用户名: 密码: 验证码:
负载肿瘤抗原的DC疫苗体内外诱导的特异性抗膀胱癌效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.探讨肿瘤相关抗原(Tumor associated antigen,TAA)在膀胱癌组织、癌旁组织和多器官正常组织中的表达情况。
     2.探讨建立人免疫重建荷人膀胱癌的复合动物模型的方法,并对该动物模型进行鉴定。
     3.探讨负载膀胱癌抗原成分DC疫苗的制备和体外对同源T淋巴细胞的活化功能,及其诱导T淋巴细胞的特异性杀伤膀胱癌细胞的作用。
     4.探讨负载膀胱癌抗原的DC疫苗体内诱导的对小鼠膀胱原位移植瘤特异性抗膀胱癌效应。
     1.检测人膀胱移行细胞癌(bladder transitional cell carcinoma, BTCC)组织、癌旁组织和多器官正常组织中TAA的表达:使用免疫组化Elivision法检测组织芯片中BTCC组织、癌旁组织和多器官正常组织中与抗人膀胱癌单克隆抗体BDI-1结合的TAA的表达,分析比较膀胱移行细胞癌不同病理分级、癌及癌旁组织中TAA的阳性表达率、表达程度。
     2.建立人免疫重建荷人膀胱癌的复合动物模型和鉴定:密度梯度离心法分离人外周血单个核细胞(human peripheral blood mononuclear cell,hu-PBMC),腹腔注射hu-PBMC建立人免疫重建Balb/c裸小鼠动物模型,流式细胞仪检测小鼠外周血中人CD3+T和CD19+B淋巴细胞的表型、ELISA检测小鼠外周血人IgG含量和免疫组化法检测小鼠肝脾组织中人CD3+T和CD19+B淋巴细胞的浸润,并与未进行免疫重建的小鼠比较。建立人免疫重建荷人膀胱癌皮下移植瘤Balb/c裸小鼠复合动物模型,绘制肿瘤生长曲线,计算小鼠生存率,和单纯荷瘤组小鼠进行比较。
     3.负载EJ细胞裂解物抗原DC疫苗的构建及体外诱导的对膀胱癌细胞的特异性杀伤作用:冻融法制备EJ细胞裂解物抗原成分,BCA蛋白定量法测定裂解物蛋白含量;密度梯度离心法分离hu-PBMC,体外培养液中加入rhGM-CSF,rhIL-4,TNF-α诱导分化出DC,并对其进行表型鉴定;EJ细胞裂解物抗原致敏DC制备负载膀胱癌肿瘤抗原的DC疫苗;免疫磁珠分离法从人免疫重建Balb/c裸小鼠脾脏组织中分离CD3+T淋巴细胞,检测DC疫苗刺激自身T淋巴细胞增殖的能力和诱导的特异性细胞毒性T淋巴细胞(CTL)对EJ细胞的杀伤作用。
     4.DC疫苗体内诱导的特异性抗膀胱癌效应和活体成像监测:携带绿色荧光蛋白(green fluorescent protein,GFP)基因的慢病毒感染EJ细胞,将GFP基因转染至EJ细胞,建立稳定、高效表达GFP的细胞株;人免疫重建小鼠膀胱穿刺灌注表达GFP的EJ细胞,建立人化免疫荷人膀胱癌原位移植瘤可视复合动物模型;腹腔注射DC疫苗后活体成像动态观察肿瘤的生长情况,计算小鼠存活率;ELISA检测小鼠外周血中人IFN-γ含量,FCM检测脾脏和肿瘤组织中T淋巴细胞、成熟DC的浸润情况。
     1.人BTCC组织、癌旁组织和多器官正常组织中TAA的表达:与BDI-1特异结合的TAA在不同病理分级BTCC组织中的阳性表达程度无统计学差异(P>0.05);BTCC组织中TAA阳性表达明显高于癌旁组织,差异有统计学意义(P<0.05);正常器官组织如:食道、宫颈、胃、结肠、小肠、前列腺、胰腺、肺脏、胸腺、乳腺中检测到TAA的表达。
     2.人免疫重建荷人膀胱癌的复合动物模型的建立和鉴定:建立的人免疫重建Balb/c裸小鼠动物模型外周血和脾脏组织中均检测到人CD3+T、CD19+B淋巴细胞,人免疫重建组小鼠外周血中检测到的人IgG明显高于对照组(P<0.05),免疫重建后第12周仍能维持较高水平;EJ细胞接种到人免疫重建小鼠皮下的成瘤率为]00%;人免疫重建荷瘤小鼠的肿瘤生长曲线、小鼠生存率和单纯荷瘤组一致(P>0.05)。
     3.负载EJ细胞裂解物抗原DC疫苗的构建及体外诱导的对膀胱癌细胞的特异性杀伤作用:冻融法获取的EJ细胞裂解物抗原蛋白浓度约为1ng/m1(103个EJ细胞);hu-PBMC在细胞因子rhGM-CSF、rhIL-4存在的条件下可诱导分化成DC, DC在TNF-α的刺激下分化为成熟DC,表型分子CD83、CD80的增高有统计学差异(P<0.05);负载EJ抗原的DC疫苗体外可使同源T淋巴细胞活化,刺激指数增加,诱导的CTL对EJ细胞的杀伤率为62.58±6.13%,和对照组比较有统计学差异(P<0.05)
     4.DC疫苗诱导的体内特异性抗膀胱癌效应和活体成像监测:成功建立了稳定表达GFP的EJ细胞株(EJ-GFP),和EJ细胞相比,细胞生长曲线、FCM检测、皮下移植瘤生长曲线、荷瘤小鼠的生存时间无差别;接种EJ-GFP建立的人膀胱癌皮下移植瘤和原位移植瘤均在活体成像系统下检测到荧光信号,DC疫苗腹腔注射后活体成像观察到实验组小鼠膀胱肿瘤生长缓慢,小鼠生存时间延长,和对照组比较有统计学意义(P<0.05);实验组小鼠脾脏和肿瘤组织中均检测到CD3+、CD4+、CD8+T淋巴细胞和成熟DC浸润,外周血IFN-γ含量高于对照组(P<0.05)
     1.人BTCC组织、癌旁组织和多器官正常组织中TAA的表达检测:
     1)与BDI-1结合的TAA主要在膀胱癌细胞的胞膜上表达,膀胱癌组织中的阳性表达程度要高于癌旁组织。
     2)与BDI-1结合的TAA在膀胱尿路上皮癌中的阳性表达程度和肿瘤的病理分级无关,在某些正常器官组织中有阳性表达。
     3)组织芯片检测TAA的表达高效、快捷,是一种检测TAA的有用工具。
     2.人免疫重建荷人膀胱癌的复合动物模型的建立和鉴定:
     1)经腹腔注射hu-PBMC能够建立人免疫重建Balb/c裸小鼠模型,移植的人T、B淋巴细胞在小鼠体内能够正常迁移和较长时间存活,并且能保持一定的生物学特性(如分泌人IgG等),为人淋巴细胞在小鼠体内发挥有效的免疫应答提供了保证;
     2)建立的Balb/c裸小鼠人免疫重建及膀胱癌皮下移植瘤复合模型,有助于进行人的膀胱癌免疫治疗研究;
     3)本实验中,人CD3+T、CD19+B淋巴细胞在肝脏组织中极少见到,提示人淋巴细胞在Balb/c小鼠体内的迁移并不是简单的随血流或淋巴循环随机分布,而是有选择性地定居在小鼠次级淋巴器官。
     3.负载EJ细胞裂解物抗原DC疫苗的构建及体外诱导的对膀胱癌细胞的特异性杀伤作用:
     1)从健康人外周血中分离出的PBMC,体外经rhGM-CSF、rhIL-4和TNF-α联合诱导分化,可成功获取成熟DC;
     2)冻融法获得的EJ细胞裂解物含有人膀胱癌的抗原成分,DC负载裂解物中的抗原成分后可成功制备肿瘤疫苗;
