用户名: 密码: 验证码:
基于NY-ESO-1_(157-165)表位的治疗性疫苗的分子设计与免疫学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞毒性T淋巴细胞(cytotoxic T lymphocytes,CTLs)在机体控制肿瘤中起重要作用,T细胞识别的是由抗原提呈细胞(antigen presenting cell, APC)表面MHC分子提呈给T细胞抗原受体(T cell antigen receptor, TCR)的一段多肽,即表位(epitope),基于CTL表位的治疗性肿瘤疫苗已经成为肿瘤综合生物治疗的重要策略之一。迄今为止已从60多种人肿瘤抗原中鉴定出170多个CTL表位,其中基于部分表位的肽疫苗已进入临床试验。临床试验结果表明:一方面,肽疫苗对于机体相对安全,而且易于大规模制备、纯化和质控,显示出诱人的发展空间;但另一方面,基于天然表位(wild type, WT)的肽疫苗免疫原性弱,很难在体内诱导出有效的抗瘤CTL反应。这是因为肿瘤在体内诱导了免疫系统对肿瘤抗原的免疫耐受,表现出免疫系统对肿瘤抗原的特异性免疫低应答或无应答。肿瘤抗原引起的免疫耐受有多种机制,总体可以分为中枢耐受和外周耐受两大类,这两类耐受所包含的机制也不尽相同。肿瘤抗原引起的免疫,既有中枢耐受也有外周耐受,若要在肿瘤免疫治疗中获得理想的疗效,就需要打破由肿瘤抗原引起的免疫耐受。打破免疫耐受最有效的方法就是通过改变致耐受抗原的分子结构,将这些经过改造的抗原给予机体,可特异性终止已建立的耐受。因此,如何对肿瘤抗原进行设计和改造以打破机体的免疫耐受,成了肿瘤治疗性肽疫苗研制的关键问题。
     在众多增强CTL表位肽免疫原性的策略中,对天然表位肽进行分子改造和修饰被认为是最有前景的方法之一。通过对天然表位肽进行单个氨基酸替换、多肽末端化学修饰或加入非天然氨基酸等可有效提高其免疫原性,诱导更强的CTL活性。诱发有效细胞免疫应答的基础就是T细胞与APC间必须形成稳定的TCR/肽-MHC三分子复合物(TCR/ peptide-MHC complex,简写为TCR /pMHC)结构,CTL表位肽通过两端的残基与MHC分子表面凹槽形成稳定的pMHC复合物,这些残基被称为表位锚着残基(anchor residues),表位与TCR结合的位点即为非锚着残基。肿瘤抗原的表位改造可以通过改善其与MHC的结合和稳定性达到增强肽免疫原性的目的,或改造TCR结合位点以改变TCR与pMHC结合能力,以增强T细胞的活化,从而克服T细胞耐受,达到使肿瘤消褪的目的。已有研究证实了基于锚着残基改造的候选肽在体内外的实验中均可以一定程度地增强肿瘤特异性CTL的增殖,但这类激动肽(agonist peptide)在肿瘤免疫治疗中都不能产生明显的抑瘤效果。
     本课题研究中,我们运用分子模拟技术对肿瘤抗原NY-ESO-1的HLA-A*0201限制性T细胞天然表位(wild type, WT)NY-ESO-1157-165进行了非锚着残基的替换。首先借助蛋白质结构数据库(protein database, PDB)数据库中WT特异性TCR-pMHC三元体晶体1G4-9C-A2 (PBD ID:2bnr),在Insight II工作站上建立1G4-9C-A2结构模型,借助分子动力学模拟、分子柔性对接等技术分析TCR分子与pMHC结合特征,在此基础上,通过计算机丙氨酸突变扫描方法分析天然表位中与TCR分子相互作用的关键位点。结合计算机丙氨酸突变扫描结果和TCR/pMHC相互作用的结构特征,我们以该表位的第四位和第五位为研究对象,对这两个位点进行了天然氨基酸的随机替换,借助结合自由能等计算方法筛选获得系列侯选APL。然后合成多肽通过体外和体内免疫学效应检测进一步筛选可以上调免疫应答的候选APL。体外免疫学效应主要包括肽-MHC分子亲和力检测,APL诱导的特异性CTL分泌细胞因子IFN-γ水平的检测,以及特异性CTL细胞杀伤实验,通过上述实验,我们筛选出了可以上调免疫应答并能和天然表位发生交叉反应的候选APL,该候选APL(NY-ESO-1157-165W5F,简写为W5F)是将天然肽第五位的色氨酸(tryptophan, Trp)替换为苯丙氨酸(Phenylalanine, Phe)。由于此天然肽NY-ESO-1157-165羧基端的半胱氨酸(cysteine, Cys)残基易被氧化,使短肽聚合形成二聚体,影响其免疫性。有研究将其羧基端的半胱氨酸替换为缬氨酸(valine, Val)后可以有效的增强其稳定性,并可以显著提高其免疫原性,在此设计基础之上,结合我们筛选的基于TCR结合位点改造的APL,我们尝试了同时将锚着残基和TCR结合位点进行替换,我们将第五位的色氨酸替换为苯丙氨酸,将第九位的半胱氨酸替换为缬氨酸,基于此,我们得到了一个新的APL:NY-ESO-1157-1655F9V(简写为5F9V)。