用户名: 密码: 验证码:
猪胚胎期五个基因的分离、印记鉴定及甲基化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印记基因是指来自双亲的两个等位基因的表达具有倾向性,只表达一个亲本的,另一个亲本的不表达或者表达量很低的一类基因。它们对哺乳动物胚胎的生长、发育、胎盘的功能以及繁殖性状等方面起着重要作用。印记基因不但调控一些与质量性状相关的基因的表达,而且还影响许多数量性状的表型方差和表型值。全基因组扫描发现许多QTLs是父本或者母本印记的,它们与生长、背膘厚、胴体组成和繁殖性状相关。与人和鼠中印记基因的研究相比,在猪中对印记的研究很少。因此,在猪中鉴定新的印记基因非常重要,这不但可以完善家畜中印记基因的研究,而且可以加强基因组印记在不同物种中的比较基因组学分析。
     本研究利用RT-PCR-RFLP和直接测序的方法,鉴定了5个基因在妊娠30天、65天和100天胚胎中的印记状态。运用RCR-RFLP,检测了4个基因的SNP,以及其在不同品种中的等位基因频率,并且将这些多态位点与大白猪和梅山猪交配的F2代群体的胴体性状和肉质性状进行了关联分析。运用荧光定量和半定量RT-PCR的方法分析了目的基因的组织表达情况。获得4个基因的启动子序列,并对其中2个基因的启动子活性进行分析,且分析了其CpG岛的甲基化情况,具体结果如下:
     1.分离克隆了猪DIO3、RTL1、DIRAS3和COPG2基因,都包含完整的开放阅读框(ORF),预测的氨基酸序列与人和鼠具有很高的相似性。
     2.利用RT-PCR-RFLP和PCR直接测序的方法,在大白猪与梅山猪正反交产生的30 d、65 d和100 d胚胎中检测了DIO3、RTL1、NNAT、DIRAS3和COPG2基因的印记状态:DIO3、RTL1和DIRAS3基因在30 d胚胎、65 d和100 d胚胎的心脏、肝脏、脾脏、肺脏、肾脏、胃、小肠、肌肉、脑和胎盘组织都表现为父本表达;NNAT基因在65 d和100 d胚胎的脾脏组织中为双表达,其余组中都是父本表达;COPG2基因在各个阶段都是双表达的。
     3.用荧光定量PCR方法检测了DIO3基因在二月龄大白母猪不同组织中的表达情况,在脂肪组织中表达量最高。用半定量RT-PCR的方法检测了RTL1基因在大白猪65d胚胎的13个组织中的表达情况,在小肠、股二头肌和半腱肌中表达量较高;利用用荧光定量PCR的方法检测其在两个猪种(梅山猪和大白猪)的4个发育阶段(胚胎60 d,出生后35,60和120天)的三种类型的肌肉(背最长肌、股二头肌和半腱肌)中的表达情况;并且用半定量RT-PCR的方法检测了其随着C2C12细胞分化的表达量降低。检测到猪COPG2基因存在五个不同的转录本,分别命名为COPG2-1、CDPG2-2、COPG2-3、CDPG2-4和COPG2-5,利用半定量RT-PCR的方法分析了不同转录本在猪胚胎期65 d和出生后二月龄各10个组织中的表达情况。
     4.利用数据库中已有序列,设计引物PCR扩增获得了猪RTL1、NNAT和DIRAS3基因的启动子序列,利用基因组步移的方法获得了猪LCAT基因的启动子序列。发现RTL1和NNAT基因启动子区存在许多与肌肉发育相关的转录因子结合位点,如MyoD、YY1及NF-kappaB等,并且双荧光素酶报告基因系统检测了RTL1和NNAT基因的启动子活性。对RTL1和NNAT基因的启动子区的CpG岛进行了预测,并且用亚硫酸氢盐测序法对其甲基化状态进行了分析,初步推测NNAT基因的启动子区的两个CpG岛可能是差异甲基化区。
     5.利用PCR-RFLP技术,对DIO3、RTL1、NNAT和CoPG2基因中的SNP位点在不同品种猪中进行了基因分型,并在大白猪和梅山杂交产生的F2代群体中进行了性状关联分析。结果表明(1)DIO3基因外显子A687C位点与瘦肥肉比率、肥肉率、瘦肉率、板油重、肩部膘厚、6-7腰椎间膘厚、臀部膘厚、眼肌面积、背最长肌含水量、背最长肌失水率、背最长肌系水力、背最长肌肌肉色值、股二头肌肌肉色值、背最长肌大理石纹、股二头肌大理石纹呈显著相关(P<0.05),与肌内脂肪含量呈极显著相关(P<0.01);(2)RTL1基因外显子G1209A位点与皮率、内脂率、6-7腰椎间膘厚、胸腰椎间膘厚、背最长肌pH、股二头肌肌肉色值呈显著相关(P<0.05),与骨率、肩部膘厚、臀部膘厚、平均背膘厚、背最长肌失水率、背最长肌系水力、背最长肌肌肉色值呈极显著相关(P<0.01);RTL1基因外显子A3929G位点与内脂率、肩部膘厚、眼肌高、眼肌面积、背最长肌含水量、背最长肌肌肉色值、背最长肌肌内脂肪量显著相关(P<0.05),与皮率、背最长肌失水率、背最长肌系水力、股二头肌肌肉色值呈极显著相关(P<0.01);(3)NNAT基因启动子A-107G位点与眼肌高、眼肌宽、眼肌面积、背最长肌含水量、背最长肌大理石纹、股二头肌大理石纹呈显著相关(P<0.05);CDPG2基因3'UTR区G/A突变与肥肉率、胸腰椎间膘厚、臀部膘厚、平均背膘厚、背最长肌pH、股二头肌pH、头半棘肌pH显著相关(P<0.05)