     3)负载膀胱癌冻融抗原的DC,体外可使同源的人T淋巴细胞活化增殖,诱导活化的CTL对EJ细胞有杀伤作用。
     4.DC疫苗体内诱导的特异性抗膀胱癌效应和活体成像监测:
     1)以携带GFP基因的慢病毒为载体,能成功建立在体外稳定、长期、高效表达GFP的EJ-GFP细胞株。该株细胞接种Balb/c裸小鼠,能成功建立人免疫重建荷人膀胱癌的皮下和原位移植瘤可视动物模型。
     2)腹腔注射负载EJ细胞裂解物抗原的DC疫苗,能诱导免疫细胞的抗膀胱癌效应,抑制人膀胱癌原位移植瘤生长,延长动物的生存时间。可能与肿瘤组织中CD4+、CD8+T淋巴细胞、成熟DC的浸润和外周血IFN-y含量增高有关。
     3)活体荧光成像系统可以无创、实时、动态地观察裸小鼠膀胱原位移植瘤的生长情况,客观评价DC疫苗在动物体内诱导的特异性抗肿瘤作用。
1. To investigate the expression of tumor associated antigen(TAA) in tissues of bladder cancer, adjacent tissues and normal tissues of multiple organ.
     2. To investigate a method of establishing human bladder cancer-bearing composite animal model with reconstituted human immune system, and to evaluate the model.
     3. To investigate the way to prepare DC vaccine loaded with bladder cancer antigen and the activation of homologous T lymphocytes in vitro, further to observe the specific killing effect of bladder cancer cells induced by T lymphocytes.
     4. To investigate the specific antitumor effects against orthotopic transplantation tumor of mice model with human bladder cancer in vivo, induced by DC vaccine loaded with bladder cancer antigen. Methods
     1. Expression detection of TAA in human bladder transitional cell carcinoma (BTCC) tissues, adjacent tissues and normal tissues of multiple organs: Expression of TAA combined with antihuman bladder carcinoma monoclonal antibody BDI-1 in BTCC, adjacent tissues and normal tissues of multiple organs were identified by tissue microarray technology using immunohistochemical Elivision method. The positive expression rate and positive intensity of TAA were analyzed and compared among three different pathological grading of BTCC, between the bladder cancer tissue and adjacent tissues.
     2. Establishment and identification of human bladder cancer-bearing composite animal model with reconstituted human immune system:Human peripheral blood mononuclear cells(hu-PBMCs) were isolated by density gradient centrifugation. Balb/c-nu mice model with reconstituted human immune system was established by intraperitoneal injection of hu-PBMC. Phenotype of human CD3+T lymphocytes and CD19+B lymphocytes in murine peripheral blood were detected by Flow Cytometry. The level of human IgG in Balb/c-nu mice blood-serum was measured by Enzyme-linked Immunosorbent Assay(ELISA). Immunohistochemistry was used to detect infiltration of human CD3+T lymphocytes and CD19+B lymphocytes in the liver and spleen of mice. The experimental results of immune reconstitution group were compared with non-humanized group. Balb/c-nu mice composit model with reconstituted human immune system and bearing subcutaneous transplantation tumor of human bladder cancer was established. Tumor growth curve was drawn and survival rates of mice were calculated. The experimental group was compared with tumor group without reconstituted human immune system.
