用户名: 密码: 验证码:
木糖利用重组运动发酵单胞菌的构建及乙醇胁迫下大肠杆菌表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充分利用天然可再生的纤维素资源,扩大产乙醇微生物的底物利用范围、提高乙醇产率和对环境因子的耐受能力是世界各国研究者关注的重点。本研究构建木糖代谢重组运动发酵单胞菌,分析了耐辐射调控蛋白增强细胞对环境因子耐受能力。并利用基因芯片开展了调控因子(σs,rpoS)对模式菌株大肠杆菌在乙醇胁迫条件下的全基因组转录水平的分析。
     本研究从大肠杆菌(Escherichia coli)基因组DNA中克隆了木糖代谢途径中木糖异构酶基因(xylA)、木酮糖激酶(xylB)、转酮醇酶基因(talB)及转酮醛酶基因(tktA),以及运动发酵单胞菌(Zymomonas mobilis)的两个组成型的强启动子(eno和gap),构建了木糖代谢基因的的融合质粒。经电击转化获得能利用木糖发酵的重组运动发酵单胞菌。酶活分析显示引入的四种酶(木糖异构酶、木酮糖激酶、转酮醇酶及转酮醛酶)的酶活分别为80U/mg蛋白、53U/mg蛋白、1105U/mg蛋白和180U/mg蛋白,葡萄糖和木糖生成乙醇的产率分别达到理论值的81.2%和63.1%。
     利用纤维素水解产物进行乙醇发酵过程中,乙醇、高糖、高盐、酸等是影响乙醇产率的重要环境因子。本研究从耐辐射异常球菌(Denococcus radiodurans)基因组DNA中克隆了耐辐射关键调控基因irrE,构建了含irrE基因表达质粒的重组运动发酵单胞菌,乙醇、酸、高渗和NaCl的冲击实验结果表明irrE基因可以明显提高该菌株对这些胁迫因子的耐受能力,其细胞存活率和乙醇产率均比对照菌株显著提高。
     为了进一步研究环境胁迫因子对产乙醇菌株乙醇发酵的影响,本研究以模式菌株大肠杆菌作为研究对象,构建了调控因子rpoS(σs)缺失突变株,利用基因芯片技术,对大肠杆菌BW35113(rpoS-)进行了乙醇冲击下的基因组表达谱的研究分析。与野生型菌株相比,对数期rpoS缺失突变株中772个基因表达差异显著(变化倍数大于2),其中467个基因表达显著上调;305个基因的表达受到显著抑制;稳定期细胞表达差异显著的基因有1422个,其中465个基因表达显著上调, 943个基因的表达受到显著抑制。按照COG库的标准分类,发现对数期和稳定期细胞中1)与细菌遗传信息的保存和处理(DNA的复制、重复、修复及基因的转录、表达等)有关的基因分别有90和209个基因;2)参与能量合成与转化的基因有111和130个;3)参与物质代谢(糖类、氨基酸、核酸、辅酶、酯类)及无机离子的转运与代谢的基因有218和376个;4)16和32个基因参与了信号的传递过程, 5)7和16个基因与细胞运动相关,6)29和57个基因涉及蛋白的转录后修饰及蛋白折叠等过程。对差异表达基因进行分析,发现在乙醇胁迫条件下,RpoS缺失分别导致了海藻糖磷酸化酶基因、6-磷酸海藻糖合成酶基因、高渗保护蛋白及甜菜碱运输系统基因下调,引起海藻糖和甜菜碱在细胞内的减少;同时调控谷氨酸型抗酸体系基因gadABC蛋白基因下调,这些基因表达通常在E. coli胁迫反应中发挥重要的作用。表明RpoS转录因子在增强细胞对乙醇胁迫抗性上起到重要作用。
Lignocellulosic biomass has long been recognized as a potential sustainable source of mixed sugars. Recent research has focused on the development of recombinant strain for efficient production of ethanol from lignocellulosic hydrolysates, together with high stress tolerance. In this study, we constructed the recombinant xylose-metabolizing strains of Zymomonas mobilis and demonstrated that expression of IrrE, a global regulator for extreme radiation resistance from Deinococcus radiodurans, confers significantly enhanced to tolerance to the environmental stresses in Z. mobilis. Futhermore, enthanol stress-responsive gene expression profiles of Escherichia coli strain and its rpoS mutant strain were analyzed using DNA microarrys.