Imprinted genes are the genes whose expression is dependent on parental origin that is only one allele from the father or mother is expressed and the other allele is not expressed or lowly expressed. In mammals, they play an essential role in the regulation of fetal growth, development, placental function and reproduction traits. They not only control the gene expression related to quality traits, but also affect the phenotypic variance of many quantitative traits and the phenotypic values. Studies of genome-wide scanning for QTL revealed that many QTLs are maternally or paternally imprinted, which significantly affect growth, backfat thickness, carcass composition and reproduction. However, comparing to the extensive research of imprinting in human and mouse, there is still a dearth of knowledge about imprinting in swine. Therefore, the identification of new imprinted genes in swine is very important, not only for completing the imprinting study in livestock but also for the comparative genomic analysis of genomic imprinting among different species.
     In this study, the RT-PCR-RFLP method were used to detect the imprinting status of five porcine gene at developmental stages of day 30,65 and 100 of gestation. Using PCR-RFLP, we detected SNPs of four genes in different pig breeds and performed associations with carcass and meat quality traits in Large White and Meishan F2 hybrids. Using Real-time PCR and semi-quantitative RT-PCR, we analysed the tissue expression of candidate genes. We obtained promoter sequences of four genes, and analysed the promoter activity of two genes.in addition, we analyzed the methylation status of CpG islands. The main results are as follows:
     1. We isolated and cloned the porcine DIO3、RTL1、DIRAS3 and COPG2 genes, which all contain the complete open reading frame (ORF), the deduced amino acid sequences have high similarity with human and mouse.
     2. The reciprocal Yorkshire×Meishan F1 hybrid model and the RT-PCR-RFLP method were used to detect the imprinting status of porcine DIO3, RTL1, NNAT, DIRAS3 and COPG2 genes at the developmental stages of day 30,65 and 100 of gestation. Porcine DIO3, RTL1 and DIRAS3 genes were paternally expressed in day 30 fetuses, day 65 and day 100 fetal tissues, including heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, brain and placenta; NNAT gene escapes imprinting in the day 65 and day 100 fetal spleen, but paternally expressed in the other tissues; COPG2 gene was not imprinted in all developmental stages.
