用户名: 密码: 验证码:
多基因标记辅助选择及Lbx基因家族的分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分子数量遗传学及其相关学科的发展,有关动物遗传标记辅助选择方面的研究也在不断深入。在过去的研究中,已发现黑素皮质素受体4 (Melanocortin-4 Receptor, MC4R),心脏型脂肪酸结合蛋白(Heart FABP, H-FABP),瘦素(Leptin, LEP),氟烷基因(Halothane, HAL),钙蛋白酶抑制蛋白(calpastatin, CAST)和肌细胞生成素(myogenin, MyoG)等基因与胴体、肉质性状相关。我们通过PCR-RFLP分析了以上基因在DIv2系(中国瘦肉猪新品系)和7个纯种猪中的多态性分布,并在DIV2系中进行了遗传效益分析,同时研究了多基因标记同时选择的可能性。在脊椎动物中,Lbx基因(Ladybird-like genes)家族对于肌肉形成和神经发育起着重要作用。本研究对猪Lbx1和Lbx2基因进行了分离和遗传效应分析。作为重要的表观遗传学现象之一,DNA甲基化对基因的表达发挥重要的调控功能。因此,我们在肌肉组织中研究了Lbx1和Lbx2基因表达和甲基化之间的关系。并通过诱导分化C2C12细胞,研究DNA甲基化对MyoD (myogenic differentiation 1), Myf5 (myogenic factor 5), Pax 7 (paired box 7)和Lbx1基因表达的影响。主要试验结果如下:
     1通过PCR-RFLP分析了MC4R, H-FABP, LEP, HAL, CAST和MyoG基因多态位点在DIv2系和7个纯种猪中的分布,并在DIV2系中进行了遗传效应分析,结果表明:(1)MC4R基因中的TaqⅠ酶切位点与平均背膘厚、瘦肉率显著相关(P<0.05);(2)LEP基因中的HinfⅠ酶切位点,BB基因个体的曰增重极显著高于AA基因型个体(P<0.01),AB基因个体的日增重显著高于AA基因型个体(P<0.05);(3)H-FABP基因第二内含子的HaeⅢ酶切位点,DD基因型个体的瘦肉率显著高于dd基因型个体(P<0.05);(4)在CAST基因MspⅠ位点中,EE基因型个体的日增重显著高于FF基因型个体(P<0.05),EF基因型个体的日增重极显著高于FF基因型个体(P<0.01)。
     2连锁不平衡分析显示:在DIv2系、大白猪、长白猪和八眉猪中,MC4R和LEP基因位点间、LEP和H-FABP基因位点间的连锁不平衡度不显著(P>0.05);在DIv2系、大白猪、长白猪、皮特兰猪和八眉猪中,MC4R与H-FABP基因位点间的连锁不平衡度不显著(P>0.05)。这表明两个位点间是独立的,因此对其中一个位点的选择不会影响另一个位点的等位基因频率。
     3采用电子克隆方法获得了两个候选基因的编码区序列:(1) Lbx1, mRNA中的CDS全长846bp,编码281个氨基酸;(2) Lbx2, mRNA中的CDS全长591bp,编码196个氨基酸。通过比较不同物种氨基酸序列,对以上两个基因进行了系统进化树分析,发现猪Lbxl与牛、小鼠、人、犬、类人猿进化关系较近,猪Lbx2与牛、猩猩、犬进化关系较近。
     4 RT-PCR分析显示:猪Lbx1基因在肌肉组织中高表达;Lbx2基因在肝、肾和脾中微弱表达,但在肌肉组织中不表达。在出生后肌肉发育过程中,Lbx1基因的表达处于动态变化中,一月龄之内,表达量相对较高,在二月龄时,表达量显著下调,该变化趋势与产后肌肉组织中肌卫星细胞分化比例的变化一致,由于Lbx1基因已被证实在肌卫星细胞分化初期表达,因此我们推测该基因可能与出生后肌肉增生机制有关。在不同肌肉组织中的分析表明:猪Lbx1基因在股二头肌中的表达量显著高于在咬肌,背最长肌和半腱肌中的表达量,推测Lbx1基因的表达量与肌纤维类型并无直接关系。
     5通过亚硫酸盐测序技术,在猪背最长肌中分析Lbx1和Lbx2基因启动子和外显子l的甲基化状态。发现:(1) Lbx1基因的甲基化差异区在外显子1处的CpG岛内;(2) Lbx2基因的甲基化差异区在CpG岛外的启动子区。Lbx1基因CpG岛内的高密度甲基化可能参与下调该基因在背最长肌中的表达量。
     6通过对猪Lbx1基因组SNP扫描,发现2个引起酶切位点改变的SNP: g.752A>G和g.-1559C>G。在大白╳梅山F2代资源家系中进行性状关联分析发现,Lbx1基因g.752A>G突变与眼肌面积和内脂率显著相关(P<0.05),该突变位于内含子,并不影响蛋白结构,因此该相关可能是由于g.752A>G突变与真正的功能突变处于连锁不平衡状态造成的。
     7 RT-PCR分析显示:MyoD和Myf5基因在未分化及分化的C2C12细胞中均表达,MyoG基因在成肌分化后期表达,另外,在C2C12细胞分化过程中始终检测到Pax7基因微弱表达。Lbx1基因在C2C12细胞中不表达。通过亚硫酸盐测序发现,在C2C12细胞成肌分化过程中MyoD, Myf5, Pax7和Lbx1基因外显子1或启动子区的甲基化密度处于动态变化中,推测这种变化影响其mRNA表达变化。
With the development of molecular and quantitative genetics and its related subjects, it made a great progress on the research about animal genetic marker assisted selection (MAS). We have known that polymorphism of MC4R (Melanocortin-4 Receptor), H-FABP (Heart FABP), LEP (Leptin), HAL (Halothane), CAST (calpastatin) and MyoG (myogenin) genes associated relation with meat quality in recent research. PCR-RFLP was used to analyze these polymorphisms in a swine breed composite (DIV2) and 7 swine breeds. The implications of the allelic distribution of these genes for meat production, and applicability of molecular markers in pig breeding were discussed. In all animals investigated so far, both the protostome genes and the vertebrate Lbx genes (Ladybird-like genes) were found to play crucial roles in muscle and neural development. As candidate genes of animal growth and meat quality, the porcine Lbx1 and Lbx2 were cloned and identified and genetics effect were analyzed. DNA methylation is an important epigenetic system. It plays many crucial roles in the gene regulation. In this study we investigated whether DNA methylation regulates the expression of the Lbx1 and Lbx2 genes in porcine skeletal muscle. In addition, we analyzed the DNA methylation pattern of four genes (MyoD, Myf5, Pax7 and Lbx1) in myogenic differentiation in C2C12 cells. The results are summarized as follows:
     1 PCR-RFLP was used to analyze the polymorphisms of MC4R, LEP, H-FABP, HAL, CAST, MyoG genes in a swine breed composite (DIV2) and 7 swine breeds. The association study of these polymorphisms with several economic traits was carried out on a DIV2 population. The results obtained showed that MC4R/TaqI genotype had an effect for average backfat thickness (P<0.05) and lean meat percentage (P<0.05); At locus LEP/HinfI animals of AA genotype had lower test daily gain than that of BB (P<0.01) or AB genotype (P<0.05); At the H-FABP/HaeⅢlocus lean meat percentage of the individuals with genotype DD were higher than that with genotype dd (P<0.05); At locus CAST/MspI animals of FF genotype had lower test daily gain than that of EF(P<0.01) or EE genotype (P<0.05).
     2 Linkage disequilibrium analysis among MC4R, LEP and H-FABP revealed that these genes were independent. Therefore, exerting selection pressure on one locus should not influence the allelic frequencies of the other locus. This represented two or more genes that could be combined together within one genotype in order to facilitate breeding for objective traits.
     3 We obtained the full coding region of the 2 genes with electronic cloning technology. (1) The cDNA sequence of porcine Lbx1 contains an ORF of 846 bp encoding a protein of 281 residues. (2) The cDNA sequence of porcine Lbx2 contains an ORF of 591 bp encoding a protein of 196 residues. Phylogenetic trees were constructed by aligning the amino acid sequences of different species. The porcine protein sequence of Lbx1 has high sequence similarity with Bos taurus, Mus musculus, Homo sapiens, Canis familiaris, Pan troglodytes than with other species, and the porcine protein sequence of Lbx2 has high sequence similarity with Bos taurus, Pongo abelii, Canis familiaris than with other species.
     4 RT-PCR analyses showed that Lbx1 was highly expressed in porcine skeletal muscle tissues, Lbx2 was lowly expressed in liver, kidney and spleen. And we provide the first evidence that Lbx1 has a certain regulated expression pattern during the postnatal period of the porcine skeletal muscle development. The percentage of differentiating satellite cells was highest in 1-week-old pigs and significantly decreased in 7-week-old pigs. It is very interesting that the expression of the porcine Lbx1 gene in skeletal muscle shows the same trend of a higher expression in early postnatal porcine growth. Therefore, we deduce that Lbx1 gene may have a relationship with postnatal hyperplastic mechanisms. Lbx1 gene expressed at higher levels in bicepsfemoris muscles compared with masseter, semitendinosus and longissimus dorsi muscles in Meishan pigs. Thus, our study indicates that there is no direct relationship between the Lbx1 transcription level and type of muscle fiber.
     5 Bisulfite sequencing (BS) technique was used to analyze the specific methylation on promoter and exon 1 regions of Lbx1 and Lbx1 genes in longissimus dorsi muscle. (1) Lbx1, the differentially methylated region was found in a CpG island of the exon 1. (2) Lbx2, the differentially methylated region was outside of the CpG island. These results suggested that the high DNA methylation in CpG island might be involved in the down regulation of Lbx1 in longissimus dorsi muscle.
     6 Single nucleotide polymorphism (SNP) scanning in the Lbx1 genomic fragment identified two mutations, g.752A>G and g.-1559C>G. Association analysis in our experimental pig populations showed that the mutation of g.752A>G was significantly associated with loin muscle area (P<0.05) and internal fat rate (P<0.05). The g.752A>G does not affect the encoded protein structure. It means that a direct effect of this polymorphism is unlikely. Our results suggest that the associations are caused by linkage disequilibrium with QTLs for these traits.
     7 RT-PCR analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. In addition, the C2C12 cells do not express endogeneous Lbxl. In myogenic differentiation in C2C12 cells, the changes of promoter and exon 1 methylation of MyoD, Myf5, Pax7 and Lbxl genes were observed. These results suggested the methylation of these genes is a dymamic process, which play a dominant role in regulating gene expression for development of muscle.