我们以NY-ESO-1157-1659V(简写为9V)肽作为对照,分析了该APL与HLA-A2分子的亲和力,并结合临床病例,筛选了HLA-A2+NY-ESO-1+的食管癌病人,分离患者外周血单个核淋巴细胞(Peripheral Blood Mononuclear Cell, PBMC),分别用9V和5F9V刺激病人PBMC诱导特异性CTL反应,随后检测了APL诱导的特异性CTL分泌细胞因子IFN-γ的水平以及CFSE标记特异性CTL增殖情况,并结合pentamer技术检测诱导出的特异性CTL频率。结果显示,在PBMC可检测到特异性CTL的患者中,其PBMC分别经5F9V和9V肽刺激活化后,5F9V诱导的特异性CTL的频率和分泌细胞因子水平显著高于9V诱导的特异性CTL,其增殖能力也要强于9V肽诱导的CTL,对pentamer标记后的荧光强度进行分析,结果初步提示5F9V比9V诱导的特异性CTL具有更高比例的高亲合力CTL。随后,从特异性CLT库(repertoire)的角度探讨了激动肽5F9V提高天然表位免疫原性的机制,我们利用TCR Vβ各家族特异性抗体和TCR CDR3 spectratyping技术比较分析病人诱导前、天然肽与APL诱导后的特异性CTL库,研究发现APL诱导前后其特异性CTL库谱发生了偏移(bias),APL与天然肽诱导的特异性CTL库之间也发生了偏移,由此可以推测,5F9V增强的免疫学效应可能是诱发了一群新的具有高亲和力并能与WT肽发生交叉反应的特异性CTL。
     本研究将反向疫苗学技术与计算机辅助疫苗设计技术相结合,建立了基于分子模拟、分子动力学和结合自由能计算的计算机辅助疫苗设计技术平台,大大的提高了疫苗开发的效率。我们应用该平台对肿瘤抗原表位NY-ESO-1157-165进行了非锚着残基的替换,该疫苗打破了传统的锚着残基改造策略,将肿瘤治疗性多肽疫苗的设计思路由肽-MHC分子相互作用拓展至TCR与pMHC分子复合物的相互作用,我们首次将锚着残基和非锚着残基同时进行了替换。通过In silico分析结合实验研究发现,与天然表位相比,5F9V能形成更稳定的肽-MHC复合物,以及更稳定的TCR/pMHC相互作用。在体内和体外免疫学效应研究中,从细胞因子分泌、细胞杀伤功能及细胞增殖能力等多方面证实了5F9V肽能诱发比天然肽更强的CTL反应。最后通过对激动肽5F9V和WT肽特异性CTL的TCR库谱进行了检测,从分子水平深入分析,证实了APL引起交叉识别及打破免疫耐受的机制可能与其活化了一群新的具有高亲和力的特异性CTL有关,为肿瘤治疗性多肽疫苗设计提供了新的理论基础和技术路线。
Induction of antigen-specific cytotoxic T lymphocytes (CTL) by therapeutic peptide vaccination is a promising approach for cancer immunotherapy. The specific cellular immune response starts from recognition by TCR of an immunogenic epitope presented in the context of the class I major histocompatibility complex (MHC-I) molecules. Thus, modulation of CTL response by manipulating T cell epitopes is a particularly attractive approach for cancer immunotherapy, because peptides from cancer cells are usually poorly immunogenic and often induce immune-tolerance. Vaccination with altered peptide ligands (APLs), which can be generated by appropriate amino acid substitutions at certain T cell epitopes, has become an attractive strategy to enhance specific T cell responses to tumors. This strategy can be achieved by two general approaches: 1) by increasing the affinity between the epitope and the MHC through substitution in the MHC anchor residues; or 2) by enhancing the interactions between the TCR and peptide-MHC (pMHC) complex through alteration at the TCR contact residues.