     3. We detected the tissue expression profile of DIO3 gene in the two month Yorkshire sow by Real-time PCR, and found that it high expressed in adipose tissue. Semi-quantitative RT-PCR analysis was performed to detect the relative mRNA expression profile of RTL1 gene in 13 different tissuses, which were collected from day 65 fetuses of Yorkshire, the result showed that the RTL1 gene was expressed at a high leveal in the small intestine, biceps femoris and semitendinosus. we used the real-time PCR technique to examine the mRNA expression in two pig breeds (Yorkshire and Meishan) at four stages (fetal 60 days and postnatal 35,60 and 120 days) and three types of muscles (longissimus dorsi muscle, LD; biceps femoris, BF; semitendinosus,ST). Moreover, we found the expression of RTL1 was reduced as the differentiation of C2C12 cells. Five different transcripts were detected in COPG2 gene, named COPG2-1, COPG2-2, COPG2-3, COPG2-4 and COPG2-5 respectively. The expression level of different COPG2 isoforms in different ten tissues of two develepent stages (fetal 65 days and postnatal 60 days) were detected by semi-quantitative RT-PCR.
     4. According to the sequences of database, PCR primers were designed to amplify the promoter sequences of porcine RTL1, NNAT and DIRAS3 gene. The promoter regions of porcine LCAT gene were obtained by genomics walking. Several binding sites for MyoD、YY1 and NF-kappaB which are involved in muscle development were observed in RTL1 and NNAT promoter regions. In addition, we analyzed the promoter activety by dual luciferase reporter system. Using the bioinformatics software, we predicted the CpG islands in the RTL1 and NNAT promoter regions, and analyzed the methylation of the CpG islands by Bisulfite Sequencing PCR. We speculated that the two CpG islands in NNAT gene promoter region maybe the differentially methylated region.
     5. Using PCR-RFLP, we detected SNPs of DIO3, RTL1, NNAT and COPG2 genes in different pig breeds and performed associations with carcass and meat quality traits in Large White and Meishan F2 hybrids. The results showed:(1) DIO3, A687C-Acy I-RFLP is significant association with ratio of lean to fat (RLF), fat meat percentage (FMP), lean meat percentage (LMP), shoulder fat thickness (SFT),6-7th rib fat thickness (RFT), buttock fat thickness (BFT), loin eye area (LEA), longissimus dorsi drip loss rate (LD DLR), longissimus dorsi water holding capacity (LD WHC), Water Moisture (m. longissimus Dorsi, LD) (WM), meat color value (LD), meat color value (BF), meat marbling (LD) and meat marbling (BF) (P<0.05), is higher significant association with intramuscular fat (LD) (P<0.01); (2) RTL1,G1209A-Sat I-RFLP is significant association with skin percentage (SP), internal fat rate (IFR),6-7 rib fat thickness (RFT), thorax-waist fat thickness (TFT), Meat pH (m.longissimus Dorsi, LD) and meat color value (BF) (P<0.05), is higher significant association with bone percentage (BP), shoulder fat thickness (SFT), buttock fat thickness (BFT), average backfat thickness (ABT), longissimus dorsi drip loss rate (LD DLR), longissimus dorsi water holding capacity (LD WHC) and meat color value (LD) (P<0.01); RTL1, A3929G-Van91 I-RFLP is significant association with internal fat rate (IFR), shoulder fat thickness (SFT), loin eye height (LEH), loin eye area (LEA), Water Moisture (m.longissimus Dorsi, LD) (WM), meat color value (LD) and intramuscular fat (LD) (P<0.05), is higher significant association with skin percentage (SP), longissimus dorsi drip loss rate (LD DLR), longissimus dorsi water holding capacity (LD WHC) meat color value (BF) (P<0.01); (3) A-107G in the promoter of NNAT gene is significant association with loin eye height (LEH), Loin Eye width (LEW), loin eye area (LEA), Water Moisture (m.longissimus Dorsi, LD) (WM), meat marbling (LD) and meat marbling (BF) (P<0.05); (4) G/A polymorphism in the 3'UTR of COPG2 is significant association with fat percentage (FP), thorax-waist fat thickness (TFT), buttock fat thickness (BFT), average backfat thickness (ABT), Meat pH (m.longissimus Dorsi, LD), Meat pH (m.Biceps Femoris, BF) and Meat pH (m.Semispinalis Capitis, SC) (P<0.05).