引文
1.程丰,赵云焕,易本驰,陈斌.猪CAST基因PCR-RFLPs与肉质相关性的分析.河南农业科学,2006,2:103-106
    2.陈学伟,李仕贵,马玉清,等.水稻抗稻瘟病基因Pid(t)、Pib、Pita的聚合及分子标记选择.生物工程学报,2004,20(5):708-713.
    3.仇雪梅,李宁,邓学梅,等.影响动物肉质性状主要候选基因的研究进展.遗传,2002,24(5):571-574
    4.戴如娟,李宁,吴常信.猪肥胖基因cDNA的克隆与分析.遗传学报,2000,27(4):290-297
    5.高勤学,刘梅,杨月琴,王林云.猪MyoG基因的PCR-RFLP分型及其与生长性能和肌纤维数目的相关性分析.中国兽医学报,2005,25(3):330-332
    6.郭宝林,杨宁.鸡矮小基因的研究进展及应用.中国家禽,1997,(9):3133
    7.何志平,吕学斌,陈晓晖.利用PCR-RFLP技术测定种猪的氟烷基因型.西北农林科技大学学报,2002,30(2):48-50
    8.黄冬维,张元跃,蒋隽,袁峥嵘.基因聚合在猪育种中的应用现状.猪与禽,2008,28(3):60-62
    9.黄俊军.脂肪酸结合蛋白的研究.国外医学分子生物学分册,1998,20(5):235--236
    10.胡礼炳.DAPK基因启动子CpG岛异常甲基化在膀胱癌中的意义及其机制的研究.[博士学位论文].复旦大学,2007
    11.洪坤月.太湖鸡PRL、PRLR和FSHβ基因多态与前期产蛋性状关系研究.西北农业学报,2007,16(5):11-14
    12.姜增固,王敏奇,洪作鹏.猪心脏脂肪酸结合蛋白及其基因与肌内脂肪含量关系的研究进展.中国饲料,2004,21:20-24
    13.李国治,连林生,鲁绍雄.标记辅助选择改良猪经济性状的研究进展.养猪,2004,3:25-28
    14.李宁.基因组学技术在动物遗传育种中的应用.华南农业大学学报,2005,26(1):12-19
    15.李永平,梁炳生.MyoD肌形成作用机制研究进展.国际骨科学杂志,2007,28(1): 37-40
    16.刘榜.国内外猪基因组与分子育种研究进展.猪业科学,2008,1:66-67
    17.刘博,韩志国,高腾云.牛双肌基因遗传机制及研究进展.中国农学通报,2011,27(01):333-336
    18.刘桂兰,蒋思文,熊远著,等.猪资源家系MC4R基因扫描及其与脂肪性状的相关分析.遗传学报,2002,29(6):497-501
    19.刘晓妍.猪H-FABP基因多态性及其与肌内脂肪含量的遗传相关性研究.[硕士学位论文].四川农业大学,2004.
    20.柳淑芳,闫艳春,杜立新.莱芜黑猪肥胖基因的多态性分析.中国畜牧杂志,2003,39(5):14-15
    21.刘志文,傅廷栋,刘雪平,等.作物分子标记辅助选择的研究进展、影响因素及其发展策略.植物学通报,2005,22(增刊):82-90
    22.鲁绍雄,吴常信.动物遗传标记辅助选择研究及其应用.遗传,2002,23(3):359--362
    23.毛泽斌,张宗玉,吴耀南,等.大鼠衰老过程中脑细胞DNA与c-Ha-ras原癌基因的甲基化.生物化学杂志,1994,10(5):570-574
    24.倪健宏,杨永林,白丁平.乙酰化、甲基化修饰与肌肉发育及分化研究进展.新疆农垦科技,2008,6:54-55
    25.庞卫军,杨公社,龙火生,等.猪心脏脂肪酸结合蛋白基因PCR-RFLP分子标记研究.生物技术通讯,2004,15(2):124-127
    26.帅起义,熊远著,邓昌彦.优良肉质瘦肉猪新品系(DIV2系)的选育与配套研究.中国畜牧兽医,2006,33(3):31-34
    27.孙立彬,孟和,李婧,等.梅山猪等5个群体中钙蛋白酶抑制蛋白基因的多态性及其与肉质和背膘厚的关系.农业生物技术学报,2006,14(2):156-161
    28.王存芳.猪H-FABP和A-FABP基因的多态性及其与肌内脂肪性状关系的研究.[硕士学位论文].山东农业大学,2002
    29.王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择.遗传学报,2001,28(7):640-646
    30.武艳群,吴旧生,赵晓枫,等.猪CAST基因多态性与肌纤维组织学特性及屠宰性状的相关性分析.遗传,2007,29(1):65-69
    31.肖石军,颜瑛,任军,等.MC4R基因主效位点在中外猪种中的遗传多样性及其与生长肥育性状的关联性分析.畜牧兽医学报,2006,37(9):841-845
    32.熊远著,邓昌彦.种猪测定原理与方法.北京:中国农业出版社,1999,57-118.