     3. Construction of DC vaccine loaded with EJ cell lysate antigen and the effect of anti-bladder cancer induced by DC vaccine in vitro:EJ cell lysate antigen components were obtained by freeze-thaw method. The cell lysate protein content was determined by BCA protein quantitative method. Hu-PBMCs were isolated by density gradient centrifugation and were cultured in vitro. The dendritic cells(DCs) were induced by rhGM-CSF, rhIL-4, TNF-αfrom hu-PBMCs cultured in vitro. The phenotypes of the cultured DCs were identified by FCM. EJ cell lysate antigen pulsed DC. DC vaccine loaded with EJ cell lysate antigen was generated. CD3÷T lymphocytes in spleen tissue in Balb/c-nu mouse with reconstituted human immune system were isolated by T-immunomegnetic beads. The proliferation ability of autologous T cells and CTL's cytotoxicity towards EJ cells induced by DC vaccine was detected.
     4. The specific effects of anti-bladder cancer induced by DC vaccine loaded with tumor antigen in vivo and monitored by fluorescence imaging system:EJ cells were infected by lentivirus carrying green fluorescent protein(GFP) gene. GFP gene was transfected into EJ cells. The stable highly expressing GFP cell lines were established. EJ cells expressing GFP were perfused into bladder of Balb/c-nu mice with reconstituted human immune system by puncturing method. Human bladder cancer-bearing composite and visual animal model with reconstituted human immune system was established. After DC vaccines were injected intraperitoneally in mice, the growth of tumor was dynamically observed by fluorescence imaging system in vivo. The survival rates of mice were calculated in the experimental group and control group. The level of IFN-γin peripheral blood of Balb/c-nu mice was measured by ELISA. The infiltration of human T lymphocytes and mature DC in the spleen and tumor tissues of mice was detected by FCM.
     Results
     1. Expression of TAA in human BTCC tissues, adjacent tissues and normal tissues of multiple organs:The positive staining was in the membrane of cells. In the G1、G2、G3 pathological grades of BTCC, the positive expression intensity of TAA combined with BDI-1 had no statistical difference(P>0.05). Compared with adjacent tissues, the positive expression intensity of TAA in BTCC was significant higher. The difference was statistically significant(P<0.05). In tissues of normal organs, the positive expression of TAA was observed in esophagus, cervix, gastric, colon, small intestine, prostate, pancreas, lung, thymus and breast tissues.
     2. Establishment and identification of human bladder cancer-bearing composite animal model with reconstituted human immune system:Human CD3+T lymphocytes and CD19+B lymphocytes cells were detected in peripheral blood and spleen of Balb/c-nu mice with reconstituted human immune system. The level of human IgG in mice with reconstituted human immune system was significant higher comparing with control group(P<0.05). The level of human IgG was also higher at the twelveth week after human immune system was reconstituted in Balb/c-nu mice. EJ cells were implanted subcutaneously in the mice with reconstituted human immune system and tumor formation rate was 100%. Tumor growth curve and survival rates in the experimental group was the same as control group(P>0.05).
     3. Construction of DC vaccine loaded with EJ cell lysate antigen and the effect of anti-bladder cancer induced by DC vaccine in vitro:The EJ cell lysate protein content was about lng/ml(103 EJ cells). The dendritic cells(DCs) were induced by rhGM-CSF, rhIL-4 from hu-PBMC. Tumor necrosis factor-a(TNF-α) promoted immature DCs transformed into mature DCs. The expressions of CD83 and CD80 on mature dendritic cells were statistically significant(P<0.05). T lymphocytes were activated by DC vaccine loaded with EJ cell lysate antigen. The stimulate index was higher, and the killing rate of CTL against EJ cells was 62.58±6.13%. Compared with control group, these difference were statistically significant(P<0.05).
     4. The specific effects of anti-bladder cancer induced by DC vaccine loaded with tumor antigen in vivo and monitored by fluorescence imaging system:The stable highly expressing GFP cell lines were established using lentivirus vectors. Compared with EJ cells, no obvious difference was found in cell growth curve, FCM detection, growth curve of subcutaneous transplantation tumor and survival time of mice(P>0.05). Fluorescence signals were detected in EJ-GFP cell subcutaneous transplantation or orthotopic transplantation tumor by fluorescence imaging system in vivo. Orthotopic transplantation tumor grew slowly in mice after DC vaccine intraperitoneal injection. Survival time of mice in experimental group was prolong. Compared with control group, the difference was statistically significant(P<0.05). CD3+、CD4+、CD8+T lymphocytes and mature DC were detected in mice spleen and tumor tissues. The level of IFN-y was higher in mice peripheral blood. Compared with control group, the difference was statistically significant(P<0.05).
     Conclusion
     1. Expression of TAA in human BTCC tissues, adjacent tissues and normal tissues of multiple organs:
     1) The positive staining of TAA combined with BDI-1 is mainly in the membrane of cells. The positive expression intensity of TAA combined with BDI-1 in BTCC tissues is higher than that in adjacent tissue.
     2) In the three different pathological grades of BTCC, the positive expression intensity of TAA combined with BDI-1 has no statistical difference. In normal tissues of multiple organs, the positive expression of TAA is observed.
     3) It is an efficient and rapid method to detect TAA by tissue microarray technology. Tissue microarray technology is an useful tool for the detection of TAA.
     2. Establishment and identification of human bladder cancer-bearing composite animal model with reconstituted human immune system:
     1) Balb/c-nu mice model with reconstituted human immune system can be established by intraperitoneal injection of hu-PBMC. The human T and B lymphocytes can migrate normally and live for a long time in mice body, and can maintain certain biological activities (such as secreting human IgG, etc), which provides guarantee for human lymphocytes to play an effective immune response in mice body.
     2) Balb/c-nu mice composite model with human bladder cancer-bearing and reconstituted human immune system is useful for the immunotherapy research of human bladder urothelial carcinoma.
     3) In this research, human CD3+T lymphocytes and CD19+B lymphocytes are rare in mice liver. Distribution and migration of human lymphocytes is not random. Human lymphocytes settle in subprime lymphopid organs of mice selectively.