引文
1.陈琦.蒙古羊多胸椎性状与Hoxc8基因DNA甲基化的相关性研究.[博士学位论文].呼和浩特市:内蒙古农业大学图书馆,2009.
    2.陈守良.动物生理学.第2版.北京:北京大学出版社,1996,215-224.
    3.窦晓兵.卵磷脂胆固醇酰基转移酶(LCAT)的基因突变与LCAT缺陷综合征.国外医学分子生物学分册,2003,25(5):311--315.
    4.蒋晓玲,赵晓枫,郭晓令,徐宁迎.猪脱碘酶3基因定位及对生产性状的潜在影响.畜牧兽医学报,2010,41(1):383-386.
    5.李顺,蒋曹德,石萍,董然然,魏晋,田家伟.猪COPG2和MEST克隆、印记状况和组织表达分析.中国农业科学,2010,43(23):4901-4909.
    6.张立岭,斯琴毕力格,张世铨.多脊椎蒙古羊的胸腰椎长度对产肉性能的影响.中国畜牧杂志,1998,34(3):24-25.
    7.张凤伟.猪七个候选印记基因的分离、印记鉴定及其与性状的关联分析.[博士学位论文].武汉:华中农业大学,2007.
    8.周泉勇.大白猪和二花脸猪妊娠后期胎盘转录谱比较及印记基因鉴定研究.[博士学位论文].武汉:华中农业大学,2009.
    9. Anton W, Oskar WS, Norbert S, Karl S, Erwin FW and Denise PB. Imprinted expression of the Igf2R Gene Depends on an Intronic CPG Island. Nature,1997,389: 745-749.
    10. Azmi S, Ozog A, Taneja R. Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors. J Biol Chem,2004,279: 52643-52652.
    11. Bastepe M. The GNAS Locus:Quintessential Complex Gene Encoding Gsa, XLas, and other Imprinted Transcripts. Current genomics,2007,8:398-414.
    12. Beck KB, Schneider MJ, Davey JC, Galton VA. The typeⅢ 5-deiodinase in Rana Catesbeiana tadpoles is encoded by a thyroid hormone-responsive gene. Endocrinology,1995,136:4424-4431.
    13. Berends MJ, Hordijk R, Scheffer H, Oosterwijk JC, Halley DJ, Sorgedrager N. Two cases of maternal uniparental disomy 14 with a phenotype overlapping with the Prader-Willi phenotype. Am. J. Med. Genet,1999,84:76-79.
    14. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev,2002,23:38-89
    15. Bidwell CA, Kramer LN, Perkins AC, Hadfield TS, Moody DE, Cockett NE. Expression of PEG11 and PEG11AS transcripts in normal and callipyge sheep. BMC Biology,2004,2:17-27.
    16. Bischoff SR, Tsai S, Hardison N, Motsinger-Reif AA, Freking BA, Nonneman D, Rohrer G, Piedrahita JA. Characterization of conserved and nonconserved imprinted genes in swine. Biology of reproduction,2009,81:906-920.
    17. Blagitko N, Schulz, U., Schinzel, A. A., Ropers, H.-H., Kalscheuer, V. M. Gamma-2-COP, a novel imprinted gene on chromosome 7q32, defines a new imprinting cluster in the human genome. Hum. Molec. Genet.1999,8:2387-2396.