    33.徐林,张宏宇,单安山,赵伟.肌纤维类型与肉质关系.饲料博览,2010,5:11-13
    34.于吉英,陈宽维.ESR、POU1F1基因对文昌鸡繁殖性状的遗传效应分析.畜牧兽医,2008,40(4):49-51
    35.张国梁,金海国.动物育种中标记辅助选择的应用.吉林农业科学,2006,31(4):34-36
    36.张增艳,陈孝,张超,等.分子标记选择抗白粉病基因Pm4b、Pm13和Pm21聚合体.中国农业科学,2002,35(7):789-793
    37.赵会静.猪H-FABP基因和CAST基因的多态性及其与肉质性状关系的研究.[硕士学位论文].中国农业科学院畜牧研究所,2005
    38.赵晓,莫德林,张悦,等.猪的骨骼肌生长发育研究进展.生命科学,2011,23(1): 37-44
    39.赵要凤,李宁,肖璐,等.猪FSHβ亚基基因结构区逆转座子插入突变及其与产仔数关系的研究.中国科学(C辑),1999,29(1):81-86
    40.朱砺,李学伟.MyoG基因的遗传效应分析.遗传,2005,27(5):710-714
    41. Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum,2004,121:472-480
    42. Ammerpohl O, Marti n-Subero J I, Richter J, Vater I, Siebert R. Hunting for the 5th base:Techniques for analyzing DNA methylation. Biochimica et Biophysica Acta (BBA)-General Subjects,2009,1790:847-862
    43. Andersson L. Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet,2001,2:130-138
    44. Ashmore C, Addis P, Doerr L. Development of muscle fibers in the fetal pig. Journal of Animal Science,1973,36:1088
    45. Attwood J, Yung R, Richardson B. DNA methylation and the regulation of gene transcription. Cellular and molecular life sciences,2002,59:241-257
    46. Baylin S B, Herman J G. DNA hypermethylation in tumorigenesis:epigenetics joins genetics. Trends in Genetics,2000,16:168-174
    47. Beek S, Arendonk J. Marker assisted selection in an outbred poultry breeding nucleus. Get the document, find related information or use other SFX services. Animal Science,1996,62:171-180
    48. Bird A. DNA methylation patterns and epigenetic memory. Genes & Development, 2002,16:6
    49. Bird A P. CpG-rich islands and the function of DNA methylation. Nature,1986, 321:209-213
    50. Bird A P. CpG islands as gene markers in the vertebrate nucleus. Trends in Genetics, 1987,3:342-347
    51. Boehm M L, Kendall T L, Thompson V F, Goll D E. Changes in the calpains and calpastatin during postmortem storage of bovine muscle. Journal of Animal Science, 1998,76:2415
    52. Brandeis M, Frank D, Keshet I, Siegfried Z, Mendelsohn M, Nemes A, Temper V, Razin A, Cedar H. Sp1 elements protect a CpG island from de-nove methylation. Nature,1994,371:435-438
    53. Brohmann H, Jagla K, Birchmeier C. The role of Lbx1 in migration of muscle precursor cells. Development,2000,127:437-445
    54. Bryson-Richardson R J, Currie P D. The genetics of vertebrate myogenesis. Nature Reviews Genetics,2008,9:632-646
    55. Burgos C, Carrodeguas J A, Moreno C, Altarriba J, Tarrafeta L, Barcelona J A, Lopez-Buesa P. Allelic incidence in several pig breeds of a missense variant of pig melanocortin-4 receptor (MC4R) gene associated with carcass and productive traits; its relation to IGF2 genotype. Meat Science,2006,73:144-150
    56. Butcher D T, Mancini-DiNardo D N, Archer T K, Rodenhiser D I. DNA binding sites for putative methylation boundaries in the unmethylated region of the BRCA1 promoter. International Journal of Cancer,2004,111:669-678
    57. Campbell E M, Fahrenkrug S C, Vallet J L, Smith T P, Rohrer G A. An updated linkage and comparative map of porcine chromosome 18. Anim Genet,2001, 32:375-379
    58. Chen F, Liu K C, Epstein J A. Lbx2, a novel murine homeobox gene related to the Drosophila ladybird genes is expressed in the developing urogenital system, eye and brain. Mechanisms of Development,1999,84:181-184
    59. Chen F, Collin G B, Liu K C, Beier D R, Eccles M, Nishina P M, Moshang T, Epstein J A. Characterization of the murine Lbx2 promoter, identification of the human homologue, and evaluation as a candidate for Alstr m syndrome. Genomics, 2001,74:219-227
    60. Chen T, Li E. Structure and function of eukaryotic DNA methyltransferases. Current Topics in Developmental Biology,2004,60:55-89
    61. Cie lak B D, Kapelanski W, Blicharski T. Restriction fragment length polymorphisms in myogenin and myf3 genes and their influence on lean meat content in pigs. Journal of Animal Breeding and Genetics,2000,117:43-55
    62. Collins C A, Olsen I, Zammit P S, Heslop L, Petrie A, Partridge T A, Morgan J E. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell,2005,122:289-301
    63. Dario L S, Rosa M A, Mariela E, Roberto G, Caterina C. Chromatin remodeling agents for cancer therapy. Reviews on recent clinical trials,2008,3:192-203
    64. de Oliveira Peixoto J, Facioni Guimaraes S E, Savio Lopes P, Menck Soares M A, Vieira Pires A, Gualberto Barbosa M V, de Almeida Torres R, de Almeida E S M. Associations of leptin gene polymorphisms with production traits in pigs. J Anim Breed Genet,2006,123:378-383
    65. Dekkers J C. Commercial application of marker- and gene-assisted selection in livestock:strategies and lessons. J Anim Sci,2004,82 E-Suppl:E313-328
    66. Dekkers J C M. The use of molecular genetics in the improvement of agricultural populations. Nature Reviews Genetics,2002,3:22-32
    67. Dragos-Wendrich M, Stratil A, Hojny J, Moser G, Bartenschlager H, Reiner G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome 18. Journal of Animal Breeding and Genetics,2003,120:138-143