     3. Construction of DC vaccine loaded with EJ cell lysate antigen and the effect of anti-bladder cancer induced by DC vaccine in vitro:
     1) The mature DCs can be induced by rhGM-CSF, rhIL-4 and TNF-αfrom hu-PBMCs.
     2) EJ cell lysate contains human bladder cancer antigen composition. DC vaccine can be constructed by loading EJ cell lysate antigen composition.
     3) The proliferation ability of autologous T cells and CTL's cytotoxicity towards EJ cells can be induced by DC loading with EJ cell lysate.
     4. The specific effects of anti-bladder cancer induced by DC vaccine loaded with tumor antigen in vivo and monitored by fluorescence imaging system:
     1) The EJ cell lines expressing GFP(EJ-GFP) can be established in vitro by lentivirus vectors carrying GFP gene. The expression of GFP is stable, highly and long time. The Balb/c-nu mice with reconstituted human immune system are inoculated with the cell lines. The visual model with hunan bladder urothelial cancer subcutaneous transplantation or orthotopic transplantation tumor and reconstituted human immune system can be established successfully.
     2) DC vaccine loaded EJ cells lysate antigen composition can induce the specific effects of anti-bladder cancer by intraperitoneal injection in vivo. DC vaccine can inhibit tumor growth and obviously prolonged the exist time of animals bearing tumor. The immune response may be related with the infiltration of human CD4+, CD8+T lymphocytes and mature DC in the tumor tissues, or IFN-γcontent increasing in peripheral blood of Balb/c-nu mice.
     3) The orthotopic transplantation tumor growth of mice can be monitored by fluorescence imaging system noninvasively and real time dynamically. The specific effects of anti-bladder cancer induced by DC vaccine can be evaluated objectively.
引文
1. Parkin DM, Bray F, Ferlay J,et al. Global cancer statistics[J].2002, CA Cancer J Clin.2005,55(2):74-108.
    2. Gordan JD, Vonderheide RH. Universal tumor antigens as targets for immunotherapy[J]. Cytotherapy,2002,4(4):317-327.
    3. Sahin U, TureciO, PfreundschuhM. Serological identification of human tumor antigens[J]. Curr Op in Immunol,1997,9(5):709-716.
    4. Gilboa E. The makings of a tumor rejection antigen[J]. Immunity,1999,11 (3): 263-270.
    5. Yang HX, Wang XS, Xu Y. Effect of specific cytotoxicity on dendritic cells pulsed with tumor antigen towards bladder cancer cells[J]. Chinese Journal of Experimental Surgery,2005,22(7):889.
    6. Fujita Y, Nakanishi T, Miyamoto Y, et al. Proteomics-based identification of autoantibody against heat shock protein 70 as a diagnostic marker in esophageal squamous cell carcinoma[J]. Cancer Lett,2008,263 (2):280-290.
    7. Fujita Y, Nakanishi T, Hiramatsu M, et al. Proteomics-based approach identifying autoantibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma[J]. Clin Cancer Res,2006,12 (21):6415-6420.
    8. Gagnon A, Kim JH, Schorge JO, et al. Use of a combination of approaches to identify and validate relevant tumor-associated antigens and their corresponding autoantibodies in ovarian cancer patients[J]. Clin Cancer Res,2008,14(3): 764-771.
    9. Ueda K, Nakanishi T, Shimizu A, et al. Identification of L-plastin autoantibody in plasma of patients with non-Hodgkin s lymphoma using a proteomics-based analysis [J]. Ann Clin Biochem,2008,45(Pt 1):65-69.
    10. Mosca PJ, Lyerly HK, Clay TM, et al. Dendritic cell vaccines[J]. Front Biosci, 2007,12:4050-4060.
    11. Yang HX, Wang ZY, Yu M. Study on the specific anti-cancer effects by dendritic cells loaded with bladder-tumor lysate or peptides [J]. China Journal of Modern Medicine,2009,19 (7):985-988.
    12.雷晓,雷玉洁,石彦,等.胃癌抗原特异性树突状细胞疫苗的抗瘤效应[J].中华实验外科杂志,2004,21(6):755.
    13.唐朝晖,邹声泉,邱文洪,等.白细胞介素-18与癌细胞裂解物修饰的树突状细胞疫苗对胰腺癌的免疫治疗作用[J].中华实验外科杂志,2003,20(7):590-592.
    14.马爱红,谢蜀生,龙振洲,等.抗人膀胱癌单克隆抗体BIU-87的制备和鉴定[J].中华泌尿外科杂志,1990,11(4):195-197.
    15. Jawhar NM. Tissue Microarray:A rapidly evolving diagnostic and research tool[J]. Ann Saudi Med.2009,29(2):123-127.
    16. Avninder S, Ylaya K, Hewitt SM. Tissue microarray:A simple technology that has revolutionized research in pathology[J]. J Postgrad Med.2008,54(2):158-162
    17. Kramer MW, Merseburger AS, Hennenlotter J, et al. Tissue microarrays in clinical urology--technical considerations[J]. Scand J Urol Nephrol.2007,41(6): 478-484.
    18. Mucci NR, Akdas G, Manely S, et al. Neuroendocrine expression in metastatic prostate cancer:evaluation of high throughput tissue microarrays to detect heterogeneous protein expression[J]. Hum Pathol,2000,31(4):406-414.
    19. Schraml P, Kononen J, Bubendorf L, et al. Tissue microarrays for gene amplification surveys in many different tumors types[J]. Clin Cancer Res,1999, 5(8):1966-1975.
    20. Richter J, Wagner U, Kononen J, et al. High-throughput tissue microarray analysis of cyclin E gene amplification and overexpression in urinary bladder cancer[J]. Am J Pathol,2000,157(3):787-794.