     Although APLs with altered MHC contact residues can efficiently activate tumor-specific T cells in vitro, vaccination with this kind of APLs has generally failed to elicit an effective anti-tumor CTL response that can lead to clinical tumor regression. APLs with increased pMHC complex affinity for the TCR molecule, which are designed by modifications at the TCR contact sites rather than the MHC anchor residues, have unexpected potency to induce stronger T cell responses and may even covert cross-reactive T cells from a tolerance state. According to the structure of the TCR/pMHC complex established by X-ray crystallography, recognition of an epitope by T cells is controlled by a few exposed TCR contact residues within the peptide. Several recent investigations have found that subtle changes at the TCR contact positions can dramatically alter the downstream signaling events that can lead to effects that can be in a range from induction of T cell anergy to enhancement of T cell functions, indicating that the analogue with substitution at TCR contact sites may provide considerable benefit in super-agonists or antagonist vaccine development. To date, there is no convenient method to guide the modification of TCR contact residues of T cell epitopes to change the affinity between pMHC and the TCR. In the past, only a few APLs were identified by methods such as eluting naturally occurring mutant peptides from tumor cells, high-throughput screening of synthetic combinatorial peptides libraries, and random phage displayed peptides libraries; however, these methods are costly and time consuming. It is thus necessary to develop a novel rational approach to guide such substitution.
     There have been many successful studies on evaluating the design of APLs for increased MHC binding affinity through the calculation of pMHC interaction energies using in silico techniques. We reasoned that calculation of the interaction energy between TCR and pMHC using computer-aided methods could be applied in the design of APLs for enhanced TCR engagement. However, the prediction of the interaction energy between TCR and pMHC is much more difficult than calculating pMHC interaction energies. Only a few theoretical approaches such as the free energy perturbation (FEP) method, regression method, and the statistical mechanics method have been developed to predict protein-protein binding affinity. In a FEP method-based study performed by Michielin and Karplus, the computed free energy difference in the binding of a particular TCR (A6) with a HLA-A2 restricted wild-type peptide (Tax) and a mutant peptide (Tax P6A) was shown in good agreement with the experimental value. Although this study has shed new light on the application of a molecular simulation approach to guide peptide modifications for alteration of TCR-ligand binding, the large computational burden made the application of the FEP method only applicable to established facility. In a recent study, Lai et al. applied a statistical mechanics method termed PMFScore, which is based on the potential of mean force (PMF), to calculate protein-protein interaction energies precisely and efficiently and here we aimed to test the feasibility of the application of PMF-based in silico approach in order to develop a more applicable approach for peptide modifications.
     The HLA-A*0201 restricted T cell epitope NY-ESO-1157–165 has been indicated as a promising candidate for T cell-based tumor vaccination strategies, however, several studies have revealed its defects in stability and bioavailability and its frequent failure to elicit robust anti-tumor CTL response. It has been demonstrated that a cysteine-to-valine substitution at position 9 in the NY-ESO-1 157–165 epitope can increase its immunogenicity due to markedly enhanced peptide binding to the MHC peptide binding grove. Although this MHC anchor residue substitution was also shown to possess slightly improved interactions with TCR than analogue peptides, the study did not specifically focus on the TCR contact residues.
     In this study, we generated an agonist analogue NY-ESO-1157–1655F9V with a tryptophane to phenylalanine substitution at TCR contact residue of NY-ESO-1157–165 based on a cysteine-to-valine substitution at position 9. This designed APL can elicit a stronger CTL response with cross-reactivity with the WT peptide. In conclusion, our findings demonstrated that the in silico method based on PMFScore could predict and guide T cell epitope modification of the TCR contact residues based on the structural information of TCR/pMHC triple complex. Our results provide important insights into the enhanced immunogenicity of epitopes through substitution at the TCR contact sites and revealed a novel molecular simulation approach for rational design of agonist peptides. It will be of interest to further examine the immunological effects of the 5F9V agonist in order to make this peptide to be applicable for antitumor vaccine design.