    68. Ducy P, Amling M, Takeda S, Priemel M, Schilling A F, Beil F T, Shen J, Vinson C, Rueger J M, Karsenty G. Leptin Inhibits Bone Formation through a Hypothalamic Relay::A Central Control of Bone Mass. Cell,2000,100:197-207
    69. Edwards M, Page N. Evaluation of marker-assisted selection through computer simulation. TAG Theoretical and Applied Genetics,1994,88:376-382
    70. Ehrich M, Turner J, Gibbs P, Lipton L, Giovanneti M, Cantor C, Van Den Boom D. Cytosine methylation profiling of cancer cell lines. Proceedings of the National Academy of Sciences,2008,105:4844
    71. Ernst C, Mendez E, Robic A, Rothschild M. Rapid communication:myogenin (MYOG) physically maps to porcine chromosome 9q2.1-q2.6. Journal of Animal Science,1998,76:328
    72. Ernst C, Robic A, Yerle M, Wang L, Rothschild M. Mapping of calpastatin and three microsatellites to porcine chromosome 2q2.1-q2.4. Animal Genetics,1998,29:212-215
    73. Fraga M F, Uriol E, Diego L B, Berdasco M, Esteller M, Ca al M J, Rodriguez R. High-performance capillary electrophoretic method for the quantification of 5-methyl 2'-deoxycytidine in genomic DNA:Application to plant, animal and human cancer tissues. Electrophoresis,2002,23:1677-1681
    74. Frommer M, McDonald L E, Millar D S, Collis C M, Watt F, Grigg G W, Molloy P L, Paul C L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences,1992,89:1827
    75. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna V K, Weiler J E, O'Brien P J, Maclennan D H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science,1991,253:448
    76. Gao Y, Zhang R, Hu X X, Li N. Application of genomic technologies to the improvement of meat quality of farm animals. Meat Science,2007,77:36-45
    77. Gardiner-Garden M, Frommer M. CpG Islands in vertebrate genomes* 1. Journal of molecular biology,1987,196:261-282
    78. Gebhard C, Schwarzfischer L, Pham T H, Schilling E, Klug M, Andreesen R, Rehli M. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Research,2006,66:6118
    79. Gerbens F, Rettenberger G, Lenstra J A, Veerkamp J H, te Pas M F. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mamm Genome,1997,8:328-332
    80. Gerbens F, Jansen A, van Erp AJ, Harders F, Meuwissen T H, Rettenberger G, Veerkamp J H, te Pas M F. The adipocyte fatty acid-binding protein locus: characterization and association with intramuscular fat content in pigs. Mamm Genome,1998,9:1022-1026
    81. Gerbens F, Van Erp A, Harders F, Verburg F, Meuwissen T, Veerkamp J, Te Pas M. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. Journal of Animal Science,1999, 77:846
    82. Gerbens F, de Koning D J, Harders F L, Meuwissen T H, Janss L L, Groenen M A, Veerkamp J H, Van Arendonk J A, te Pas M F. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J Anim Sci,2000,78:552-559
    83. Gerbens F, Verburg F, Van Moerkerk H, Engel B, Buist W, Veerkamp J, Te Pas M. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. Journal of Animal Science,2001,79:347
    84. Goldberg A D, Allis C D, Bernstein E. Epigenetics:a landscape takes shape. Cell, 2007,128:635-638
    85. Goll M G, Bestor T H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem., 2005,74:481-514
    86. Gross M K, Moran-Rivard L, Velasquez T, Nakatsu M N, Jagla K, Goulding M. Lbxl is required for muscle precursor migration along a lateral pathway into the limb. Development,2000,127:413-424
    87. Gross M K, Dottori M, Goulding M. Lbxl specifies somatosensory association interneurons in the dorsal spinal cord. Neuron,2002,34:535-549
    88. Harbitz I, Kristensen T, Bosnes M, Kran S, Davies W. DNA sequence of the skeletal muscle calcium release channel cDNA and verification of the Arg615→ Cys615 mutation, associated with porcine malignant hyperthermia, in Norwegian Landrace pigs. Animal Genetics,1992,23:395-402
    89. Harrold J A, Widdowson P S, Williams G. Altered energy balance causes selective changes in melanocortin-4 (MC4-R), but not melanocortin-3 (MC3-R), receptors in specific hypothalamic regions:further evidence that activation of MC4-R is a physiological inhibitor of feeding. Diabetes,1999,48:267
    90. Herman J G, Graff J R, My h nen S, Nelkin B D, Baylin S B. Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences,1996,93:9821
    91. Hittalmani S, Parco A, Mew T, Zeigler R, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. TAG Theoretical and Applied Genetics,2000,100:1121-1128
    92. Houston R D, Cameron N D, Rance K A. A melanocortin-4 receptor (MC4R) polymorphism is associated with performance traits in divergently selected large white pig populations. Animal Genetics,2004,35:386-390
    93. Huang L, Cai L. Leptin:a multifunctional hormone. Cell Research,2000,10:81-92