    18. Burrow GN, Fisher DA, Larsen PR. Mechanisms of disease:maternal and fetal thyroid function. N Engl J Med,1994,331:1072-1078.
    19. Byrne K, Colgrave M L, Vuocolo T, Pearson R, Bidwell C A, Cockett N E, Lynn D J, Fleming-Waddell J N, Tellam R L. The imprinted retrotransposon-like gene PEG11 (RTL1) is expressed as a full-length protein in skeletal muscle from Callipyge sheep. PloS one,2010,5:e8638.
    20. Cassily SB, Schwartz S. Prader-Willi and Mgelman syndrome disorder of genomic imprinting. Medicine,1998,77 (2):140-151.
    21. Cattanach BM, Beechey CV, Peters J. Interactions between imprinting effects in the mouse. Genetics,2004,168(1):397-413.
    22. Charalambous M, da Rocha ST, Ferguson-Smith AC. Genomic imprinting, growth control and the allocation of nutritional resources:consequences for postnatallife. Curr. Opin. Endocrinol. Diabetes Obes.2007,14:3-12.
    23. Charalambous M, Smith FM, Bennet WR, Crew TE, Mackenzie F and Ward A. Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2 independent mechanism. Proc. Natl. Acad. Sci. USA,2003,100:8292-8297.
    24. Charlier C, Segers K, Wagenaar D, Karim, Berghmans S, Jaillon O, Shay T, Weissenbach J, Cockett N, Gyapay G, and Georges M. Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts:DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Reseach,2001,11(5):850-862.
    25. Cheng HC, Zhang FW, Deng CY, Jiang CD, Xiong YZ, Li FE, Lei MG. NNAT and DIRAS3 genes are paternally expressed in pigs. Genet Sel Evol,2007,39:599-607.
    26. Chu K, Tsai MJ. Neuronatin, a downstream target of BETA2/NeuroD1 in the pancreas, is involved in glucose-mediated insulin secretion. Diabetes,2005,54(4): 1064-1073.
    27. Cockett NE, Jackson SP, Shay TL, Nielsen D, Moore SS, Steele MR, Barendse W, Green RD, Georges M. Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proceedings of the National Academy of Sciences of the United States of America,1994,91:3019-3023.
    28. Constancia M, Angiolini E, Sandovici I, Smith P, Smith R, Kelsey G, Dean W, Ferguson-Smith A, Sibley CP, Reik W, Fowden A. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc Natl Acad Sci USA,2005,102 (52):19219-19224.
    29. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature,2002,417 (6892):945-948.
    30. Cotter PD, Kaffe S, McCurdy LD, Jhaveri M, Willner JP, Hirschhorn K. Paternal uniparental disomy for chromosome 14:a case report and review. Am J Med Genet, 1997,70(1):74-79.
    31. Crouse H. The controlling element in sex chromosome behavior in Sciara. Genetics, 1960,45:1425.
    32. Da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC. Genomic imprinting at the mammalian Dlkl-Dio3 domain. Trends Genet,2008,24(6): 306-316.
    33. de Koning DJ, Rattink AP, Harlizius B, van Arendonk JA, Brascamp EW, Groenen MA. Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci,2000,97(14):7947-7950.
    34. DeChiara T M, Robertson E J, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell,1991,64(4):849-859.
    35. Eggermann T. Russell-Silver syndrome. Am J Med Genet C Semin Med Genet.2010, 15:154(3):355-364.
    36. Essl A, Voith K. Genomic imprinting effects on dairy-and fitness-related traits in cattle. Journal of Animal Breeding and Genetics,2002,119:182-189.
    37. Evans HK, Weidman JR, Cowley DO, Jirtle RL. Comparative phylogenetic analysis of blcap/nnat reveals eutherian-specific imprinted gene. Mol Biol Evol.2005,22(8): 1740-1748.