    1. Williamson LM, Warwick RM. Transfusion-associated graft-versus-host disease and its prevention[J]. Blood Rev,1995,9(4):251-261.
    2.鱼达,杨骅,郑树,等.荷瘤裸小鼠模型的T细胞功能重建与肿瘤凋亡[J].实验动物科学与管理.1996,13(3):46.
    3.邵晓枫,杨纯正,熊东生,等.人B淋巴瘤裸小鼠腹腔内移植模型[J].中国肿瘤临床,2001,28(3):217-219.
    4. Huang P, Taghian A, Allam A, et al. The effect of wholebody irradiation of nude mice on the tumor transplantability and control probability of a human soft tissue sarcoma xenograft[J]. Radiat Res,1996,145(3):337-342.
    5. Shpitz B, Chambers CA, Singhal AB, et al. High level functional engraft of severe combined immunodeficient mice with human peripheral blood lymphocytes following pretreatment with radiation and antiasialo GM1[J]. J Immunol Methods,1994,169(1):1-5.
    6. Ishikawa F, Yasukawa M, Lyons B, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor{gamma} chain(null) mice[J]. Blood,2005,106(5):1565-1573.
    7. Song YQ, Liu M, Li W, et al. Establishment of K562/NOD-SCID mouse model with leukemia[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2007,15(1):16-19.
    8.林晨,谭玉波, 白雪,等.人源化NOD/SCID小鼠免疫细胞的动态变化与鉴定[J].中国病理生理杂志,2007,23(5):986-990.
    9. Tary-Lehmann M, Saxon A, Lehmann PV. The human immune system in hu-PBL-SCID mice[J]. Immunol Today,1995,16(11):529-533.
    10. Bonnet D, Warren EH, Greeberg PD, et al. CD8(+) minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells[J]. Proc Natl Acad Sci USA.1999,96(15):8639-8644.
    11. Mueller BM, Reisfeld RA. Potential of the scid mouse as a host for human tumors[J]. Cancer Metastasis Rev.1991,10(3):193-200.
    12.陈冬青,白连钧,刘庆丰,等.免疫重建SCID小鼠B淋巴母细胞瘤模型的建立[J].中国医学科学院学报,2003,25(3):294-296.
    13. Kollet O, Peled A, Byk T, et al. beta2 Microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function[J]. Blood.2000,95(10):3102-3105.
    1. Ojima T, Iwahashi M, Nakamura M, et al. Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice[J]. Int J Cancer,2007,120(3):585-593.
    2. Chaudhry UI, Kingham TP, Plitas G, et al. Combined stimulation with interleukin-18 and CpG induces murine natural killer dendritic cells to produce IFN-gamma and inhibit tumor growth[J]. Cancer Res,2006,66(2):10497-10504.
    3. Guo J, Wang B, Zhang M, et al. Macrophage-derive chemokine gene transfer results in tumor regression in murin lung carcinoma model through efficient induction of antitumor immunity[J]. Gene Ther,2002,9(12):793-803.
    4. Nair SK, Morse M, Boczkowski D, et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells[J]. Ann Surg 2002,235(4):540-549.
    5. Jefford M, Maraskovsky E, Cebon J, et al. The use of dendritic cells in cancer therapy[J]. Lancet,2001,2(6):343-353.
    6. Dubios B, Lamy PJ, Chemin K, et al. Measales virus exploits dendrtic cells to suppress CD4+T-cells proliferation via expression of surface viral glycoproteins independently of T-cell trans-infection[J]. Cell Immunol,2001,214(2):173-183.
    7. Schnurr M, Chen Q, Shin A, et al. Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery [J]. Blood, 2005,105(6):2465-2472.
    8. Palucka KA, Taquet N, Sanchez-Chapuis F, et al. Dendritic cells as the terminal stage of monocyte differentiation[J]. J Immunol,1998,160(9):4587-4595.
    9. Massimo DN, Roberto ML. Dendritic cells:specialized antigen presenting cells[J]. Haematologica,2000,85(2):202-2072.
    10. Berthier R, Martinon-Ego C, Laharie AM, et al. A two-step culture method starting with early growth factors permits enhanced production of functional dendritic cells from murine splenocytes [J]. J Immunol Methods,2000,239(1-2): 95-107.
    11.张在云.树突状细胞及其肿瘤疫苗[J].国外医学肿瘤学分册,2002,29(5):348-350.
    12. Coventry BJ, Austyn JM, Chryssidis S, et al. Identification and isolation of CDla positive putative tumour infiltrating dendritic cells in human breast cancer[J]. Adv Exp Med Biol,1997,417:571-577.
    13. Rouard H, Leon A, Klonjwski B, et al. Adenovial transduction of human'clinical grade'immature dendritic cells enhances costimulatory molecule expression and T-cell stimulatory capacity[J]. J Immunol Methods,2000,241(1-2):69-81.
    14. Prechtel AT, Steinkasserer A. CD83:an update on functions and prospects of the maturation marker of dendritic cells[J]. Arch Dermatol Res,2007,299(2):59-69.
    15. Song JA. Tumor immunology:the glass is half full[J]. Immunity,1998,9(5): 757-763.
    16. Caux C, Massacrier C, Dubois B, et al. Respective involvement of TGF-β and IL-4 in the development of Langerhans cells and non-Langerhans dendritc cells from CD34+progenitors[J]. J Leukoc Biol,1999,66(5):781-791.
    17. Palmer DH, Midgley RS, Mirza N, et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma[J]. Hepatology.2009,49(1):124-132.
    18.彭宝岗,梁力建,谢斌辉等.转染肿瘤mRNA的树突状细胞疫苗诱导抗肝癌免疫研究.中华实验外科杂志,2005,22(4):432-434.