     Four genes encoding xylose assimilation and pentose phosphate pathway enzymes (xylA/xylB, talB/tktA) from Escherichia coli and two promoters ( eno and gap) from Z. mobilis were constructed into the shuttle plasmid (pBBR1MCS-1) and transferred into Z. mobilis. The resulting recombinant strain PZ. mobilis fermented both glucose and xylose, which is essential for economical conversion of lignocellulosic biomass to ethanol. Enzymatic analyses of PZM strain grown in RM medium containing xylose of 40g/L showed the presence of XI ( 80U/mg proteins), XK(53U/mg proteins), TAL (1105U/mg proteins) and TKT (180U/mg proteins). The productivity of ethanol from glucose is 81.2% of theory value and 63.1% from xylose.
     The components (such as acetic acid) in lignocellulosic hydrolysates and the accumulation of ethanol during the fermentation can inhibit the growth and ethanol production of ethanologenic strains. To improve growth and ethanol production of Z. mobilis under the stresses, the D. radiodurans gene irrE were cloned and transferred into Z. mobilis to generate the recombinant strain. The results showed that the expression of IrrE regulator resulted in a significant increase in cell viability and the tolerance to ethanol, acetic acid, salt stresses.
     To further understand the effect of environmental stresses on the ethanol production in ethanologenic strains, DNA microarrys was used to analyze the expression profiles of E. coli and its rpoS mutant strain under the ethanol stress. The results showed that there are 799 differentially expressed genes by at least twofold in the logarithmic phase cells after 15% (v/v) ethanol shock for 15 min. The expression of 467 genes were up-regulated, while 305 genes were down-regulated. In stationary phase cells, among 1422 differentially expressed genes, 465 genes were up-regulated expression and 943 genes were down-regulated. Six major groups might contribute in various ways to the enhanced stress tolerance: (i) transcription, replication, translation, ribosomal structure and biogenesis, recombination and repair; (ii) energy production and conversion; (iii) lipid transport and metabolism; inorganic ion transport and metabolism, secondary metabolites biosynthesis, transport and catabolism, carbohydrate transport and metabolism, amino acid transport and metabolism, nucleotide transport and metabolism; (iv) signal transduction mechanisms, cell wall/membrane/envelope biogenesis, coenzyme transport and metabolism; (v)cell cycle control, cell division, chromosome partitioning; defense mechanisms, cell motility; (vi) posttranslational modification, protein turnover, chaperones.
     Analysis of these differentially expressed genes showed. Two osmotregulated trehalose synthesis genes otsAB and the betaine transport gene yehZ, were down-regulated, which may lead to trehalose and betaine decrease in mutant. In response to ethanol shock, the glutamate decarboxylase and related genes gadABC were down–regulated in mutant, which are important for stress-tolerance in E. coli. These results indicated RpoS play a global regulator role in ethanol tolerance in E. coli.
引文
1. Alexandre, H., L. Plourde, et al. (1998). "Lack of correlation between trehalose accumulation, cell viability and intracellular acidification as induced by various stresses in Saccharomyces cerevisiae." Microbiology 144 ( Pt 4): 1103-11.
    2. Alexandre, H., I. Rousseaux, et al. (1994). "Ethanol adaptation mechanisms in Saccharomyces cerevisiae." Biotechnol Appl Biochem 20 ( Pt 2): 173-83.
    3. Alexandre, H., I. Rousseaux, et al. (1994). Ethanol adaptation mechanisms in Saccharomyces cerevisiae. 20 ( Pt 2): 173-183.
    4. Amore, R., P. Kotter, et al. (1991). "Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis." Gene 109(1): 89-97.
    5. Augustin, H. W., G. Kopperschlager, et al. (1965). "Hexokinase as limiting factor of anaerobic glucose consumption of Saccharomyces carlsbergensis NCYC74." Biochim Biophys Acta 110(2): 437-9.
    6. Blattner, F. R., V. Burland, et al. (1993). "Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes." Nucleic Acids Res 21(23): 5408-17.
    7. Boorstein, W. R., T. Ziegelhoffer, et al. (1994). "Molecular evolution of the HSP70 multigene family." J Mol Evol 38(1): 1-17.
    8. Brestic-Goachet, G. P, et al. (1989). "Transfer and expression of an Erwinia chrysanthemi cellulase gene in Zymomonas mobilis. ." J Gen Microbiol 135: 893-902.
