介素-1 β对人软骨细胞基质金属蛋白酶-13mRNA表达的作用[J]。中华风湿病学杂志,2005,9(3):138-141。
    1.Glodring MB,Goldring SR.Osteoarthritis[J].J Cell Physiol,2007,213(3):626 - 634.
    2.Goldring SR,Goldring MB.The role of cytokines in cartilage matrix degeneration in osteoarthritis[J].Clin Orthop Relat Res,2004,(427Suppl):S27-36.
    3.Kobayashi M,Squires GR,Mousa A,et al.Role of Interleukin-1 and Tumor Necrosis Factor in Matrix Degradation of Human Osteoarthritic Cartilage.Arthritis Rheum,2005,52(1):128-135.
    4.Aida Y,Maeno M,Suzuki N,et al.The effect of IL-1beta on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes[J].Life Sci,2005,77(25):3210-21.
    5.Tetlow LC,Adlam DJ,Woolley DE.Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage.Arthritis Rheum 2001,44(3):585- 594.
    6.Clancy RM,Amin AR,Abramson SB.The role of nitric oxide in inflammation and immunity.Arthritis Rheum,1998,41(7):1141 - 1151.
    7.Terry DE,Chopra RK,Ovenden J,et al.Differential use of Alcian blue and toluidine blue dyes for the quantification and isolation of anionic glycol-conjugates from cell cultures:application to proteoglycans and a high-molecular-weight glycoprotein synthesized by articular chondrocytes[J].Anal Biochem,2000,285(2):211-219.
    8.Bentz BG,Hammer ND,Radosevich JA,et al.Nitrosative stress induces DNA strand breaks but not caspase mediated apoptosis in a lung cancer cell line.J Carcinog.2004,3(1):16-20.
    9.司徒镇强,吴军正.细胞培养[M].西安:世界图书出版公司,1996,109.
    10.张志光,郑卫平,苏凯,等.兔关节软骨细胞的分离培养和形态学特征[J].中山大学报(医学科学版),2004,25(1):63-66.
    11.Ishizaki Y,Julia FB,Martin CR.Autocrine signals enable chondrocytes to survive in culture [J]. J Cell Biolol, 1994, 26(4): 1069-73.
    
    12. Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology[J], Mol Cell Endocrinol, 2004, 228(1-2): 79-102.
    
    13. Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations[J]. J Orthop Res, 2005, 23(2): 425-32.
    
    14. Westacott CI, Sharif M. Cytokines in osteoarthritis: mediators or markers of joint destruction? Semin Arthritis Rheum, 1996,25(4) :254-272.
    
    15. Borden P, Solymar D, Sucharczuk A, et al. Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes[J]. J Biol Chem, 1996;271(38):23577 - 81
    
    16. Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators:prostaglandins and nitric oxide[J]. Clin Orthop Relat Res, 2004, 427(Suppl):S37-46.
    
    17. Kobayashi M, Squires GR, Mousa A, et al. Role of Interleukin-1 and Tumor Necrosis Factor alpha in matrix degradation of human osteoarthritic cartilage[J]. Arhritis Rheum, 2005, 52(1):128-35.
    
    18. Wang HJ, Yu CL, Kishi H, et al. Suppression of experimental osteoarthritis by adenovirus-mediated double gene transfer [J]. Chin Med J(Engl),2006,119(16): 1365-73.
    
    19. Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage. Arthritis Rheum, 2001, 44(3):585 - 594.
    
    20. Dahlberg L, Billinghurst RT. Selective enhancement of collagen of col lggenase-mediated cleavage of resident type collagen in cultured osteoarthritis cartilage and arrest with a synthetic inhibitor that spares collagenase-1 (matrixmetallop roteinase-1 ) [J]. Arthritis Rheum, 2000, 43 (3): 673-82.
    