引文
1. Rudolph MG, Stanfield RL, Wilson IA. 2006. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24: 419-66
    2. Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. 1996. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384: 134-41
    3. Zeh HJ, 3rd, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC. 1999. High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 162: 989-94
    4. Dutoit V, Rubio-Godoy V, Dietrich PY, Quiqueres AL, Schnuriger V, Rimoldi D, Lienard D, Speiser D, Guillaume P, Batard P, Cerottini JC, Romero P, Valmori D. 2001. Heterogeneous T-cell response to MAGE-A10(254-262): high avidity-specific cytolytic T lymphocytes show superior antitumor activity. Cancer Res 61: 5850-6
    5. Fahmy TM, Bieler JG, Edidin M, Schneck JP. 2001. Increased TCR avidity after T cellactivation: a mechanism for sensing low-density antigen. Immunity 14: 135-43
    6. Gronski MA, Boulter JM, Moskophidis D, Nguyen LT, Holmberg K, Elford AR, Deenick EK, Kim HO, Penninger JM, Odermatt B, Gallimore A, Gascoigne NR, Ohashi PS. 2004. TCR affinity and negative regulation limit autoimmunity. Nat Med 10: 1234-9
    7. Lord GM, Lechler RI, George AJ. 1999. A kinetic differentiation model for the action of altered TCR ligands. Immunol Today 20: 33-9
    8. Smith-Garvin JE, Koretzky GA, Jordan MS. 2009. T cell activation. Annu Rev Immunol 27: 591-619
    9. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. 2008. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu Rev Immunol 26: 171-203
    10. Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J. 1997. Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 57: 4570-7
    11. Tourdot S, Scardino A, Saloustrou E, Gross DA, Pascolo S, Cordopatis P, Lemonnier FA, Kosmatopoulos K. 2000. A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol 30: 3411-21
    12. Lustgarten J, Dominguez AL, Pinilla C. 2006. Identification of cross-reactive peptides using combinatorial libraries circumvents tolerance against Her-2/neu-immunodominant epitope. J Immunol 176: 1796-805
    13. Chen K, Aowad AF, Adelstein SJ, Kassis AI. 2007. Molecular-docking-guided design, synthesis, and biologic evaluation of radioiodinated quinazolinone prodrugs. J Med Chem 50: 663-73
    14. Alonso H, Bliznyuk AA, Gready JE. 2006. Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26: 531-68
    15. Chau PL, Dean PM. 1992. Automated site-directed drug design: searches of the Cambridge Structural Database for bond lengths in molecular fragments to be used for automated structure assembly. J Comput Aided Mol Des 6: 397-406
    16. Peterson RW, Dutton PL, Wand AJ. 2004. Improved side-chain prediction accuracyusing an ab initio potential energy function and a very large rotamer library. Protein Sci 13: 735-51
    17. Stewart-Jones GB, McMichael AJ, Bell JI, Stuart DI, Jones EY. 2003. A structural basis for immunodominant human T cell receptor recognition. Nat Immunol 4: 657-63
    18. McMahan RH, McWilliams JA, Jordan KR, Dow SW, Wilson DB, Slansky JE. 2006. Relating TCR-peptide-MHC affinity to immunogenicity for the design of tumor vaccines. J Clin Invest 116: 2543-51
    19. Michielin O, Karplus M. 2002. Binding free energy differences in a TCR-peptide-MHC complex induced by a peptide mutation: a simulation analysis. J Mol Biol 324: 547-69
    20. Jiang L, Gao Y, Mao F, Liu Z, Lai L. 2002. Potential of mean force for protein-protein interaction studies. Proteins 46: 190-6
    21. Fogolari F, Brigo A, Molinari H. 2003. Protocol for MM/PBSA molecular dynamics simulations of proteins. Biophys J 85: 159-66
    22. Laitinen T, Kankare JA, Perakyla M. 2004. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody. Proteins 55: 34-43
    23. Chen JL, Stewart-Jones G, Bossi G, Lissin NM, Wooldridge L, Choi EM, Held G, Dunbar PR, Esnouf RM, Sami M, Boulter JM, Rizkallah P, Renner C, Sewell A, van der Merwe PA, Jakobsen BK, Griffiths G, Jones EY, Cerundolo V. 2005. Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J Exp Med 201: 1243-55
    24. Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ. 1997. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A 94: 1914-8
    25. Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jager D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A. 2000. Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci U S A 97: 4760-5
    26. Dionne SO, Myers CE, Smith MH, Lake DF. 2004. Her-2/ neu altered peptideligand-induced CTL responses: implications for peptides with increased HLA affinity and T-cell-receptor interaction. Cancer Immunol Immunother 53: 307-14