    9. Brestic-Goachet, N., P. Gunasekaran, et al. (1990). "Transfer and expression of a Bacillus licheniformisα-amylase gene in Zymomonas mobilis " Arch. Microbiol. 153: 199-225.
    10. Brigham J S, A. W., Himmel ME (1996). "Hemicellulose: diversity and applications . In Wyman CE(eds) Handbook on bioethanol: production and utilization." Taylor and Francis, Washington, DC,pp119~142.
    11. Buchholz, S., D. E., M., et al. (1989). "Growth of Zymomonas on lactose: Gene cloning in combination with mutagenesis. ." J. Ind. Microbiol. 4: 19-27.
    12. Burgess, R. R. and L. Anthony (2001). "How sigma docks to RNA polymerase and what sigma does." Curr Opin Microbiol 4(2): 126-31.
    13. Buziol, S., J. Becker, et al. (2002). "Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae." FEMS Yeast Res 2(3): 283-91.
    14. Chee, M., R. Yang, et al. (1996). "Accessing genetic information with high-density DNA arrays." Science 274(5287): 610-4.
    15. Chi, Z. and N. Arneborg (1999). "Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae."J Appl Microbiol 86(6): 1047-52.
    16. Costa, V., E. Reis, et al. (1993). "Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase." Arch Biochem Biophys 300(2): 608-14.
    17. Csonka, L. N. (1989). "Physiological and genetic responses of bacteria to osmotic stress." Microbiol Rev 53(1): 121-47.
    18. David, J. D. and H. Wiesmeyer (1970). "Control of xylose metabolism in Escherichia coli." Biochim Biophys Acta 201(3): 497-9.
    19. Davis, E. O., M. C. Jones-Mortimer, et al. (1984). "Location of a structural gene for xylose-H+ symport at 91 min on the linkage map of Escherichia coli K12." J Biol Chem 259(3): 1520-5.
    20. De Graaf, A. A., K. Striegel, et al. (1999). "Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by 13C- and 31P-NMR spectroscopy." Arch Microbiol 171(6): 371-85.
    21. Deanda, K., M. Zhang, et al. (1996). "Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering." Appl Environ Microbiol 62(12): 4465-70.
    22. Dery, R. E. and E. Y. Bissonnette (1999). "IFN-gamma potentiates the release of TNF-alpha and MIP-1alpha by alveolar macrophages during allergic reactions." Am J Respir Cell Mol Biol 20(3): 407-12.
    23. Dien, B. S., M. A. Cotta, et al. (2003). "Bacteria engineered for fuel ethanol production: current status." Appl Microbiol Biotechnol 63(3): 258-66.
    24. Dong, T., M. G. Kirchhof, et al. (2008). "RpoS regulation of gene expression during exponential growth of Escherichia coli K12." Mol Genet Genomics 279(3): 267-77.
    25. Dumsday, G. J., B. Zhou, et al. (1999). "Comparative stability of ethanol production by Escherichia coli KO11 in batch and chemostat culture." J Ind Microbiol Biotechnol 23(1): 701-8.
    26. Duwat, P., B. Cesselin, et al. (2000). "Lactococcus lactis, a bacterial model for stress responses and survival." Int J Food Microbiol 55(1-3): 83-6.
    27. Earl, A. M., M. M. Mohundro, et al. (2002). "The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression." J Bacteriol 184(22): 6216-24.
    28. Earl, A. M., Mohundro, M.M., Mian, I.S. & Battista, J.R. (2002). " The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression." J Bacteriol (184): 6216-6224.
    29. Eliasson, A., E. Boles, et al. (2000). "Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae." Appl Microbiol Biotechnol 53(4): 376-82.
    30. Feldmann, S. H, et al. (1992). "Pentose metabolism Z. mobilis wild type and recombinant strains." Appl microbial Biotechnol 38: 354-361.
    31. Fred, E. B., W. H. Peterson, et al. (1920). "Fermentation characteristics of pentose-destroying bacter." J.Biol.Chem. 42: 175-189.
    32. Gao, G., B. Tian, et al. (2003). "Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli." DNA Repair (Amst) 2(12): 1419-27.
    33. Garg, A. K., J. K. Kim, et al. (2002). "Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses." Proc Natl Acad Sci U S A 99(25): 15898-903.
    34. Ghareib, M., K. A. Youssef, et al. (1988). "Ethanol tolerance of Saccharomyces cerevisiae and its relationship to lipid content and composition." Folia Microbiol (Praha) 33(6): 447-52.