    21. Page-Thomas DP, King B, Dingle JT. In vivo studies of cartilage regeneration after damage induced by catabolin/interleukin-1 [J]. Ann Rheum Dis. 1991, 50(2):75-80.
    
    22. Van den Berg WB. Anti-cytokine therapy in chronic destructive arthritis[J]. Arthritis Res, 2001, 3(1): 18-26.
    
    23. Thomas B, Thirion S, Humbert L, et al. Differentiation regulates IL—1β induced cyclo-oxygenase-2 in human articular chondrocytes: Role of p38 mitogen-activated protein kinase [J]. Biochem J. 2002, 362(Part 2): 367-373.
    
    24. Fukui N, Zhu Y, Maloney WJ, et al. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes [J]. J Bone Joint Surg Am. 2003, 85 (suppl 3): 59- 66.
    
    25. Kaiser M, Haag J, Soder S, et al. Bone morphogenetic protein and transforming growth factor beta inhibitory Smads 6 and 7 are expressed in human adult normal and osteoarthritic cartilage in vivo and are differentially regulated in vitro by interleukin-lbeta [J]. Arthritis Rheum. 2004, 50(1): 3535-3540.
    
    26. Sumer EU, SchallerS, Sondergaard BC, et al. Application of biomarkers in the clinical development of new drugs for chondroprotection in destructive joint diseases: a review[J]. Biomarkers , 2006,11 (6): 485-506.
    
    27. Milner JM, Rowan AD, Cawston TE, et al. Metalloproteinase and inhibitor expression profiling of resorbing cartilage reveals pro-collagenase activation as a critical step for collagenolysis[J]. Arthritis Res Ther, 2006,8(5) :R142.
    
    28. Salminen HJ, Saamanen AM, Vankemmelbeke MN, et al. Differential expression patterns of matrix metal loproteinases and their inhibitors during development of osteoarthritis in a transgenic mouse model [J]. Ann Rheum Dis, 2002, 61(7):591-97.
    
    29. Blanco FJ, Ochs RL, Schwarz H, et al. Chondrocyte apoptosis induced by nitric oxide[J]. Am J Pathol, 1995,146(1) :75-85.
    