    38. Ferguson-Smith AC, Moore T, Detmar J, Lewis A, Hemberger M, Jammes H, Kelsey G, Roberts CT, Jones H, Constancia M. Epigenetics and imprinting ofthe trophoblast-a workshop report. Placenta,2006,27:122-126.
    39. Fleming-Waddell JN, Olbricht GR, Taxis TM, White JD, Vuocolo T, Craig BA, Tellam RL, Neary MK, Cockett NE, Bidwell CA. Effect of DLK1 and RTL1 but not MEG3 or MEG8 on muscle gene expression in Callipyge lambs. PLoS One,2009, 4(10):1-15.
    40. Fokstuen S, Ginsburg C, Zachmann M, Schinzel A. Maternal uniparental disomy 14 as a cause of intrauterine growth retardation and early onset of puberty. J Pediatr, 1999,134(6):689-695.
    41. Freking BA, Keele JW, Nielsen MK, Leymaster KA. Evaluation of the ovine callipyge locus:Ⅱ.genotypic effects on growth, slaughter, and carcass traits. J Anim Sci,1998,76:2549-2559.
    42. Galton V, Martinez E, Hernandez A, Germain E, Bates J, Germain D. Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase. Journal of Clinical Investigation,1999,103 (7):979-987.
    43. Georgiades P, Watkins M, Surani MA, Ferguson-Smith AC. Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12. Development,2000,127:4719-4728.
    44. Germain D, Galton V. The deiodinase family of selenoproteins. Thyroid,1997,7 (4): 655-668.
    45. Haig D, Graham C. Genomic imprinting and the strange case of the insulin-like growth factor Ⅱ receptor. Cell,1991,64(6):1045-1046.
    46. Hannula K, Lipsanen-Nyman M, Kontiokari T, Kere J. A narrow segment of maternal uniparental disomy of chromosome 7q31-qter in silver-russell syndrome delimits a candidate gene region. TheAmerican Society of Human Genetics,2001,68:247-253.
    47. Hernandez A, Fiering S, Martinez E, Galton V, St Germain D. The gene locus encoding iodothyronine deiodinase type 3 (Dio3) is imprinted in the fetus and expresses antisense transcripts. Endocrinology,2002,143 (11):4483-4486.
    48. Hernandez A, Garcia B, Obregon M. Gene expression from the imprinted Dio3 locus is associated with cell proliferation of cultured brown adipocytes. Endocrinology, 2007,148 (8):3968-3976.
    49. Hernandez A, Park JP, Lyon GJ, Mohandas TK, St. Germain DL. Localization of the type 3 iodothyronine deiodinase (DIO3) gene to human chromosome 14q32 and mouse chromosome 12F1. Genomics,1998,53:119-121.
    50. Higashimoto K, Soejima H, Saito T, Okumura K, Mukai T. Imprinting disruption of the CDKN1C/KCNQ1OT1 domain:the molecular mechanisms causing Beckwith-Wiedemann syndrome and cancer. Cytogenet Genome Res,2006,113(1-4): 306-312.
    51. Holl J, Cassady J, Pomp D, Johnson R. A genome scan for quantitative trait loci and imprinted regions affecting reproduction in pigs. Journal of animal science,2004,82: 3421-3429.
    52. Jeon JT, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet,1999,21(2):157-158.
    53. Joe MK, Lee HJ, Suh YH. Crucial roles of neuronatin in insulin secretion and high glucose -induced apoptosis in pancreatic beta-cells. Cell Signal,2008,20 (5): 907-915.
    54. Joseph R, Dou D, and Tsang, W. Molecular cloning of novel mRNA (neuronatin) that is highly expressed in neonatal mammalian brain. Biochem. Biophys. Res. Commun,1994,201:1227-1234.
    55. Joseph R, Dou D, and Tsang, W. Neuronatin mRNA:Alternatively spliced forms of a novel brain-specific mammalian developmental gene. Brain Res,1995,690:92-98.