    35. Goffeau, A. (1997). "DNA technology: Molecular fish on chips." Nature 385(6613): 202-3.
    36. Goldemberg, J. (2007). "Ethanol for a sustainable energy future." Science 315(5813): 808-10.
    37. Guo, N., I. Puhlev, et al. (2000). "Trehalose expression confers desiccation tolerance on human cells." Nat Biotechnol 18(2): 168-71.
    38. H, Y., K. T, et al. (1991). "Metabolism of galactose in Zymomonas mobilis. ." Appl. Microbiol. Biotechnol. 35: 364-368.
    39. H. Alexandre, V. A.-G., S. Dequin and B. Blondin (2001). "Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae " FEBS Lett 498(1): 98-103.
    40. H., Y. K., P. S. H., et al. (1988). "Transfer of Bacillus subtilis endoβ-1,4-glucanase gene into Zymomonas anaerobia." Biotechnol Lett(10): 213-216.
    41. Hagerdal, B. H., J. Hallborn, et al. (1993). Bioconversion of forest and agriculture plant residues. Pentose fermentation to alcholo. CAB International, wallingford, United Kingdom.: 231-290.
    42. Hahn-Hagerdal, B., C. F. Wahlbom, et al. (2001). "Metabolic engineering of Saccharomyces cerevisiae for xylose utilization." Adv Biochem Eng Biotechnol 73: 53-84.
    43. Hajipour, G., K. B. Schowen, et al. (1999). "The linkage of catalysis and regulation in enzyme action: oxidative diversion in the hysteretically regulated yeast pyruvate decarboxylase." Bioorg Med Chem 7(5): 887-94.
    44. Helmann, J. D., M. F. Wu, et al. (2001). "Global transcriptional response of Bacillus subtilis to heat shock." J Bacteriol 183(24): 7318-28.
    45. Hengge-Aronis, R. (1993). "Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli." Cell 72(2): 165-8.
    46. Hengge-Aronis, R. (1996). "Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli." Mol Microbiol 21(5): 887-93.
    47. Hengge-Aronis, R. (2000). "A role for the sigma S subunit of RNA polymerase in the regulation of bacterial virulence." Adv Exp Med Biol 485: 85-93.
    48. Hengge-Aronis, R. (2002). "Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase." Microbiol Mol Biol Rev 66(3): 373-95, table of contents.
    49. Holtmann, G. and E. Bremer (2004). "Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters." J Bacteriol 186(6): 1683-93.
    50. Hua (2003). "PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans." Biochem Biophys Res Communication 306, 354-360.
    51. Hua, Y., I. Narumi, et al. (2003). "PprI: a general switch responsible for extreme radioresistance ofDeinococcus radiodurans." Biochem Biophys Res Commun 306(2): 354-60.
    52. Ibeas, J. I. and J. Jimenez (1997). "Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts." Appl Environ Microbiol 63(1): 7-12.
    53. Ingram et al, T. W. (1989). "Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli." Appl Environ Microbiol 55(8): 1943-8.
    54. Ingram, L. O. (1976). "Adaptation of membrane lipids to alcohols." J Bacteriol 125(2): 670-8.
    55. Ingram, L. O. and T. M. Buttke (1984). "Effects of alcohols on micro-organisms." Adv Microb Physiol 25: 253-300.
    56. Ingram, L. O., T. Conway, et al. (1987). "Genetic engineering of ethanol production in Escherichia coli." Appl Environ Microbiol 53(10): 2420-5.
    57. Inoue, T., H. Iefuji, et al. (2000). "Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast." Biosci Biotechnol Biochem 64(2): 229-36.
    58. Ishihama, A. (2000). "Functional modulation of Escherichia coli RNA polymerase." Annu Rev Microbiol 54: 499-518.
    59. Jeffries et al, T. W. (2006). "Engineering yeasts for xylose metabolism." Curr Opin Biotechnol 17(3): 320-6.
    60. Jeffries, T. W. (1983). "Utilization of xylose by bacteria, yeasts, and fungi." Adv Biochem Eng Biotechnol 27: 1-32.
    61. Jeffries, T. W. (2006). "Engineering yeasts for xylose metabolism." Curr Opin Biotechnol 17(3): 320-6.
    62. Jeffries, T. W. and Y. S. Jin (2000). "Ethanol and thermotolerance in the bioconversion of xylose by yeasts." Adv Appl Microbiol 47: 221-68.