    30. Lotz M. The role of nitric oxide in articular cartilage damage[J]. Rheum Dis Clin North Am, 1999, 25(2):269-82.
    
    31. Amin AR, Di Cesare PE, Vyas P, et al. The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase[J]. J Exp Med, 1995,182(6): 2097-102.
    32.Karan A,Karan MA,Vural P,et al.Synovial fluid nitric oxide levels in patients with knee osteoarthritis[J].Clin Rheumatol,2003,22(6):397-399.
    33.Pelletier JP,Caron JP,Evans C,et al.In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy[J].Arthritis Rheum.1997,40(6):1012-1019.
    34.van de Loo FA,Arntz OJ,van Enckevort FH,van Lent PL,van den Berg WB:Reduced cartilage proteoglycan loss during zymosaninduced gonarthritis in NOS2-deficient mice and in antiinterleukin-1-treated wild-type mice with unabated joint inflammation[J].Arthritis Rheum,1998,41(4):634 - 646.
    35.吴宏斌,杜靖远,胡勇,等.兔前交叉韧带切断骨关节炎模型中MMP-1,MMP-13及TIMP-1的mRNA表达研究[J].中华风湿病学杂志,2002,6(3):169-173.
    36.Liacini A,Sylvester J,Li WQ,et al.Induction of matrix metalloproteinase-13 gene expression by TNF- α is mediated by MAP kinases,AP-1,and NF- κB transcription factors in articular chondrocytes[j].Experimental Cell Research,2003,28(1):208-217.
    37.Bluteau G,Conrozier C,Mathieu C,et al.Matrix metalloproteinase-1,-3,-13 and aggrecanase-1 and-2 are differentially expressed in experimental osteoarthritis[J].Biochem Biophys Acta,2001,1526(2):147-48.
    1.Goldring SR,Goldring MB.The role of cytokines in cartilage matrix degeneration in osteoarthritis[J].Clin Orthop Relat Res,2004,(427Suppl):S27-36.
    2.Fernandes JC,Martd-Pelletier J,Pdleuer JP.The role of cytokines in osteoarthritis pathophysiology[J].Biorheology,2002,39(1-2):237-46.
    3.Henrotin YE,DeGroove DD,Labasse AH,et al.Effects of exogenous IL-1,TNF- α,IL-6,IL-8 and LIF on cytokine production by human articular chondrocytes[J].Osteoarthritis Cartilage,1996,4(3):163 - 173.
    4.Shi J,Schmitt-Talbot1 E,DiMattiaDA,et al.The differential effects of IL-1 and TNF- α on proinflammatory cytokine and matrix metalloproteinase expression in human chondrosarcoma cells[J].Inflamm Res,2004,53(8):377- 389.
    5.van den Berg WB,Joosten L,Kollias G,et al.Role of tumour necrosis factor α in experimental arthritis:separate activity of interleukin 1 β in chronicity and cartilage destruction[5].Ann Rheum Dis.1999,58(Suppl 1):I40- I48.
    6.Bluteau G,Conrozier C,Mathieu C,et al.Matrix metalloproteinase-1,-3,-13 and aggrecanase-1 and-2 are differentially expressed in experimental osteoarthritis[J].Biochem Biophys Acta,2001,1526(2):147-48.
    7.Tetlow LC,Adlam DJ,Woolley DE.Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage[J].Arthritis Rheum 2001,44(3):585- 594.
    8.Lark MW,Bayne EK,Flanagan J,et al.Aggrecan degradation in human articular cartilage,Evidence for both matrix metalloproteinase and aggrecanase activity in normal,osteoarthritic,and rheumatoid joints. [J]. J Clin Invest 1997,100(1):93-106.
    
    9. Maleraud CJ, Islam N, Haqqi TM. Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies [J]. Cells Tissues Organs, 2003,174(1-2): 34-48.
    
    10. Saklatvala J, Dean J, Finch A: Protein kinase cascades in intracellular signaling by interleukin-I and tumour necrosis factor[J]. Biochem Soc Symp, 1999,64:63-77.
    
    11. Badger AM, Cook MN, Lark MW, et al: SB203580 inhibits, p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes[J]. J Immunol, 1998,161(1):467-73.
    
    12. Masuko-Hongo K, Berenbaum F, Humbert L, et al: Upregulation of microsomal prostaglandin E synthase 1 by interleukin-1 in human chondrocytes. Critical roles of ERK-1/2 and p38 signaling pathways[J]. Arthritis Rheum, 2004, 50(9):2829-38.
    
    13. Ridley SH, Sarsfield SJ, Lee JC, et al: Actions of IL-1 are selectively controlled by p38 mitogen-activated protein kinase: Regulation of prostaglandin H synthase-2, metalloproteinases, and IL-6 at different levels[J]. J Immunol, 1997,158(7):3165-73.
    
    14. Badger AM, Griswold DE, Kapadia R, et al: Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis[J]. Arthritis Rheum, 2000 43(1): 175-83.
    
    15. Mengshol JA, Vincenti MP, Brinckerhoff CE. IL-1 induces collagenase-l(MMP-13) promoter activity in stably ransfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways[J]. Nucleic Acids Res, 2001, 29(21):4361-4372.
    
    16. Kim HA,Cho ML, Choi HY, et al. The Catabolic Pathway Mediated by Toll-like Receptors in Human Osteoarthritic Chondrocytes[J]. Arthritis Rheum,2006, 54(7):2152 - 2163.
    
    17. Glodring MB, Goldring SR. Osteoarthritis[J]. J Cell Physiol,2007, 213(3) :626-634.
    
    18. Yoshihara Y, Nakamura H, Obata K, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis[J]. Ann Rheum Dis, 2000:59(6) :455-461.
    