    94. Hyde S C, Pringle I A, Abdullah S, Lawton A E, Davies L A, Varathalingam A, Nunez-Alonso G, Green A M, Bazzani R P, Sumner-Jones S G, Chan M, Li H, Yew N S, Cheng S H, Boyd A C, Davies J C, Griesenbach U, Porteous D J, Sheppard D N, Munkonge F M, Alton E, Gill D R. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nature Biotechnology,2008, 26:549-551
    95. Inage-Miyake Y, Shimanuki S, Itoh T, Murakami Y, Kimura M, Suzuki H, Miyake M, Toki D, Uenishi H, Awata T, Hamasima N. Assignment of the gene for porcine insulin-like growth factor binding protein 1 to chromosome 18 and detection of polymorphisms in intron 2 by PCR-RFLP. Biochemical Genetics,2005,43:78-85
    96. Jagla K, Dolle P, Mattei M G, Jagla T, Schuhbaur B, Dretzen G, Bellard F, Bellard M. Mouse Lbx1 and human LBX1 define a novel mammalian homeobox gene family related to the Drosophila lady bird genes. Mech Dev,1995,53:345-356
    97. Jagla K, Frasch M, Jagla T, Dretzen G, Bellard F, Bellard M. ladybird, a new component of the cardiogenic pathway in Drosophila required for diversification of heart precursors. Development,1997,124:3471
    98. Jagla T, Bellard F, Lutz Y, Dretzen G, Bellard M, Jagla K. ladybird determines cell fate decisions during diversification of Drosophila somatic muscles. Development, 1998,125:3699
    99. Jiang Z H, Gibson J P. Genetic polymorphisms in the leptin gene and their association with fatness in four pig breeds. Mamm Genome,1999,10:191-193
    100.Jokubka R, Maak S, Kerziene S, Swalve H H. Association of a melanocortin 4 receptor (MC4R) polymorphism with performance traits in Lithuanian White pigs. Journal of Animal Breeding and Genetics,2006,123:17-22
    101.Jones P A, Baylin S B. The fundamental role of epigenetic events in cancer. Nature Reviews Genetics,2002,3:415-428
    102.Kanamoto T,Terada K, Yoshikawa H, Furukawa T. Cloning and expression pattern of lbx3, a novel chick homeobox gene. Gene Expression Patterns,2006,6:241-246
    103.Kapelanski W, Grajewskal J K, Bocian M, Jankowiakl J W. Calpastatin (cast) gene polymorphism and selected meat quality traits in pigs. Animal Science Papers and Reports,2004,22:435-441
    104.Karlskov-Mortensen P, Bruun C S, Braunschweig M H, Sawera M, Markljung E, Enfalt A C, Hedebro-Velander I, Josell A, Lindahl G, Lundstrom K, von Seth G, Jorgensen C B, Andersson L, Fredholm M. Genome-wide identification of quantitative trait loci in a cross between Hampshire and Landrace I:carcass traits. Animal Genetics,2006,37:156-162
    105.Karlsson A H, Klont R E, Fernandez X. Skeletal muscle fibres as factors for pork quality. Livestock Production Science,1999,60:255-269
    106.Kennes Y M, Murphy B D, Pothier F, Palin M F. Characterization of swine leptin (LEP) polymorphisms and their association with production traits. Anim Genet,2001, 32:215-218
    107.Khulan B, Thompson R F, Ye K, Fazzari M J, Suzuki M, Stasiek E, Figueroa M E, Glass J L, Chen Q, Montagna C. Comparative isoschizomer profiling of cytosine methylation:the HELP assay. Genome Research,2006,16:1046
    108.Kim J, Choi B, Kim B, Park S, Hong K. Associations of the variation in the porcine myogenin gene with muscle fibre characteristics, lean meat production and meat quality traits. Journal of Animal Breeding and Genetics,2009,126:134-141
    109.Kim K S, Larsen N, Short T, Plastow G, Rothschild M F. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm Genome,2000,11:131-135
    110.Kim K S, Reecy J M, Hsu W H, Anderson L L, Rothschild M F. Functional and phylogenetic analyses of a melanocortin-4 receptor mutation in domestic pigs. Domest Anim Endocrinol,2004,26:75-86
    111.Koohmaraie M. Biochemical factors regulating the toughening and tenderization processes of meat. Meat Science,1996,43:193-201
    112.Krzcio E, Kury J, Ko win-Podsiad a M, Monin G. Association of calpastatin (CAST/MspI) polymorphism with meat quality parameters of fatteners and its interaction with RYR1 genotypes. Journal of Animal Breeding and Genetics,2005, 122:251-258
    113.Labra M, Grassi F, Imazio S, Di Fabio T, Citterio S, Sgorbati S, Agradi E. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere,2004,54:1049-1058
    114.Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics,1990,124:743
    115.Li X, Xu M, Korban S S. DNA methylation profiles differ between field-andin vitro-grown leaves of apple. Journal of plant physiology,2002,159:1229-1234
    116.Lim H N, Van Oudenaarden A. A multistep epigenetic switch enables the stable inheritance of DNA methylation states. Nature Genetics,2007,39:269-275
    117.Liu B H. Statistical genomics:Linkage, mapping and qtl analysis. In. CRC Press, LLC, Boca Raton,1998, pp 404-409
    118.Marti A, Marcos A, Martinez J. Obesity and immune function relationships. Obesity reviews,2001,2:131-140
    119.Martin B L, Harland R M. A novel role for lbx1 in Xenopus hypaxial myogenesis. Development,2006,133:195
    120.Mascarello F, Stecchini M L, Rowlerson A, Ballocchi E. Tertiary myotubes in postnatal growing pig muscle detected by their myosin isoform composition. J. Anim Sci.,1992,70:1806-1813