    56. Kagami M, Nishimura G, Okuyama T, Hayashidani M, Takeuchi T, Tanaka S, Ishino F, Kurosawa K, Ogata T. Segmental and full paternal isodisomy for chromosome 14 in three patients:narrowing the critical region and implication for the clinical features. Am J Med Genet A,2005,138A(2):127-132.
    57. Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, Yamamori S, Kishimoto H, Nakayama M, Tanaka Y, Matsuoka K, Takahashi T, and 12 others. Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nature Genet,2008, 40:237-242.
    58. Kagitani F, Kuroiwa Y, Wakana S, Shiroishi T, Miyoshi N, Kobayashi S, Nishida M, Kohda T, Kaneko-Ishino T, Ishino F. Peg5/Neuronatin is an imprinted gene located on sub-distal chromosome 2 in the mouse. Nucleic Acids Res,1997,25(17):3428-32.
    59. Kaplan M, Yaskoski K. Phenolic and tyrosyl ring deiodination of iodothyronines in rat brain homogenates. Journal of Clinical Investigation,1980,66 (3):551-552.
    60. Khatib H. The COPG2, DCN, and SDHD genes are biallelically expressed in cattle. MammGenome,2005,16:545-552.
    61. Kim KS, Kim JJ, Dekkers JC and Rothschild MF. Polar overdominant inheritance of a DLK1 polymorphism is associated with growth and fatness in pigs. Mammalian Genome,2004,15(7):552-559.
    62. Kim S, Huang LW, Snow KJ, Ablamunits V, Hasham MG, Young TH, Paulk AC, Richardson JE, Affourtit JP, Shalom-Barak T. et al. A mouse model of conditional lipodystrophy. Proc Natl Acad Sci USA.2007,104(42):16627-16632.
    63. Kimura A P, Sizova D, Handwerger S, Cooke N E, Liebhaber S A. Epigenetic activation of the human growth hormone gene cluster during placental cytotrophoblast differentiation. Molecular and cellular biology,2007,27:6555-6568.
    64. Kitsberg D, Selig S, Brandels M, Simon I, Keshet I, Driscoll D, Nicholls R, Cedar H. Allele-specific replication timing of imprinted gene regions. Nature,1993,364: 459-463.
    65. Kohrle J. Iodothyronine deiodinases. Methods in enzymology,2002,347:125-167.
    66. Koohmaraie M, Shackelford SD, Wheeler TL, Lonergan SM, Doumit ME. A muscle hypertrophy condition in lamb (callipyge):characterization of effects on muscle growth and meat quality traits. J Anim Sci,1995,73(12):3596-3607.
    67. Koopdonk-Kool J, De Vijlder J, Veenboer G, Ris-Stalpers C, Kok J, Vulsma T, Boer K, Visser T. Type Ⅱ and type Ⅲ deiodinase activity in human placenta as a function of gestational age. Journal of Clinical Endocrinology & Metabolism,1996,81 (6): 2154-2158.
    68. Kotzot D. Maternal uniparental disomy 14 dissection of the phenotype with respect to rare autosomal recessively inherited traits, trisomy mosaicism, and genomic imprinting. Ann Genet,2004,47(3):251-260.
    69. Kuiper G, Klootwijk W, Visser T. Substitution of cysteine for selenocysteine in the catalytic center of type Ⅲ iodothyronine deiodinase reduces catalytic efficiency and alters substrate preference. Endocrinology,2003,144(6):2505-2513.
    70. Lai K, Tang M, Yin X, Klapper H, Wierenga K, Elsas L. ARHI:A new target of galactose toxicity in Classic Galactosemia. Biosci Hypotheses,2008,1(5):263-271.
    71. Lee K, Villena JA, Moon YS, Kim KH, Lee S, Kang C, Sul HS. Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (Pref-1). J Clin Invest,2003,111(4):453-461.