    19. Borden P, Solymar D, Sucharczuk A, Lindman B, Cannon P,Heller RA. Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes[J]. J Biol Chem, 1996, 271 (38): 23577-81.
    
    20. Kobayashi M, Squires GR, Mousa A, et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage [J]. Arthritis Rheum, 2005, 52(1): 128-35.
    
    21. LeGrand A, Fermor B, Fink C, Pisetky DS, Weinberg JB, Vail TP et al. Interleukin-1, tumor necrosis factor alpha, and interleukin-17 synergistically up-regulate nitric oxide and prostaglandin E2 production in explants of human osteoarthritic knee menisci [J]. Arthritis Rheum, 2001, 44(9): 2078-83.
    
    
    22. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinases signal transduction pathyways activated by stress and inflammation[J]. Physiol Rev,2001,81(2):807-869.
    
    23. Vincentil MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors[J]. Arthritis Res. 2002,4(3):157 - 164.
    
    24. Kracht M, Saklatvala J. Transcriptional and post-transcriptional control of gene expression in inflammation[J]. Cytokine, 2002, 20(3) :91-106.
    
    25. Ahmad R, Sylvester J, Zafarullah M. MyD88, IRAKI and TRAF6 knockdown in human chondrocytes inhibits interleukin-1-induced matrix metalloproteinase-13 gene expression and promoter activity by impairing MAP kinase activation[J]. Cell Signal, 2007,19(12) :2549-57.
    
    26. Legendre F, Bogdanowicz P, Boumediene K, et al. Role of interleukin 6 (IL-6)/IL~6R-induced signal tranducers and activators of transcription and mitogen-activated protein kinase/extracellular[J]. J Rheumatol. 2005, 32(7):1307-16.
    
    27. Sylvester J, Liacini A, Li WQ, et al. Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes[J]. Cell Signal. 2004,16(4):469-76.
    
    28. Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, Manning AM, Firestein GS. c-Jun N-terminal kinase is required for met-alloproteinase expression and joint destruction in inflammatory arthritis[J].J Clin Invest. 2001,108(1) :73-81.
    
    29. Pelletier JP, Fernandes JC, Brunet J, et al. In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis is associated with a reduction in the development of structural changes[J]. Arthritis Rheum. 2003,48(6): 1582-93.
    
    30. Badger AM, Bradbeer JN, Votta B, et al. Pharmacological profile of SB203580 a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function[J], J Pharmacol Exp Ther.1996,279(3):1453 - 1461.
    
    31. Barchowsky A, Frleta D, Vincenti MP. Integration of the NF-kappaB and mitogen-activated protein kinase/AP-1 pathways at the collagenase-1 promoter: divergence of IL-1 and TNF-dependent signal transduction in rabbit primary synovial fibroblasts[J]. Cytokine. 2000,12(10): 1469-1479.
    
    32. Han Z, Boyle DL, Aupperle KR, et al. Firestein GS. Jun N-terminal kinase in rheumatoid arthritis[J]. J Pharmacol Exp Ther. 1999,291(1): 124-130.
    
    33. Liacini A, Sylvester J, Li WQ, Zafarullah M: Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF- k B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes[J]. Matrix Biol, 2002,21 (3):251 - 262.
    