    121.Mennerich D, Sch fer K, Braun T. Pax-3 is necessary but not sufficient for lbx1 expression in myogenic precursor cells of the limb. Mechanisms of Development, 1998,73:147-158
    122.Mesires N T, Doumit M E. Satellite cell proliferation and differentiation during postnatal growth of porcine skeletal muscle. Am J Physiol Cell Physiol,2002, 282:C899-906
    123.Meyers S, Beever J. Investigating the genetic basis of pork tenderness:genomic analysis of porcine CAST. Animal Genetics,2008,39:531-543
    124.Miranda T B, Jones P A. DNA methylation:the nuts and bolts of repression. Journal of cellular physiology,2007,213:384-390
    125.Moreau L, Charcosset A. Marker-assisted selection efficiency in populations of finite size. Genetics,1998,148:1353
    126.Mullen A M, Stapleton P C, Corcoran D, Hamill R M, White A. Understanding meat quality through the application of genomic and proteomic approaches. Meat Science, 2006,74:3-16
    127.Muller T, Brohmann H, Pierani A, Heppenstall P A, Lewin G R, Jessell T M, Birchmeier C. The homeodomain factor Lbxl distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron,2002,34:551-562
    128.Nii M, Hayashi T, Tani F, Niki A, Mori N, Fujishima-Kanaya N, Komatsu M, Aikawa K, Awata T, Mikawa S. Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a Japanese wild boar x Large White intercross. Anim Genet,2006,37:342-347
    129.Ochi H, Westerfield M. Lbx2 regulates formation of myofibrils. Bmc Developmental Biology,2009,9:13
    130.Oda M, Yamagiwa A, Yamamoto S, Nakayama T, Tsumura A, Sasaki H, Nakao K, Li E, Okano M. DNA methylation regulates long-range gene silencing of an X-linked homeobox gene cluster in a lineage-specific manner. Genes & Development, 2006,20:3382
    131.Oosterom J, Nijenhuis W A J, Schaaper W M M, Slootstra J, Meloen R H, Gispen W H H, Burbach J P H, Adan R A H. Conformation of the core sequence in melanocortin peptides directs selectivity for the melanocortin MC3 and MC4 receptors. Journal of Biological Chemistry,1999,274:16853
    132.Ordway J, Bedell J, Citek R, Nunberg A, Garrido A, Kendall R, Stevens J, Cao D, Doerge R, Korshunova Y. Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis,2006,27:2409
    133.Ovilo C, Perez-Enciso M, Barragan C, Clop A, Rodriquez C, Oliver M A, Toro M A, Noruera J L. A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm Genome,2000,11:344-346
    134.Ovilo C, Oliver A, Noguera J L, Clop A, Barragan C, Varona L, Rodriguez C, Toro M, Sanchez A, Perez-Enciso M, Silio L. Test for positional candidate genes for body composition on pig chromosome 6. Genetics Selection Evolution,2002, 34:465-479
    135.Ovilo C, Fernandez A, Rodriguez M C, Nieto M, Silio L. Association of MC4R gene variants with growth, fatness, carcass composition and meat and fat quality traits in heavy pigs. Meat Science,2006,73:42-47
    136.Pang W J, Bai L, Yang G S. Relationship among H-FABP gene polymorphism, intramuscular fat content, and adipocyte lipid droplet content in main pig breeds with different genotypes in western China. Yi Chuan Xue Bao,2006,33:515-524
    137.Park H B, Carlborg O, Marklund S, Andersson L. Melanocortin-4 receptor (MC4R) genotypes have no major effect on fatness in a Large White x Wild Boar intercross. Animal Genetics,2002,33:155-157
    138.Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science,2001,293:1089
    139.Reik W, Santos F, Dean W. Mammalian epigenomics:reprogramming the genome for development and therapy. Theriogenology,2003,59:21-32
    140.Rettenberger G, Bruch J, Fries R, Archibald A, Hameister H. Assignment of 19 porcine type I loci by somatic cell hybrid analysis detects new regions of conserved synteny between human and pig. Mammalian genome,1996,7:275-279
    141.Rothschild M, Soller M. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe,1997,8:13-20
    142.Sadri R, Hornsby P J. Rapid analysis of DNA methylation using new restriction enzyme sites created by bisulfite modification. Nucleic acids research,1996,24:5058
    143.Sch fer K, Braun T. Early specification of limb muscle precursor cells by the homeobox gene Lbxlh. Nature Genetics,1999,23:213-216
    144.Schafer K, Neuhaus P, Kruse J, Braun T. The homeobox gene Lbxl specifies a subpopulation of cardiac neural crest necessary for normal heart development. Circulation Research,2003,92:73
    145.Seale P, Sabourin L A, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki M A. Pax7 is required for the specification of myogenic satellite cells. Cell,2000,102:777-786
    146.Seeley R J, Drazen D L, Clegg D J. The critical role of the melanocortin system in the control of energy balance. Annual Review of Nutrition,2004,24:133-149
    147.Servin B, Martin O C, Mezard M, Hospital F. Toward a theory of marker-assisted gene pyramiding. Genetics,2004,168:513-523
    148.Sha K. A mechanistic view of genomic imprinting. Annu. Rev. Genomics Hum. Genet.,2008,9:197-216