    27. Tang Y, Lin Z, Ni B, Wei J, Han J, Wang H, Wu Y. 2007. An altered peptide ligand for naive cytotoxic T lymphocyte epitope of TRP-2(180-188) enhanced immunogenicity. Cancer Immunol Immunother 56: 319-29
    28. Slansky JE, Rattis FM, Boyd LF, Fahmy T, Jaffee EM, Schneck JP, Margulies DH, Pardoll DM. 2000. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 13: 529-38
    29. Rivoltini L, Squarcina P, Loftus DJ, Castelli C, Tarsini P, Mazzocchi A, Rini F, Viggiano V, Belli F, Parmiani G. 1999. A superagonist variant of peptide MART1/Melan A27-35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res 59: 301-6
    30. Kortemme T, Kim DE, Baker D. 2004. Computational alanine scanning of protein-protein interfaces. Sci STKE 2004: pl2
    31. Tangri S, Ishioka GY, Huang X, Sidney J, Southwood S, Fikes J, Sette A. 2001. Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J Exp Med 194: 833-46
    1. Smith-Garvin JE, Koretzky GA, Jordan MS. 2009. T cell activation. Annu Rev Immunol 27: 591-619
    2. Ding YH, Baker BM, Garboczi DN, Biddison WE, Wiley DC. 1999. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11: 45-56
    3. Rudolph MG, Stanfield RL, Wilson IA. 2006. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24: 419-66
    4. Degano M, Garcia KC, Apostolopoulos V, Rudolph MG, Teyton L, Wilson IA. 2000. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12: 251-61
    5. Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. 1996. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384: 134-41
    6. Quah BJ, Warren HS, Parish CR. 2007. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2: 2049-56
    7. Brunner KT, Mauel J, Cerottini JC, Chapuis B. 1968. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14: 181-96
    8. Chen A, Wang L, Zhang J, Zou L, Jia Z, Zhou W, Wan Y, Wu Y. 2005. H-2 Kd-restricted hepatitis B virus-derived epitope whose specific CD8+ T lymphocytes can produce gamma interferon without cytotoxicity. J Virol 79: 5568-76
    9. Tourdot S, Scardino A, Saloustrou E, Gross DA, Pascolo S, Cordopatis P, Lemonnier FA, Kosmatopoulos K. 2000. A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification ofcryptic tumor epitopes. Eur J Immunol 30: 3411-21
    10. Zhao Y, Zheng Z, Robbins PF, Khong HT, Rosenberg SA, Morgan RA. 2005. Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J Immunol 174: 4415-23
    11. Wargo JA, Robbins PF, Li Y, Zhao Y, El-Gamil M, Caragacianu D, Zheng Z, Hong JA, Downey S, Schrump DS, Rosenberg SA, Morgan RA. 2009. Recognition of NY-ESO-1+ tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression. Cancer Immunol Immunother 58: 383-94
    12. Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ. 1997. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A 94: 1914-8
    13. Chen YT, Boyer AD, Viars CS, Tsang S, Old LJ, Arden KC. 1997. Genomic cloning and localization of CTAG, a gene encoding an autoimmunogenic cancer-testis antigen NY-ESO-1, to human chromosome Xq28. Cytogenet Cell Genet 79: 237-40
    14. Liu S, Yu Y, Zhang M, Wang W, Cao X. 2001. The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells. J Immunol 166: 5407-15
    15. Vertuani S, Sette A, Sidney J, Southwood S, Fikes J, Keogh E, Lindencrona JA, Ishioka G, Levitskaya J, Kiessling R. 2004. Improved immunogenicity of an immunodominant epitope of the HER-2/neu protooncogene by alterations of MHC contact residues. J Immunol 172: 3501-8
    16. Boissonnas A, Bonduelle O, Antzack A, Lone YC, Gache C, Debre P, Autran B, Combadiere B. 2002. In vivo priming of HIV-specific CTLs determines selective cross-reactive immune responses against poorly immunogenic HIV-natural variants. J Immunol 169: 3694-9
    17. Cerundolo V, Alexander J, Anderson K, Lamb C, Cresswell P, McMichael A, Gotch F, Townsend A. 1990. Presentation of viral antigen controlled by a gene in the major histocompatibility complex. Nature 345: 449-52
    18. van der Burg SH, Visseren MJ, Brandt RM, Kast WM, Melief CJ. 1996.Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J Immunol 156: 3308-14
    19. Chen JL, Dunbar PR, Gileadi U, Jager E, Gnjatic S, Nagata Y, Stockert E, Panicali DL, Chen YT, Knuth A, Old LJ, Cerundolo V. 2000. Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol 165: 948-55
    20. Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, Neumann A, Rieckenberg J, Chen YT, Ritter G, Hoffman E, Arand M, Old LJ, Knuth A. 2000. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci U S A 97: 12198-203
    21. Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jager D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A. 2000. Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci U S A 97: 4760-5