    34. Geng Y, Valbracht J, Lotz M. Selective Activation of the Mitogen-activated Protein Kinase Subgroups c-Jun NH2 Terminal Kinase and p38 by IL~1 and TNF in Human Articular Chondrocytes[J]. J Clin Invest, 1996, 98(10) :2425 - 2430.
    1.中华医学会骨科分会,骨关节炎诊治指南(2007年版)[J].中华骨科杂志,2007,27(10):793-796.
    2.Hunter DJ,Felson DT.Osteoarthritis[J].BMJ,2006,332(7542):639-642.
    3.Goldring SR,Goldring MB.The role of cytokines in cartilage matrix degeneration in osteoarthritis[J].Clin Orthop Relat Res,2004,(427Suppl):S27-36.
    4.Fernandes JC,Martel-Pelletier J,Pelletier JP.The role of cytokines in osteoarthritis pathophysiology[J].Biorheology,2002,39(122):237-246.
    5.Henrotin YE,DeGroove DD,LabasseAH,et al.Effects of exogenous IL-1,TNF-α,IL-6,IL-8 and LIF on cytokine production by human articular chondrocytes[J].Osteoarthritis Cartilage,1996,4(3):163 - 173.
    6.Shi J,Schmitt-Talbot1 E,DiMattia DA,et al.The differential effects of IL-1 and TNF- α on proinflammatory cytokine and matrix metalloproteinase expression in human chondrosarcoma cells[J]. Inflamm Res, 2004, 53(8):377 - 389.
    
    7. Fosang AJ, Last K, Knauper V, et al. Degradation of cartilage aggrecan by collagenase-3(MMP-13)[J]. FEBS Lett, 1996, 380(1-2): 17-20.
    
    8. Saklatvala J. Inflammatory signaling in cartilage: MAPK and NF-kappaB pathways in chondrocytes and the use of inhibitors for research into pathogenesis and therapy of osteoarthritis[J]. Curr Drug Targets. 2007,8(2): 305-13.
    
    9. Hashimoto S, Takahashi K, Amiel D, et al. Chondrocyte apoptosis and nitric oxide production during experimentally induced osteoarthritis[J]. Arthritis Rheum, 1998, 41 (7): 1266-74.
    
    10. Kim SJ, JuJW, Oh CD, et al. ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3 and differentiation status[J]. J Biol Chem, 2002, 277(2): 1332-1339.
    
    11.孙铁铮,吕厚山.骨关节炎的诊治与研究进展[J].继续医学教育.2005,19 (3):47—56.
    
    12. Fosang AJ, Last K, Stanton H, et al. Generation and novel distribution of matrix metalloproteinase-derived aggrecan fragments in porcine cartilage explants[J]. J Biol Chem 2000, 275(42):33027-33037.
    
    13. Billinghurst RC, Danhlberg L, Ionescu M, et al. Enhanced cleaveage of type II collagen by collagenases in osteoarthritic articular cartilage[J]. J Clin Invest.1997,99(7):1534-1545.
    
    14. Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage[J]. Arthritis Rheum 2001, 44(3):585 - 594.
    
    15. Salminen HJ, Saamanen AM, Vankemmelbeke MN, et al. Differential expression patterns of matrix metalloproteinases and their inhibitors during development of osteoarthritis in a transgenic mouse model [J]. Ann Rheum Dis, 2002, 61(7):591-97.
    
    16. Oligino T, Ghibizzani S, Wolfe D, et al. Intra-articular delivery of a herpes simples virus IL-1Ra gene vector reduces in-inflammation in a rabbit model of arthritis[J]. Gene Ther, 1999, 6(10):1713-1720.
    
    17. Fernandes J, Tardif G, Martel-Pelletier J. et al. In Vivo Transfer of Interleukin-1 Receptor Antagonist Gene in Osteoarthritic Rabbit Knee Joints Prevention of Osteoarthritis Progression[J]. AJP, 1999,154(4): 1159-1169.
    
    18. Berenbaum F. Signaling transduction: target in osteoarthritis[J]. Curr Opin Rheumatol. 2004,16(5):616 - 622.
    
    19. Saklatvala J. Inflammatory signaling in cartilage: MAPK and NF-kappaB pathways in chondrocytes and the use of inhibitors for research into pathogenesis and therapy ofosteoarthritis[J]. Curr Drug Targets. 2007, 8(2): 305-13.
    