    19.李博,唐孝达,夏术阶,等.转染干扰素-γ诱导蛋白-10基因构建树突状细胞前列腺癌瘤苗及其抗肿瘤免疫作用的检测.中华实验外科杂志,2003,20(12):1092-1094.
    20.郭建巍,蔡美英,秦力维,等.树突状细胞负载肝癌可溶性抗原后的免疫应答.免疫学杂志,2002,18(2):123-127.
    21. NouriShirazi M, Banchereau J, Bell D, et al. Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses[J]. J Immunol,2000,165(7):3797-3803.
    22. Paroli M, Carloni G, Franco A, et al. Human hepatoma cells expressing MHC antigens display accessory cell function:dependence on LFA-1/ICAM interaction[J]. Immunology,1994,82(2):215-221.
    1. Banchereau J, Steinman RM. Dendritic cells and the control of immunity[J]. Nature,1998,392(6673):245-252.
    2. Yu JS, Wheeler CJ, Zeltzer PM, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicils systemic cytotoxixity and intracranial T-cell infiltration[J]. Cancer Res,2001,61(3):842-847.
    3. Nestle FO, Alijagic S, Gilliet M, el al. Vaccination of melanoma patients with peptide or tumor lysate-pulsed dendritic cells[J]. Nat Med,1998,4(3):328-334.
    4. Caceres G, Zhu XY, Jiao JA, et al. Imaging of luciferase and GFP-transfected human tumors in nude mice[J]. Luminescence,2003,18(4):218-223.
    5. Yang M, Baranov E, Wang JW, et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model[J]. Proe Natl Acad Sei USA,2002,99(6): 3824-3829.
    6.郝钢跃,张维东,张月英,等.浅表性膀胱模型的建立及其活体荧光成像[J].中国肿瘤防治杂志,2009,16(24):1932-1934.
    7. Mailliard RB, Dallal RM, Son YI, et al. Dendritic cells promote T-cell survival or death depending upon their maturation state and presentation of antigen [J]. Immunol Invest,2000,29(2):177-185.
    8. Almand B, Clark JI, NikitinaE, et al. Increased production of immature myeloid cells in cancer patients:a mechanism of immune suppression in cancer[J]. Immunol,2001,166(1):678-689.
    9. Broeke LT, Daschbach E, Thomas EK, et al. Dendritic cell-induced activation of adaptive and innate antitumor immunity[J]. Immunol,2003,171(1):5842-5852.
    10. Guo J, Wang B, Zhang M, et al. Macrophage-derive chemokine gene transfer results in tumor regression in murin lung carcinoma model through efficient induction of antitumor immunity[J]. Gene Ther,2002,9(12):793-803.
    11. Nair SK, Morse M, Boczkowski D, et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells[J]. Ann Surg,2002,235(4):540-549.
    12. Jefford M, Maraskovsky E, Cebon J, et al. The use of dendritic cells in cancer therapy[J]. Lancet,2001,2(6):343-353.
    13. Hirschowitz EA, Foody T, Hidalgo GE, et al, Immunization of NSCLC patients with antigen-pulsed immature autologous dendritic cells[J]. Lung Cancer,2007, 57(3):365-372.
    14. Thomas-Kaskel AK, Waller CF, Schultze-Seemann W, et al. Immunotherapy with dendritic cells for prostate cancer[J]. Int J Cancer,2007,121(3):467-473.
    15. Ferrantini M, Capone I, Belardelli F. Dendritic cells and cytokines in immune rejection of cancer[J]. Cytokine Growth Factor Rev,2008,19(1):93-107.
    16. Somersalo K, Anikeeva N, Sims TN, et al. Cytotoxic T lymphocytes form an antigen-independent ring junction[J]. J Clin Invest,2004,113(1):49-57.
    1. Hirschowitz EA, Foody T, Hidalgo GE, et al, Immunization of NSCLC patients with antigen-pulsed immature autologous dendritic cells[J]. Lung Cancer,2007, 57(3):365-372.
    2. Thomas-Kaskel AK, Waller CF, Schultze-Seem-ann W. et al. Immunotherapy with dendritic cells for prostate cancer[J]. Int J Cancer,2007,121(3):467-473.
    3. Kim JH, Lee Y, Bae YS, et al. Phase Ⅰ/Ⅱ study of immunotherapy using autologous tumor lysate-pulsed dendritic ceils in patients with metastatic renal cell carcinoma [J]. Clin Immunol,2007,125(3):257-267.
    4. Schmitt WE, Stassar MJ, Schmitt W, et al. In vitro induction of a bladder cancer-specific T-cell response by mRNA transfected dendritic cells[J]. J Cancer Res Clin Oncol,2001,127(3):203-206.
    5. Nair SK, Snyder D, Rouse BT, et al. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts[J]. Int J Cancer, 1997,70(6):706-715.
    6. Bander NH, Yao D, Liu H, et al. MHC class Ⅰ and Ⅱ expression in prostate carcinoma and modulation by interferon alpha and gamma[J]. Prostate,1997, 33(4):233-239.
    7. Zeuthen LH, Christensen HR, Frokiaer H, et al. Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with gram-negative bacteria [J]. Clin Vaccine Immunol,2006,13(3):365-375.
    8. Ojima T, Iwahashi M, Nakamura M, et al. Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice[J]. Int J Cancer,2007,120(3):585-593.
    9. Chaudhry UI, Kingham TP, Plitas G, et al. Combined stimulation with interleukin-18 and CpG induces murine natural killer dendritic cells to produce IFN-gamma and inhibit tumor growth[J]. Cancer Res,2006,66(2):10497-10504.
    10. Schaefer BC, Schaefer ML, Kappler JW, et al. Observation of antigen dependent CD8+T cell dendritic cell interactions in vivo[J]. Cell Immunol,2001,214(2): 110-122.