    63. Jeffries, T. W. and Y. S. Jin (2004). "Metabolic engineering for improved fermentation of pentoses by yeasts." Appl Microbiol Biotechnol 63(5): 495-509.
    64. Jeffries, T. W. and N. Q. Shi (1999). "Genetic engineering for improved xylose fermentation by yeasts." Adv Biochem Eng Biotechnol 65: 117-61.
    65. Jeon, Y. J., C. J. Svenson, et al. (2005). "Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis." FEMS Microbiol Lett 244(1): 85-92.
    66. Jeppsson, M., B. Johansson, et al. (2002). "Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose." Appl Environ Microbiol 68(4): 1604-9.
    67. Joachimsthaler, E. and D. A. Aaker (1997). "Building brands without mass media." Harv Bus Rev 75(1): 39-41, 44-6, 48-50.
    68. Josephson, B. L. and D. G. Fraenkel (1969). "Transketolase mutants of Escherichia coli." J Bacteriol 100(3): 1289-95.
    69. Kajiwara, S., A. Shirai, et al. (1996). "Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae: expression of ethanol tolerance and the FAD2 gene from Arabidopsis thaliana." Appl Environ Microbiol 62(12): 4309-13.
    70. Karczewska, H. (1959). "Some observations on pentose utilization by Candida tropicalis." Compt.-Rend.Lab.Carlsberg. 31: 251-258.
    71. Kempf, B. and E. Bremer (1998). "Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments." Arch Microbiol 170(5): 319-30.
    72. Kilstrup, M., S. Jacobsen, et al. (1997). "Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis." Appl Environ Microbiol 63(5): 1826-37.
    73. Kim, I. S., K. D. Barrow, et al. (2000). "Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis Z. mobilis4(pZB5)." Appl Environ Microbiol 66(1): 186-93.
    74. Kim, Y., L. O. Ingram, et al. (2007). "Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes." Appl Environ Microbiol 73(6): 1766-71.
    75. Kotter, P., R. Amore, et al. (1990). "Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant." Curr Genet 18(6): 493-500.
    76. Krishnan, M. S., M. Blanco, et al. (2000). "Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4(pZB5)." Appl Biochem Biotechnol 84-86: 525-41.
    77. Kubota, S., I. Takeo, et al. (2004). "Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol." Biosci Biotechnol Biochem 68(4): 968-72.
    78. Kurtman, J. T. W. a. (1994). "Strain selection, taxonomy, and genetics of xylose-fermentation yeasts " Enzyme Microb Technol, 1994, 16: 922~32.
    79. Kurtzman C P, B. R. J., Van Cauwenberge J E (1982). " Conversion of D-xylose toethanol by yeast Pachysolen tannophilus." US patent 4359534.
    80. Laikova, O. N., A. A. Mironov, et al. (2001). "Computational analysis of the transcriptional regulation of pentose utilization systems in the gamma subdivision of Proteobacteria." FEMS Microbiol Lett 205(2): 315-22.
    81. Lam, V. M., K. R. Daruwalla, et al. (1980). "Proton-linked D-xylose transport in Escherichia coli." J Bacteriol 143(1): 396-402.
    82. Lange, R. and R. Hengge-Aronis (1991). "Identification of a central regulator of stationary-phase gene expression in Escherichia coli." Mol Microbiol 5(1): 49-59.
    83. Lawford, H. G., J. D. Rousseau, et al. (2000). "Continuous fermentation studies with xylos-utilizing recombinant Zymomonas mobilis." Appl Biochem Biotechnol 84-86: 295-310.
    84. Leandro, M. J., P. Goncalves, et al. (2006). "Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter." Biochem J 395(3): 543-9.
    85. Lee, J. H., P. Patel, et al. (1985). "Isolation and characterization of mutant strains of Escherichia coli altered in H2 metabolism." J Bacteriol 162(1): 344-52.
    86. Lejeune, A., D. E., et al. (1988). "Expression of an endoglucanase gene of Pseudomonas fluorescens var. cellulosa in Zymomonas mobilis " FEMS Microbiology Letters 49(3): 363-366.
    87. Lindquist, S., M. M. Patino, et al. (1995). "The role of Hsp104 in stress tolerance and [PSI+] propagation in Saccharomyces cerevisiae." Cold Spring Harb Symp Quant Biol 60: 451-60.