    22. Romero P, Dutoit V, Rubio-Godoy V, Lienard D, Speiser D, Guillaume P, Servis K, Rimoldi D, Cerottini JC, Valmori D. 2001. CD8+ T-cell response to NY-ESO-1: relative antigenicity and in vitro immunogenicity of natural and analogue sequences. Clin Cancer Res 7: 766s-72s
    23. Dustin LB, Rice CM. 2007. Flying under the radar: the immunobiology of hepatitis C. Annu Rev Immunol 25: 71-99
    24. Leen AM, Rooney CM, Foster AE. 2007. Improving T cell therapy for cancer. Annu Rev Immunol 25: 243-65
    25. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. 2006. Human T cell responses against melanoma. Annu Rev Immunol 24: 175-208
    26. Han B, Serra P, Amrani A, Yamanouchi J, Maree AF, Edelstein-Keshet L, Santamaria P. 2005. Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat Med 11: 645-52
    27. Mallone R, Martinuzzi E, Blancou P, Novelli G, Afonso G, Dolz M, Bruno G, Chaillous L, Chatenoud L, Bach JM, van Endert P. 2007. CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 56: 613-21
    28. Lyons AB. 2000. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243: 147-54
    29. Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Holtl L, Thurnher M. 2004. Monitoring of CD4+ and CD8+ T-cell responses after dendritic cell-based immunotherapy using CFSE dye dilution analysis. J Clin Immunol 24: 653-63
    30. Last'ovicka J, Budinsky V, Spisek R, Bartunkova J. 2009. Assessment of lymphocyte proliferation: CFSE kills dividing cells and modulates expression of activation markers. Cell Immunol 256: 79-85
    1. Yu Z, Liu X, McCarty TM, Diamond DJ, Ellenhorn JD. 1997. The use of transgenic mice to generate high affinity p53 specific cytolytic T cells. J Surg Res 69: 337-43
    2. Shirai M, Arichi T, Nishioka M, Nomura T, Ikeda K, Kawanishi K, Engelhard VH, Feinstone SM, Berzofsky JA. 1995. CTL responses of HLA-A2.1-transgenic mice specific for hepatitis C viral peptides predict epitopes for CTL of humans carrying HLA-A2.1. J Immunol 154: 2733-42
    3. Wei WZ, Ratner S, Shibuya T, Yoo G, Jani A. 2001. Foreign antigenic peptides delivered to the tumor as targets of cytotoxic T cells. J Immunol Methods 258: 141-50
    4. Alexander J, Sidney J, Southwood S, Ruppert J, Oseroff C, Maewal A, Snoke K, Serra HM, Kubo RT, Sette A, et al. 1994. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1: 751-61
    5. Le AX, Bernhard EJ, Holterman MJ, Strub S, Parham P, Lacy E, Engelhard VH. 1989. Cytotoxic T cell responses in HLA-A2.1 transgenic mice. Recognition of HLA alloantigens and utilization of HLA-A2.1 as a restriction element. J Immunol 142: 1366-71
    6. Bousso P, Robey E. 2003. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4: 579-85
    1. Risitano AM, Kook H, Zeng W, Chen G, Young NS, Maciejewski JP. 2002. Oligoclonal and polyclonal CD4 and CD8 lymphocytes in aplastic anemia and paroxysmal nocturnal hemoglobinuria measured by V beta CDR3 spectratyping and flow cytometry. Blood 100: 178-83
    2. Stewart-Jones GB, McMichael AJ, Bell JI, Stuart DI, Jones EY. 2003. A structural basis for immunodominant human T cell receptor recognition. Nat Immunol 4: 657-63
    3. Kasprowicz V, Isa A, Jeffery K, Broliden K, Tolfvenstam T, Klenerman P, Bowness P. 2006. A highly restricted T-cell receptor dominates the CD8+ T-cell response to parvovirus B19 infection in HLA-A*2402-positive individuals. J Virol 80: 6697-701
    4. Jee Y, Matsumoto Y. 2002. Identification of autoimmune encephalomyelitis-associated common CDR3 sequences by CDR3 spectratyping and subsequent DNA hybridization. J Neuroimmunol 126: 37-49
    5. Quinn A, McInerney M, Huffman D, McInerney B, Mayo S, Haskins K, Sercarz E. 2006. T cells to a dominant epitope of GAD65 express a public CDR3 motif. Int Immunol 18: 967-79
    6. Le Gal FA, Ayyoub M, Dutoit V, Widmer V, Jager E, Cerottini JC, Dietrich PY, Valmori D. 2005. Distinct structural TCR repertoires in naturally occurring versus vaccine-induced CD8+ T-cell responses to the tumor-specific antigen NY-ESO-1. JImmunother 28: 252-7
    7. Derre L, Bruyninx M, Baumgaertner P, Ferber M, Schmid D, Leimgruber A, Zoete V, Romero P, Michielin O, Speiser DE, Rufer N. 2008. Distinct sets of alphabeta TCRs confer similar recognition of tumor antigen NY-ESO-1157-165 by interacting with its central Met/Trp residues. Proc Natl Acad Sci U S A 105: 15010-5
    8. Leen AM, Rooney CM, Foster AE. 2007. Improving T cell therapy for cancer. Annu Rev Immunol 25: 243-65
    9. Rudolph MG, Stanfield RL, Wilson IA. 2006. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24: 419-66
    10. Turner SJ, Doherty PC, McCluskey J, Rossjohn J. 2006. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 6: 883-94