    11. Ingulli E, Mondino A, Khoruts A, et al. In vivo detection of dendritic cell antigen presentation to CD4(+) T cells[J]. J Exp Med,1997,185(12):2133-2141.
    12. Paglia P, Chiodoni C, Rodolfo M, et al. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo[J]. J Exp Med,1996,183(1):317-322.
    13. Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity[J].Nat Med,1995,1(12):1297-1302.
    14. Massimo DN, Roberto ML. Dendritic cells:specialized antigen presenting cells[J]. Haematologica,2000,85(2):202-207.
    15. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer[J]. Nat Rev Immunol,2005,5(4):296-306.
    16. Mitchell DA, Nair SK. RNA transfected dendritic cells as cancer vaccines[J]. Curr Opin Mol Ther.2000,2(2):176-181.
    17. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids[J]. Nat Med, 2000,6(3):332-336.
    18. Gong J, Nikrui N, Chen D, et al. Fusion of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity[J]. J Immunol, 2000,165(3):1705-1711.
    19. Kjaergaard J, Shimizu K, Shu S. Electrofusion of syngeneic dendritic cells and tumor generates potent therapeutic vaccine[J]. Cell Immunol,2003,225(2):65-74.
    20. Tanaka Y, Koido S, Chen D, et al. Vaccination with allogeneic dendritic cells fused to carcinoma cells induces antitumor immunity in MUC1 transgenic mice[J]. Clin Immunol,2001,101(2):192-200.
    21. Nestle FO, Aluagic S, Gilliet M, et al. Vaccination of melanona patients with pepitide or tumor lysate pulsed dendritic cells[J]. Nat Med,1998,4(3):328-332.
    22. Palmer DH, Midgley RS, Mirza N, et al. A phase Ⅱ study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma[J]. Hepatology.2009,49(1):124-132.
    23. Guo J, Wang B, Zhang M, et al. Macrophage-derive chemokine gene transfer results in tumor regression in murin lung carcinoma model through efficient induction of antitumor immunity[J]. Gene Ther,2002,9(12):793-803.
    24. Nair SK, Morse M, Boczkowski D, et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells[J]. Ann Surg,2002,235(4):540-549.
    25. Jefford M, Maraskovsky E, Cebon J, et al. The use of dendritic cells in cancer therapy[J]. Lancet,2001,2(6):343-353.
    26. Song JA. Tumor immunology:the glass is half full[J]. Immunity,1998,9(5): 757-763.
    27. Caux C, Massacrier C, Dubois B, et al. Respective involvement of TGF-B and IL-4 in the development of Langerhans cells and non-Langerhans dendritc cells from CD34+progenitors[J]. J Leukoc Biol,1999,66(5):781-791.
    28. Holtl L, Zelle-Rieser C, Gander H. et al. Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells[J]. Clin Cancer Res, 2002,8(11):3369-3376.
    29. Heiser A, Maurice MA, Yancey DR, et al. Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors[J]. Cancer Res.2001,61(8):3388-3393.
    30. Berlyn KA, Schultes B, Leveugle B, et al. Generation of CD4(+) and CD8(+) T lymphocyte responses by dendritic cells armed with PSA/anti-PSA (antigen/antibody) complexes[J]. Clin Immunol,2001,101(3):276-283.
    31. Murphy G, Tjoa B, Ragde H, et al. Phase I clinical trial:T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen[J]. Prostate,1996,29(6): 371-380.
    32. Heiser A, Dahm P, Yancey DR, et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro[J]. J Immunol,2000,164(10):5508-5514.
    33. Lodge PA, Jones LA, Bader RA, et al. Dendritic cell-based immunotherapy of prostate cancer:Immunemonitoring of a phase Ⅱ clinical trial[J]. Cancer Res, 2000,60(4):829-833.
    34. Hazeki K, Nigorikawa K, Hazeki O. Role of phosphoinositide 3-kinase in innate immunity [J]. Biol Pharm Bull,2007,30(9):1617-1623.
    35. Lehmann J, Retz M, Sidhu SS, et al. Antitumor activity of the antimicrobial peptide magainin Ⅱ against bladder cancer cell lines [J]. Eur Urol,2006,50(1): 141-147.
    36. Spiess PE, Czermiak B. Dual-track pathway of bladder carcinogenesis:practical implications [J]. Arch Pathol Lab Med,2006,130(6):844-852.
    37. Jemal A, Siegel R, Ward E, et al. Cancer statistics 2006[J]. CA Cancer J Clin, 2006,56(2):106-130.
    38. Sengupta S, Blute ML. The management of superficial transitional cell carcinoma of the bladder[J]. Urology,2006,67(3 suppl 1):48-54.
    39. Loskog A, Totterman TH, Bohle A, et al. In vitro activation of cancer patient-derived dendritic cells by tumor cells genetically modified to express CD154[J]. Cancer Gene Ther,2002,9(10):846-853.
    40. Edovitsky E, Lerner I, Zcharia E, et al. Role of endothelial heparanase in delayed-type hypersensitivity[J]. Blood,2006,107(9):3609-3616.
    1. Bohle A, Jurczok A, Ardelt P, et al. Inhibition of bladder carcinoma cell adhesion by oligopeptide combinations in vitro and in vivo[J]. J Urol,2002,167(1): 357-363.
    2. Xiao Z, McCallum TJ, Brown KM, et al. Characterization of a novel transplantable orthotopic rat bladder transitional cell tumour model[J]. Br J Cancer, 1999,81(4):638-646.
    3. Gary SO, Yu C, Thomas J, et al. A model of bladder tumor xenografts in the nude rat[J]. J Urol,1995,154(5):1925-1929.
    4. Asanuma H, Arai T, Seguchi K, et al. Successful diagnosis of orthotopic rat superficial bladder tumor model by ultrathin cystoscopy[J]. J Urol,2003,169(2): 718-720.