    149.Sherwood R I, Christensen J L, Conboy I M, Conboy M J, Rando T A, Weissman I L, Wagers A J. Isolation of Adult Mouse Myogenic Progenitors::Functional Heterogeneity of Cells within and Engrafting Skeletal Muscle. Cell,2004, 119:543-554
    150.Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol J N M, Kooter J M. Transcriptional and posttranscriptional gene silencing are mechanistically related. Current Biology,2001,11:436-440
    151.Singh S, Sidhu J S, Huang N, Vikal Y, Li Z, Brar D S, Dhaliwal H S, Khush G S. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theoretical and Applied Genetics,2001,102:1011-1015
    152.Soumillion A, Erkens J H F, Lenstra J A, Rettenberger G, te Pas M F W. Genetic variation in the porcine myogenin gene locus. Mammalian genome,1997,8:564-568
    153.Szydlowski M, Stachowiak M, Mackowski M, Kamyczek M, Eckert R, Rozycki M, Switonski M. No major effect of the leptin gene polymorphism on porcine production traits. Journal of Animal Breeding and Genetics,2004,121:149-155
    154.Takai D, Jones P A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proceedings of the National Academy of Sciences of the United States of America,2002,99:3740
    155.Tang Z, Li Y, Wan P, Li X, Zhao S, Liu B, Fan B, Zhu M, Yu M, Li K. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol,2007,8:R115
    156.Te Pas M, Soumillion A, Rettenberger G, Van Den Bosh T, Veninga G. Characterization of the porcine myogenin gene locus and association between polymorphism and growth traits. Anim Genet,1996,27:117
    157.Te Pas M, Soumillion A, Harders F, Verburg F, Van den Bosch T, Galesloot P, Meuwissen T. Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. Journal of Animal Science, 1999,77:2352
    158.Trasler J M. Gamete imprinting:setting epigenetic patterns for the next generation. Reproduction, Fertility and Development,2005,18:63-69
    159.Uleberg E, Wideroe I S, Grindflek E, Szyda J, Lien S, Meuwissen T H E. Fine mapping of a QTL for intramuscular fat on porcine chromosome 6 using combined linkage and linkage disequilibrium mapping. Journal of Animal Breeding and Genetics,2005,122:1-6
    160.Veerkamp J, Maatman R. Cytoplasmic fatty acid-binding proteins:their structure and genes. Progress in lipid research,1995,34:17
    161.Verrier E. Marker assisted selection for the improvement of two antagonistic traits under mixed inheritance. Genetics Selection Evolution,2001,33:1-22
    162.Watanabe S, Kondo S, Hayasaka M, Hanaoka K. Functional analysis of homeodomain-containing transcription factor Lbxl in satellite cells of mouse skeletal muscle. Journal of Cell Science,2007,120:4178-4187
    163.Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell T K, Turner D, Rupp R, Hollenberg S. The myoD gene family:nodal point during specification of the muscle cell lineage. Science,1991,251:761
    164.Wimmers K, Murani E, Ngu N T, Schellander K, Ponsuksili S. Structural and functional genomics to elucidate the genetic background of microstructural and biophysical muscle properties in the pig. Journal of Animal Breeding and Genetics, 2007,124:27-34
    165.Wotton K R, Weierud F K, Dietrich S, Lewis K E. Comparative genomics of Lbx loci reveals conservation of identical Lbx ohnologs in bony vertebrates. Bmc Evolutionary Biology,2008,8:171
    166.Wright W E, Sassoon D A, Lin V K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell,1989,56:607-617
    167.Xiong Z, Laird P W. COBRA:a sensitive and quantitative DNA methylation assay. Nucleic acids research,1997,25:2532
    168.Yadav R, Singh S, Rai M, Singh S, Singh B, Maurya M, Singh A. Gene pyramiding and horizontal resistance to diara stress in mustards. National Academy Science Letters,1990,13:325-327
    169.Yoshimura S, Yoshimura A, Iwata N, McCouch S R, Abenes M L, Baraoidan M R, Mew T W, Nelson R J. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Molecular Breeding,1995,1:375-387
    170.Yu M, Smolen G A, Zhang J M, Wittner B, Schott B J, Brachtel E, Ramaswamy S, Maheswaran S, Haber D A. A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. Genes & Development,2009,23:1737-1742
    171.Yun K, Wold B. Skeletal muscle determination and differentiation:story of a core regulatory network and its context. Current opinion in cell biology,1996,8:877-889
    172.Zammit P S, Relaix F, Nagata Y, Ruiz A P, Collins C A, Partridge T A, Beauchamp J R. Pax7 and myogenic progression in skeletal muscle satellite cells. Journal of Cell Science,2006,119:1824
    173.Zhang W, Smith C. Computer simulation of marker-assisted selection utilizing linkage disequilibrium. TAG Theoretical and Applied Genetics,1992,83:813-820
    174.Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M. Positional cloning of the mouse obese gene and its human homologue. Nature,1994,372:425
    175.Zheng K, Huang N, Bennett J, Khush G S. PCR-based marker-assisted selection in rice breeding. IRRI Discussion Paper Series (Philippines),1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700