    88. Liu C Q, Goodman A E, et al. (1988). "Expression of cloned Xanthomonas xylose catabolic genes in Zymomonas mobilis. ." Journal of Biotechnology 7(1): 61-70.
    89. Lockhart, D. J., H. Dong, et al. (1996). "Expression monitoring by hybridization to high-density oligonucleotide arrays." Nat Biotechnol 14(13): 1675-80.
    90. Lodge, J., J. Fear, et al. (1992). "Broad host range plasmids carrying the Escherichia coli lactose and galactose operons." FEMS Microbiol Lett 74(2-3): 271-6.
    91. Loewen, P. C. and B. L. Triggs (1984). "Genetic mapping of katF, a locus that with katE affects the synthesis of a second catalase species in Escherichia coli." J Bacteriol 160(2): 668-75.
    92. Lonn, A., M. Gardonyi, et al. (2002). "Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization." Eur J Biochem 269(1): 157-63.
    93. Maleszka, R., P. Y. Wang, et al. (1982). "A Col E1 hybrid plasmid containing Escherichia coli genes complementing d-xylose negative mutants of Escherichia coli and Salmonella typhimurium." Can J Biochem 60(2): 144-51.
    94. Mansure, J. J., A. D. Panek, et al. (1994). "Trehalose inhibits ethanol effects on intact yeast cells and liposomes." Biochim Biophys Acta 1191(2): 309-16.
    95. Martinez, A., S. W. York, et al. (1999). "Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli." Biotechnol Prog 15(5): 891-7.
    96. Matsui, K., M. Shibutani, et al. (1996). "Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B)." FEBS Lett 394(1): 21-4.
    97. Meaden, P. G., N. Arneborg, et al. (1999). "Endocytosis and vacuolar morphology in Saccharomyces cerevisiae are altered in response to ethanol stress or heat shock." Yeast 15(12): 1211-22.
    98. Mehta, R. K. and J. Singh (1999). "Bridge-overlap-extension PCR method for constructing chimeric genes." Biotechniques 26(6): 1082-6.
    99. Michel, G. P. and J. Starka (1986). "Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis." J Bacteriol 165(3): 1040-2.
    100. Mishra, P. and R. Prasad (1989). "Relationship between fluidity and L-alanine transport in a fatty acid auxotroph of Saccharomyces cerevisiae." Biochem Int 19(5): 1019-30.
    101. Mohagheghi, A., K. Evans, et al. (2002). "Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101." Appl Biochem Biotechnol 98-100: 885-98.
    102. Moradas-Ferreira, P., V. Costa, et al. (1996). "The molecular defences against reactive oxygenspecies in yeast." Mol Microbiol 19(4): 651-8.
    103. N. Kiran Sreea, M. S., K. Suresha, I. M. Banatb and L. Venkateswar Rao (2000). "Isolation of thermotolerant, osmotolerant, locculating Saccharomyces cerevisiae for ethanol production." Bioresource Technology Volume 72, (Issue 1): 43-46.
    104. Nagodawithana, T. W. and K. H. Steinkraus (1976). "Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in "rapid fermentation"." Appl Environ Microbiol 31(2): 158-62.
    105. Nagy, Z. B., Z. Varga-Orvos, et al. (2006). "Assembling and cloning genes for fusion proteins using reverse transcription one-step overlap extension PCR method." Anal Biochem 351(2): 311-3.
    106. Narumi, I., K. Satoh, et al. (2004). "PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation." Mol Microbiol 54(1): 278-85.
    107. Nichols, N. N., B. S. Dien, et al. (2003). "Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis." J Ind Microbiol Biotechnol 30(5): 315-21.
    108. Ohba, H., K. Satoh, et al. (2005). "The radiation responsive promoter of the Deinococcus radiodurans pprA gene." Gene 363: 133-41.
    109. Ohta, K., D. S. Beall, et al. (1991). "Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II." Appl Environ Microbiol 57(4): 893-900.
    110. Osman, Y. A. and L. O. Ingram (1985). "Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4." J Bacteriol 164(1): 173-80.
    111. Pan, J., J. Wang, et al. (2009). "IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus." PLoS ONE 4(2): e4422.
    112. Parker, C., W. O. Barnell, et al. (1995). "Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport." Mol Microbiol 15(5): 795-802.
    113. Petroleum, B. (2006). "BP Statistical Review of World Energy." available at www.bp.com/liveassets/bpinternet/globalbp/.