    20. Menghshol JA, Vincenti MP, Coon CI, et al. Interleukin-1 induction of collagenase-3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3[J]. Arthritis Rheum 2000,43(4):801 -811.
    
    21. Pillinger MH, Rosenthal PB, Tolani SN, et al. Cyclooxygenase-2-derived E prostaglandins down-regulate matrix metalloproteinase-1 expression in fibroblast-like synoviocytes via inhibition of extracellular signal-regulated kinase activation[J]. J Immunol 2003,171(11):6080 - 6089.
    
    22. Wada Y, Shimada K, Sugimoto K, et al. Novel p38 mitogen-activated protein kinase inhibitor R-130823 protects cartilage by down-regulating matrix metalloproteinase-1, -13 and prostaglandin E2 production in human chondrocytes[J]. Int Immunopharmacol, 2006, 6(2):144-55.
    
    23. Fan Z, Yang H, Bau B, et al. Role of mitogen-activated protein kinases and NFkappaB on IL-1beta-induced effects on collagen type II, MMP-1 and 13 mRNA expression in normal articular human chondrocytes[J]. Rheumatol Int, 2006, 26(10):900-3.
    
    24. Badger AM, RoshakAK, Cook MN, et al. Differential effects of SB242235, a selective p38 mitogen-activated protein kinase inhibitor, on IL-1 treated bovine and human cartilage/chondrocyte cultures[J]. Osteoarthritis Cartilage, 2000,8(6):434 - 443.
    
    25. Liacini A, Sylvester J, Li WQ, et al. Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes[J]. Exp Cell Res 2003,288:208-217.
    
    26. Blanco FJ, Ochs RL, Schwarz H, et al. Chondrocyte apoptosis induced by nitric oxide[J]. Am J Pathol, 1995, 146(1):75 - 85.
    
    27. Sasaki K, Hattori T, Fujisawa T, et al. Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes[J]. J Biochem, 1998,123(3):431-439.
    
    28. Otero M, Lago R, Lago F, et al. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-l[J]. Arthritis Res Ther, 2005,7(3):R581-R591.
    
    29. Da Silva J, Pierrat B, Mary JL, Lesslauer W. Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes[J]. J Biol Chem 1997, 272(45): 28373-28380.
    
    30. Badger AM, Cook MN, Lark MW, et al. SB203580 inhibits p38 mitogen activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes[J]. J Immunol 1998, 161(1):467-473.
    
    31. Clancy R, Rediske J, Koehne C, et al. Activation of stress-activated protein kinase in osteoarthritic cartilage: evidence for nitric oxide dependence[J]. Osteoarthritis Cartilage, 2001, 9(4):294 - 299.
    
    32. Boileau C, Martel - Pelletier J, Moldovan F, et al. The in situ up-regulation of chondrocyte interleukin-1-converting enzyme and interleukin-18 levels in experimental osteoarthritis is mediated by nitric oxide[J]. Arthritis Rheum, 2002, 46(10):2637 - 2647.
    
    33. zhang X, Yu C, Xu S, et al. Direct chitosan-mediated gene delivery to the rabbit knee joints in vitro and in vivo[J]. Biochem Biophys Res Commun.2006, 341(1):202-8.
    
    34. Evans CH, Gouze E, Gouze JN, et al. Gene therapeutic approaches-transfer in vivo[J].Adv Drug Deliv Rev, 2006, 58(2): 243-258.
    
    35. Kafienah W, Al-Fayez F, Hollander AP, et al. Inhibition of cartilage degradation: a combined tissue engineering and gene therapy approach[J]. Arthritis Rheum. 2003, 48(3):709-18.
    
    36. Hamada T, Arima N, Shindo M, et al. Suppression of adjuvant arthritis of rats by a novel matrix metalloproteinase-inhibitor[J]. Br J Pharmacol. 2000,131(8):1513-20.
    