    11. Fukui Y, Oono T, Cabaniols JP, Nakao K, Hirokawa K, Inayoshi A, Sanui T, Kanellopoulos J, Iwata E, Noda M, Katsuki M, Kourilsky P, Sasazuki T. 2000. Diversity of T cell repertoire shaped by a single peptide ligand is critically affected by its amino acid residue at a T cell receptor contact. Proc Natl Acad Sci U S A 97: 13760-5
    12. Kalergis AM, Ono T, Wang F, DiLorenzo TP, Honda S, Nathenson SG. 1999. Single amino acid replacements in an antigenic peptide are sufficient to alter the TCR V beta repertoire of the responding CD8+ cytotoxic lymphocyte population. J Immunol 162: 7263-70
    13. Collette A, Cazenave PA, Pied S, Six A. 2003. New methods and software tools for high throughput CDR3 spectratyping. Application to T lymphocyte repertoire modifications during experimental malaria. J Immunol Methods 278: 105-16
    14. Verfuerth S, Peggs K, Vyas P, Barnett L, O'Reilly RJ, Mackinnon S. 2000. Longitudinal monitoring of immune reconstitution by CDR3 size spectratyping after T-cell-depleted allogeneic bone marrow transplant and the effect of donor lymphocyte infusions on T-cell repertoire. Blood 95: 3990-5
    15. Wada T, Schurman SH, Garabedian EK, Yachie A, Candotti F. 2005. Analysis of T-cell repertoire diversity in Wiskott-Aldrich syndrome. Blood 106: 3895-7
    16. Gorski J, Yassai M, Zhu X, Kissela B, Kissella B, Keever C, Flomenberg N. 1994. Circulating T cell repertoire complexity in normal individuals and bone marrowrecipients analyzed by CDR3 size spectratyping. Correlation with immune status. J Immunol 152: 5109-19
    17. Kim G, Tanuma N, Kojima T, Kohyama K, Suzuki Y, Kawazoe Y, Matsumoto Y. 1998. CDR3 size spectratyping and sequencing of spectratype-derived TCR of spinal cord T cells in autoimmune encephalomyelitis. J Immunol 160: 509-13
    18. Hou Y, Kavanagh B, Fong L. 2008. Distinct CD8+ T cell repertoires primed with agonist and native peptides derived from a tumor-associated antigen. J Immunol 180: 1526-34
    19. Slansky JE, Rattis FM, Boyd LF, Fahmy T, Jaffee EM, Schneck JP, Margulies DH, Pardoll DM. 2000. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 13: 529-38
    1. Baumgaertner P, Rufer N, Devevre E, et al. Ex vivo detectable human CD8 T-cell responses to cancer-testis antigens. Cancer Res 2006 Feb 15;66(4):1912-6.
    2. Lustgarten J, Dominguez AL, Pinilla C. Identification of cross-reactive peptides using combinatorial libraries circumvents tolerance against Her-2/neu-immunodominant epitope. J Immunol 2006 Feb 1;176(3):1796-805.
    3. Chen JL, Dunbar PR, Gileadi U, et al. Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol 2000 Jul 15;165(2):948-55.
    4. Clay TM, Custer MC, McKee MD, et al. Changes in the fine specificity of gp100(209-217)-reactive T cells in patients following vaccination with a peptide modified at an HLA-A2.1 anchor residue. J Immunol 1999 Feb 1;162(3):1749-55.
    5. Berzofsky JA, Terabe M, Oh S, et al. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest 2004 Jun;113(11):1515-25.
    6. Doytchinova IA, Walshe VA, Jones NA, Gloster SE, Borrow P, Flower DR. Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes. J Immunol 2004 Jun 15;172(12):7495-502.
    7. Chen JL, Stewart-Jones G, Bossi G, et al. Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J Exp Med 2005 Apr 18;201(8):1243-55.
    8. Degano M, Garcia KC, Apostolopoulos V, Rudolph MG, Teyton L, Wilson IA. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 2000 Mar;12(3):251-61.
    9. Ding YH, Baker BM, Garboczi DN, Biddison WE, Wiley DC. Four A6-TCR/peptide/ HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 1999 Jul;11(1):45-56.
    10. Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 1996 Nov 14;384(6605):134-41.
    11. Le Gal FA, Ayyoub M, Dutoit V, et al. Distinct structural TCR repertoires in naturallyoccurring versus vaccine-induced CD8+ T-cell responses to the tumor-specific antigen NY-ESO-1. J Immunother 2005 May-Jun;28(3):252-7.
    12. Slansky JE, Rattis FM, Boyd LF, et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 2000 Oct;13(4):529-38.
    13. Flamm J, Donner G, Bucher A, Holtl W, Albrecht W, Havelec L. [Topical immunotherapy (KLH) vs. chemotherapy (Ethoglucid) in prevention of recurrence of superficial bladder cancer. A prospective randomized study]. Urologe A 1994 Mar;33(2):138-43.
    14. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu Rev Immunol 2006;24:175-208.
    15. Webb AI, Dunstone MA, Chen W, et al. Functional and structural characteristics of NY-ESO-1-related HLA A2-restricted epitopes and the design of a novel immunogenic analogue. J Biol Chem 2004 May 28;279(22):23438-46.
    16. Zugel U, Wang R, Shih G, Sette A, Alexander J, Grey HM. Termination of peripheral tolerance to a T cell epitope by heteroclitic antigen analogues. J Immunol 1998 Aug 15;161(4):1705-9.