    114. Piper, P. W. (1995). "The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap." FEMS Microbiol Lett 134(2-3): 121-7.
    115. Piper, P. W., K. Talreja, et al. (1994). "Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold." Microbiology 140 ( Pt 11): 3031-8.
    116. Prasad, P. M. a. R. (1989). "Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae." Applied Microbiology Biotechnology 30: 294-298.
    117. Ranatunga TD, J. J., Helm RF, McMillan JD, Jatzis C (1997). " Identification of inhibitory components toxic towards Zymomonas mobilis CP4 (pZB5) xylose fermentation." Appl. Biochem.Biotechnol 67: 185–198.
    118. Richard, P., R. Verho, et al. (2003). "Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway." FEMS Yeast Res 3(2): 185-9.
    119. Rogers, P. L., Y. J. Jeon, et al. (2007). "Zymomonas mobilis for fuel ethanol and higher value products." Adv Biochem Eng Biotechnol 108: 263-88.
    120. Rosa, M. F. and I. Sa-Correia (1991). "In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae." Appl Environ Microbiol 57(3): 830-5.
    121. Saez-Miranda, J. C., L. Saliceti-Piazza, et al. (2006). "Measurement and analysis of intracellular ATP levels in metabolically engineered Zymomonas mobilis fermenting glucose and xylose mixtures." Biotechnol Prog 22(2): 359-68.
    122. Sajbidor, J., Z. Ciesarova, et al. (1995). "Influence of ethanol on the lipid content and fatty acid composition of Saccharomyces cerevisiae." Folia Microbiol (Praha) 40(5): 508-10.
    123. Sak, B. D., A. Eisenstark, et al. (1989). "Exonuclease III and the catalase hydroperoxidase II in Escherichia coli are both regulated by the katF gene product." Proc Natl Acad Sci U S A 86(9): 3271-5.
    124. Salamon, C., M. Chervenak, et al. (1998). "The mouse transketolase (TKT) gene: cloning, characterization, and functional promoter analysis." Genomics 48(2): 209-20.
    125. Saloheimo, A., J. Rauta, et al. (2007). "Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases." Appl Microbiol Biotechnol 74(5): 1041-52.
    126. Sanchez, Y., J. Taulien, et al. (1992). "Hsp104 is required for tolerance to many forms of stress." Embo J 11(6): 2357-64.
    127. Santos, P. M., J. M. Blatny, et al. (2000). "Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST." Appl Environ Microbiol 66(4): 1305-10.
    128. Schellenberg, G. D., A. Sarthy, et al. (1984). "Xylose isomerase from Escherichia coli. Characterization of the protein and the structural gene." J Biol Chem 259(11): 6826-32.
    129. Schirmer, E. C., J. R. Glover, et al. (1996). "HSP100/Clp proteins: a common mechanism explains diverse functions." Trends Biochem Sci 21(8): 289-96.
    130. Schonfeld, H. J., D. Schmidt, et al. (1995). "The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components." J Biol Chem 270(5): 2183-9.
    131. Seo, J. S., H. Chong, et al. (2005). "The genome sequence of the ethanologenic bacterium Zymomonas mobilis Z. mobilis4." Nat Biotechnol 23(1): 63-8.
    132. Sharma, S. C. (1997). "A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae." FEMS Microbiol Lett 152(1): 11-5.
    133. Singer, M. A. and S. Lindquist (1998). "Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose." Trends Biotechnol 16(11): 460-8.
    134. Skotnicki, M. L., R. G. Warr, et al. (1983). "High-productivity alcohol fermentations usingZymomonas mobilis." Biochem Soc Symp 48: 53-86.
    135. Sofia, H. J., V. Burland, et al. (1994). "Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes." Nucleic Acids Res 22(13): 2576-86.
    136. Sprenger, G. (1996). "Carbohydrate metabolism in Zymomonas mobilis; A catabolic highway with some scenic routes." FEMS Microbiol. Lett 145:: 301-307.
    137. Sprenger, G. A. (1995). "Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12." Arch Microbiol 164(5): 324-30.
    138. Sprenger, G. A., U. Schorken, et al. (1995). "Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains." J Bacteriol 177(20): 5930-6.
    139. Sreekumar, O. a. B., B.S. (1992). "Effect of calcium and sodium salts on ethanol production in high sugar fermentation by free cells of Zymomonas mobilis." Biotechnology Letters 14,: 511–514.