    37. Ishikawa T, Nishigaki F, Miyata S, et al. Prevention of progressive joint destruction in adjuvant induced arthritis in rats by a novel matrix metalloproteinase inhibitor, FR217840[J]. Eur J Pharmacol. 2005, 508(1-3): 239-47.
    
    38. Pargellis C, Regan J. Inhibitors of p38 mitogen-activated protein kinase for the treatment of rheumatoid arthritis [J]. Curr Opin Invest Drugs 2003, 4(5): 566-571.
    
    39. Badger AM, Griswold DE, Kapadia R, et al. Disease-modifying activity of SB242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis[J].Arthritis Rheum, 2000, 43(1): 175-183.
    
    40. Han Z, Boyle DL, Chang L, et al. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis[J]. J Clin Invest, 2001,108(1):73 - 81.
    
    41. Vincenti MP, Brinckerhoff CE. The potential of signal transduction inhibitors for the treatment of arthritis: is it all just JNK? J Clin Invest 2001, 108(2):181 - 183.
    
    42. Pelletier JP, Fernandes JC, Brunet J, et al. : In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis is associated with a reduction in the development of structural changes[J]. Arthritis Rheum, 2003, 48(6) :1582-1593.
    
    43. Boileau C, Martel-Pelletier J, Fahmi H, et al. The peroxisome proliferator-activated receptor γ agonist pioglitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis [J]. Arthritis Rheum, 2007, 56(7) :2288-2298.
    
    44. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases[J]. N Engl J Med 1997, 336(15): 1066-1071.
    45. Kim SJ, Chun JS. Protein kinase C alpha and zeta regulate nitric oxide induced NF-kappa B activation that mediates cyclooxygenase-2 expression and apoptosis but not dedifferentiation in articular chondrocytes[J]. Biochem Biophys Res Commun, 2003, 303(1):206 - 211.
    
    46. Shalom - Barak T, Quach J, Lotz M. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-kappaB[J]. J Biol Chem, 1998, 273(42):27467-27473.
    
    47. Tsutsumi R, Ito H, Hiramitsu T, et al. Celecoxib inhibits production of MMP and NO via down-regulation of NF-kappaB and JNK in a PGE2 independent manner in human articular chondrocytes[J]. Rheumatol Int, 2007, [ahead of print].
    1. Iannone F, Lapadula G. The pathophysiology of osteoarthritis[J].Aging Clin Exp Res.2003, 15(5):364-72.
    
    2. Fernandes JC, Martd-Pelletier J, Pdleuer JP. The role of cytokines in osteoarthritis pathophysiology[J]. Biorheology, 2002, 39(1-2):237-46.
    
    3. Lotz M. Cytokines in cartilage injury and repair [J]. Clin Orthop Relat Res,2001,(391 Suppl):S108-15.
    
    4. Malemud CJ, Islam N, Haqql TM. Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies[J]. Cells Tissues Organs, 2003,174(1-2):34-48.
    
    5. Fell HB, Jubb RW. The effect of synovial tissue on the breakdown of articular cartilage in organ culture[J]. Arthritis Rheum, 1977,20(7): 1359-71.
    
    6. Schwab W , Schulze-Tanzil G, Mobasheri A, et al. Interleukin-1beta-induced expression of the urokinase-type plasminogen activator receptor and its co-localization with MMPs in human articular chondrocytes[J]. Histol Histopathol, 2004,19(1) :105-12.
    
    7. Kobayashi M, Squires GR, Mousa A, et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage[J]. Arthritis Rheum, 2005, 52(1): 128-35.
    
    8. Seguin CA, Bernier SM. TNFalpha suppresses link protein and type II collagen expression in chondrocytes: Role of MEK1/2 and NF-kappaB signaling pathways[J]. J Cell Physiol, 2003 , 197(3): 356-69.
    