    17. Larche M, Wraith DC. Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat Med 2005 Apr;11(4 Suppl):S69-76.
    1. Rudolph MG, Stanfield RL, Wilson IA. 2006. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24: 419-66
    2. Wada T, Schurman SH, Garabedian EK, Yachie A, Candotti F. 2005. Analysis of T-cell repertoire diversity in Wiskott-Aldrich syndrome. Blood 106: 3895-7
    3. Risitano AM, Kook H, Zeng W, Chen G, Young NS, Maciejewski JP. 2002. Oligoclonal and polyclonal CD4 and CD8 lymphocytes in aplastic anemia and paroxysmal nocturnal hemoglobinuria measured by V beta CDR3 spectratyping and flow cytometry. Blood 100: 178-83
    4. Le Gal FA, Ayyoub M, Dutoit V, Widmer V, Jager E, Cerottini JC, Dietrich PY, Valmori D. 2005. Distinct structural TCR repertoires in naturally occurring versus vaccine-induced CD8+ T-cell responses to the tumor-specific antigen NY-ESO-1. J Immunother 28: 252-7
    5. Gorski J, Yassai M, Zhu X, Kissela B, Kissella B, Keever C, Flomenberg N. 1994. Circulating T cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping. Correlation with immune status. J Immunol 152: 5109-19
    6. Turner SJ, Doherty PC, McCluskey J, Rossjohn J. 2006. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 6: 883-94
    7. Jee Y, Matsumoto Y. 2002. Identification of autoimmune encephalomyelitis-associated common CDR3 sequences by CDR3 spectratyping and subsequent DNA hybridization. J Neuroimmunol 126: 37-49
    8. Collette A, Cazenave PA, Pied S, Six A. 2003. New methods and software tools for high throughput CDR3 spectratyping. Application to T lymphocyte repertoire modifications during experimental malaria. J Immunol Methods 278: 105-16
    9. Puisieux I, Even J, Pannetier C, Jotereau F, Favrot M, Kourilsky P. 1994. Oligoclonality of tumor-infiltrating lymphocytes from human melanomas. J Immunol 153: 2807-18
    10. Puisieux I, Bain C, Merrouche Y, Malacher P, Kourilsky P, Even J, Favrot M. 1996. Restriction of the T-cell repertoire in tumor-infiltrating lymphocytes from nine patientswith renal-cell carcinoma. Relevance of the CDR3 length analysis for the identification of in situ clonal T-cell expansions. Int J Cancer 66: 201-8
    11. Quinn A, McInerney M, Huffman D, McInerney B, Mayo S, Haskins K, Sercarz E. 2006. T cells to a dominant epitope of GAD65 express a public CDR3 motif. Int Immunol 18: 967-79
    12. Echchakir H, Dorothee G, Vergnon I, Menez J, Chouaib S, Mami-Chouaib F. 2002. Cytotoxic T lymphocytes directed against a tumor-specific mutated antigen display similar HLA tetramer binding but distinct functional avidity and tissue distribution. Proc Natl Acad Sci U S A 99: 9358-63
    13. Kasprowicz V, Isa A, Jeffery K, Broliden K, Tolfvenstam T, Klenerman P, Bowness P. 2006. A highly restricted T-cell receptor dominates the CD8+ T-cell response to parvovirus B19 infection in HLA-A*2402-positive individuals. J Virol 80: 6697-701
    14. Zhu K, Chen J, Chen S. 2005. Treatment of Epstein-Barr virus--associated lymphoproliferative disorder (EBV-PTLD) and pure red cell aplasia (PRCA) with Rituximab following unrelated cord blood transplantation: a case report and literature review. Hematology 10: 365-70
    15. Addo MM, Yu XG, Rosenberg ES, Walker BD, Altfeld M. 2002. Cytotoxic T-lymphocyte (CTL) responses directed against regulatory and accessory proteins in HIV-1 infection. DNA Cell Biol 21: 671-8
    16. Altfeld M, Rosenberg ES, Shankarappa R, Mukherjee JS, Hecht FM, Eldridge RL, Addo MM, Poon SH, Phillips MN, Robbins GK, Sax PE, Boswell S, Kahn JO, Brander C, Goulder PJ, Levy JA, Mullins JI, Walker BD. 2001. Cellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection. J Exp Med 193: 169-80
    17. Sommerfeldt N, Schutz F, Sohn C, Forster J, Schirrmacher V, Beckhove P. 2006. The shaping of a polyvalent and highly individual T-cell repertoire in the bone marrow of breast cancer patients. Cancer Res 66: 8258-65
    18. Jiang YZ, Mavroudis DA, Dermime S, Molldrem J, Hensel NF, Barrett AJ. 1997. Preferential usage of T cell receptor (TCR) V beta by allogeneic T cells recognizing myeloid leukemia cells: implications for separating graft-versus-leukemia effect from graft-versus-host disease. Bone Marrow Transplant 19: 899-903
    19. Leen AM, Rooney CM, Foster AE. 2007. Improving T cell therapy for cancer. Annu Rev Immunol 25: 243-65
    20. Patterson AE, Korngold R. 2001. Infusion of select leukemia-reactive TCR Vbeta+ T cells provides graft-versus-leukemia responses with minimization of graft-versus-host disease following murine hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 7: 187-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700