    140. Stephens, C., B. Christen, et al. (2007). "Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus." J Bacteriol 189(5): 2181-5.
    141. Su P, D. SF, et al. (1989). "Cloning and expression. of beta-glucosidase gene from Xanthomonas albilineans. in Escherichia coli and Zymomonas mobilis. ." J Biotechnol 9: 139-152.
    142. Swan, T. M. and K. Watson (1999). "Stress tolerance in a yeast lipid mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose." Can J Microbiol 45(6): 472-9.
    143. Takemura, R., Y. Inoue, et al. (2004). "Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock." J Cell Sci 117(Pt 18): 4189-97.
    144. Tao, H., R. Gonzalez, et al. (2001). "Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation." J Bacteriol 183(10): 2979-88.
    145. Thanonkeo, P. (2007). "Magnesium Ions Improve Growth and Ethanol Production of Zymomonas mobilis under Heat or Ethanol Stress." Biotechnology 6 (1): : 112-119.
    146. Touati, E., E. Dassa, et al. (1986). "Pleiotropic mutations in appR reduce pH 2.5 acid phosphatase expression and restore succinate utilisation in CRP-deficient strains of Escherichia coli." Mol Gen Genet 202(2): 257-64.
    147. Trinh et al, U. P., Srienc F (2008). "Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses." AEM 74:: 3634-3643.
    148. Tunnacliffe, A., A. Garcia de Castro, et al. (2001). "Anhydrobiotic engineering of bacterial and mammalian cells: is intracellular trehalose sufficient?" Cryobiology 43(2): 124-32.
    149. Tuveson, R. W. and R. B. Jonas (1979). "Genetic control of near-UV (300-400 NM) sensitivity independent of the recA gene in strains of Escherichia coli K12." Photochem Photobiol 30(6): 667-76.
    150. Udelsman, R., M. J. Blake, et al. (1993). "Vascular heat shock protein expression in response to stress. Endocrine and autonomic regulation of this age-dependent response." J Clin Invest 91(2):465-73.
    151. Underwood, S. A., M. L. Buszko, et al. (2002). "Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation." Appl Environ Microbiol 68(3): 1071-81.
    152. Underwood, S. A., M. L. Buszko, et al. (2004). "Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli KO11 during xylose fermentation." Appl Environ Microbiol 70(5): 2734-40.
    153. Underwood, S. A., S. Zhou, et al. (2002). "Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli." Appl Environ Microbiol 68(12): 6263-72.
    154. Vyas, H. and G. Krishnaswamy (2006). "Paul Ehrlich's "Mastzellen"--from aniline dyes to DNA chip arrays: a historical review of developments in mast cell research." Methods Mol Biol 315: 3-11.
    155. Walfridsson, M., J. Hallborn, et al. (1995). "Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase." Appl Environ Microbiol 61(12): 4184-90.
    156. Wang, P. Y., C. Shopsis, et al. (1980). "Fermentation of a pentose by yeasts." Biochem Biophys Res Commun 94(1): 248-54.
    157. Warrens, A. N., M. D. Jones, et al. (1997). "Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest." Gene 186(1): 29-35.
    158. Watanabe, S., S. P. Pack, et al. (2007). "The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae." Biosci Biotechnol Biochem 71(5): 1365-9.
    159. Weber, H., T. Polen, et al. (2005). "Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity." J Bacteriol 187(5): 1591-603.
    160. Wilder, M., R. C. Valentine, et al. (1963). "Ferredoxin of Clostridium Thermosaccharolyticum." J Bacteriol 86: 861-5.
    161. Y-C, C., M. Zhang, et al. (1997). "Construction and evaluation of a xylose/arabinose fermenting strain of Zymomonas mobilis." Abstracts 19th Symposium on Biotechnology for Fuels and Chemicals Colorado Springs: 4-8.
    162. Yanase, H., M. Masuda, et al. (1990). "Expression of Eschericia coli alpha galactosidase and lactose permease genes in Zymomonas mobilis and its raffinose fermentation. ." J.Ferm. Bioeng. (70): 1-6.
    163. Yura, T., H. Nagai, et al. (1993). "Regulation of the heat-shock response in bacteria." Annu Rev Microbiol 47: 321-50.
    164.沈煜(2005). "酿酒酵母工程菌株中XI木糖代谢途径的建立."中国生物工程杂志25(9): 69-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700