    9. Page Thomas DP, King B, Stephens T, et al. In vivo studies of cartilage regeneration after damage induced by catabolin/interleukin-l[J]. Ann Rheum Dis, 1991, 50(2):75-80.
    
    10. Thomas B, Thirion S, Humbert L, et al. Differentiation regulates interleukin-lbeta-induced cyclo-oxygenase-2 in human articular chondrocytes: role of p38 mitogen-activated protein kinase[J]. Biochem J, 2002, 362(Pt 2):367-73.
    11. Fukui N, Zhu Y, Maloney WJ, et al. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL—1 and TNF-alpha in normal and osteoarthritic chondrocytes[J]. J Bone Joint Surg Am, 2003,85-A(Suppl 3): 59-66.
    
    12. Kaiser M, Haag J, Soder S, et al. Bone morphogenetic protein and transforming growth factor beta inhibitory Smads 6 and 7 are expressed in human adult normal and osteoarthritic cartilage in vivo and are differentially regulated in vitro by interleukin-lbeta[J]. Arthritis Rheum, 2004, 50(11):3535-40.
    
    13. Mazzetti I, Magagnoli G, Paoletti S, et al. A role for chemokines in the induction of chondrocyte phenotype modulation[J]. Arthritis Rheum, 2004, 50(1):112-22.
    
    14. Attur MG, Dave M, Akamatsu M, et al. Osteoarthritis or osteoarthrosis: the definition of inflammation becomes a semantic issue in the genomic era of molecular medicine [J]. Osteoarthritis Cartilage, 2002,10(1): 1-4.
    
    15. Hsu YH, Hsieh MS, Liang YC, et al. Production of the chemokine eotaxin-1 in osteoarthritis and its role in cartilage degradation[J]. J Cell Biochem. 2004,93(5):929-39.
    
    16. Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors[J]. Arthritis Res. 2002, 4(3):157-64.
    
    17. Clancy RM, Gomez PF, Abramson SB. Nitric oxide sustains nuclear factor kappaB activation in cytokine-stimulated chondrocytes[J]. Osteoarthritis Cartilage. 2004,12(7):552-8.
    
    18. Cai L, Yin JP, Starovasnik MA, et al. Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo [J]. .Cytokine, 2001,16 (1): 10-21.
    
    19. Martel-Pelletier J, Mineau F, Jovanovic D, et al. Mitogen-activated protein kinase and nuclear factor kappaB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated proten kinase (MAPKAPK)[J]. Arthritis Rheum. 1999, 42(11): 2399-409.
    
    20. Rooney T, Murphy E, BenitoM, et al. Synovial tissue interleukin-18 expression and the response to treatment in patients with inflammatory arthritis[J]. Ann Rheum Dis.2004,63(11):1393-8.
    
    21. Sanchez C, Deberg MA, Burton S, et al. Differential regulation of chondrocyte metabolism by oncostatin M and interleukin-6[J]. Osteoarthritis Cartilage. 2004,12(10):801-10.
    
    22. Iwanaga H, Matsumoto T, Enomoto H, et al. Enhanced expression of insulin-like growth factor-binding proteins in human osteoarthritic cartilage detected by immunohistochemistry and in situ hybridization[J]. Osteoarthritis Cartilage. 2005,13 (5): 439-48.
    
    23. Guicheux J, Palmer G, Relic B, et al. Primary human articular chondrocytes, dedifferentiated chondrocytes, and synoviocytes exhibit differential responsiveness to interleukin-4: correlation with the expression pattern of the common receptor gamma chain[J]. J Cell Physiol.2002,192(1):93-101.
    
    24. Bobacz K, Gruber R, Soleiman A, et al. Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro[J]. Arthritis Rheum. 2003,48(9):2501-8.
    
    25. Evans CH, Gouze JN, Gouze E, et al. Osteoarthritis gene therapy[J]. Gene Ther. 2004,11(4):379-89.
    
    26. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer[J].J Clin Invest. 2001,107(2):135-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700