    5. Kikuchi E, Xu S, Ohori M, et al. Detection and quantitative analysis of early stage orthotopic murine bladder tumor using in vivo magnetic resonance imaging[J]. J Urol,2003,170(4 Pt 1):1375-1378.
    6. Fidler IJ. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis[J]. Cancer Metastasis Rev.1986,5(1):29-49.
    7. Oyasu R. Epithelial tumours of the lower urinary tract in humans and rodents[J]. Fd Chem Toxic,1995,33(9):747-755.
    8. Huang P, Taghian A, Allam A, et al. The effect of wholebody irradiation of nude mice on the tumor transplantability and control probability of a human soft tissue sarcoma xenograft[J]. Radiat Res,1996,145(3):337-342.
    9. Shpitz B, Chambers CA, Singhal AB, et al. High level functional engraftment of severe combined immunodeficient mice with human peripheral blood lymphocytes following pretreatment with radiation and anti-asialo GMl[J]. J Immunol Methods,1994,169(1):1-15.
    10. Tanaka M, Gee JR, Cerda JDL, et al. Noninvasive detection of bladder cancer in an orthotopic murine model with green fluorescence protein cytology[J]. J Urol, 2003,170(3):975-978.
    11. Wu Yuan-dong, Tan Wan-long, Xie Yi, et al. Whole-body fluorescent imaging of the growth and metastasis of GFP-expressing bladder tumors[J]. Journal of Southern Medical University,2006,26(4):436-440.
    12. Giinther JH, Jurczok A, Wulf T, et al. Optimizing syngenetic orthotopic murine bladder cancer (MB49)[J]. Cancer Res,1999,59(12):2834-2837.
    13. Shapiro A, Kelley DR, Oakley DM, et al. Technical factors affecting the reproducibility of intravesical mouse bladder tumor implantation during therapy with Bacillus Calmette-Guerin[J]. Cancer Res,1984,44(7):3051-3054.
    14. See WA, Chapman PH. Heparin prevention of tumor cell adherence and implantation on injured urothelial surfaces[J]. J Urol,1987,138(1):182-186.
    15. Soloway MS. Intravesical and systemic chemotherapy of murine bladder cancer[J]. Cancer Res,1977,37(8 Pt 2):2918-2929.
    16. Soloway MS, Masters S. Urothelial susceptibility to tumor cell implantation influence of cauterization[J]. Cancer(Phila),1980,46(5):1158-1163.
    17. Chin JL, Kadhim SA, Batislam E, et al. Mycobacterium cell wall:an alternative to intravesical Bacillus Calmette-Guerin(BCG) therapy in orthotopic murine bladder cancer[J]. J Urol,1996,156(3):1189-1193.
    18. Ibrahiem El, Nigam VN, Brailovsky CA, et al. Orthotopic implantation of primary N-[4-(5-Nitro-2-furyl)-2-thiazolyl] formamide-induced bladder cancer in bladder submucosa:an animal model for bladder cancer study[J]. Cancer Res,1983,43(2): 617-622.
    19. Jiang F, Zhou XM. A model of orthotopic murine bladder(MBT-2) tumor implants[J]. J Urol,1997,25(3):179-182.
    20. Chin J, Kadhim S, Garcia B, et al. Magnetic resonance imaging for detecting and treatment monitoring of orthotopic murine bladder tumor implants[J]. J Urol,1991, 145(6):1297-1301.
    21. Alexander AA, Liu JB, McCue P, et al. Intravesical growth of murine bladder tumors assessed by transrectal ultrasound[J]. J Urol,1993,150(2 Pt 1):525-528.
    22. Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung[J]. Nature,2005,436(7050):518-524.
    23. Rosenthal EL, Kulbersh BD, King T, et al. Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts[J]. Mol Cancer Ther,2007,6(4):1230-1238.
    24. Yamauchi K,Yang M, Jiang P, et al. Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system[J], Cancer Res,2006,66(8): 4208-4214.
    25. Garcia T, Jackson A, Bachelier R, et al. A convenient clinically relevant model of human breast cancer bone metastasis[J]. Clinical & Experimental metastasis,2008, 25(1):33-42.
    26. Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis[J]. Nature,2008,451(7175):147-152.
    27. Torti SV, Golden-Fleet M, Willingham MC, et al. Use of green fluorescent protein to measure tumor growth in an implanted bladder tumor model[J]. J Urol,2002, 167(2 Pt 1):724-728.
    28. Yang M, Baranov E, Jiang P, et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases[J]. Proc Natl Acad Sci USA, 2000,97(3):1206-1211.
    29.郝钢跃,张维东,张月英,等.浅表性膀胱癌模型的建立及其活体荧光成像[J].中国肿瘤防治杂志,2009,16(24):1932-1934.
    30. Yamamoto N, Yang M, Jiang P, et al. Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging[J]. Cancer Res,2003,63(22): 7785-7790.
    31. Hoffman RM. Green fluorescent protein imaging of tumor growth, metastasis, and angiogenesis in mouse models[J]. Lancet Oncol,2002,3(9):546-556.
    32. Hosen N, Yamane T, Muijtiens M, et al. Bmi-1-green fluorescent prorein knock in mice reveal the dynamic regulation of bmi-1 expression in normal and leukemic hematopoictic cells[J]. Stem Cells,2007,25(7):1635-1644.
    33. Yang M, Baranov E, Wang JW, et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasison internal organs in the fluorescent orthotopic model[J]. Proe Natl Acad Sei USA,2002,99(6): 3824-3829.
    34. Caceres G, Zhu XY, Jiao JA, et al. Imaging of luciferase and GFP-transfected human tumors in nude mice[J]. Luminescence,2003,18(4):218-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700