    72. Lee YJ, Park CW, Hahn Y, Park J, Lee J, Yun JH, Hyun B, Chung JH. Mitl/Lb9 and Copg2, new members of mouse imprinted genes closely linked to Pegl/Mest(1). FEBS Lett,2000,472:230-234.
    73. LI E, Beard C, JaenischR. Role for DNA methylation in genomic imprinting. Nature, 1993,366(6453):362-365.
    74. Li X, Do K, Kim JJ, Huang J, Zhao S, Lee Y, Rothschild M, Lee C, Kim K. Molecular characteristics of the porcine DLK1 and MEG3 genes. Animal Genetics, 2008,39:189-192.
    75. Lu X, Qian J, Yu Y, Yang H, Li J. Expression of the tumor suppressor ARHI inhibits the growth of pancreatic cancer cells by inducing G1 cell cycle arrest. Oncol Rep, 2009,22(3):635-640.
    76. Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC, Jr The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest,2008,118:3917-3929.
    77. Lui JC, Finkielstain GP, Barnes KM, Baron J. An Imprinted Gene Network that Controls Mammalian Somatic Growth is Down-Regulated During Postnatal Growth Deceleration in Multiple Organs. Am J Physiol Regul Integr Comp Physiol 2008,295: R189-196.
    78. Lusis AJ. Atherosclerosis. Nature,2000,407:233-241.
    79. Magee DA, Berry DP, Berkowicz EW, Sikora KM, Howard DJ, Mullen MP, Evans RD, Spillane C, MacHugh DE. Single nucleotide polymorphisms within the bovine DLK1-DIO3 imprinted domain are associated with economically important production traits in cattle. Journal of Heredity,2011,102:94-101.
    80. Mann M, Latham K E, Varmuza S. Identification of genes showing altered expression in preimplantation and early postimplantationparthenogenetic embryos. Developmental Genetics,1995,17:223-232.
    81. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygo Paternal genome. Nature,2000,403(6769):501-502.
    82. McGrath J, Solter D. Completion of mouse embryo genesis requires both the maternal and paternal genomes. Cell,1984,7 (1):179-183.
    83. McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, Weksberg R, Thaker HM, Tycko B. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta 2006; 27:540-549.
    84. Moon YS, Smas CM, Lee K, Villena JA, Kim KH, Yun EJ, Sul HS. Mice lacking paternally expressed Pref-1/Dlkl display growth retardation and accelerated adiposity. Mol Cell Biol,2002,22(15):5585-5592.
    85. Murphy S, Wylie A, Jirtle R. Imprinting of PEG3, the human homologue of a mouse gene involved in nurturing behavior. Genomics,2001,71 (1):110-117.
    86. Murphy S.K., Freking B.A., Smith T.P. et al. Abnormal postnatal maintenance of elevated DLK1 transcript levels in callipyge sheep. Mammalian Genome,2005,16, 171-83.
    87. Mzhavia N, Yu S, Ikeda S, Chu TT, Goldberg I, Dansky HM. Neuronatin:a new inflammation gene expressed on the aortic endothelium of diabetic mice. Diabetes, 2008,57(10):2774-2783.
    88. Nishimoto A, Yu Y, Lu Z, Mao X, Ren Z, Watowich SS, Mills GB, Liao WS, Chen X, Bast RC, Jr, Luo RZ. ARHI Directly Inhibits STAT3 Translocation and Activity in Human Breast and Ovarian Cancer Cells. Cancer Res,2005,65:6701-6710.
    89. Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the Paternal genome in the mouse zygote. Curr Biol,2000,10(8):475-478.
    90. Paldi A, Gyapay G, Jami J. Imprinted chromosomal regions of thehuman genome display sex-specific meiotic recombination frequencies. Curr Biol,1995,5: 1030-1035.
    91. Paulsen M, Takada S, Youngson NA, Benchaib M, Charlier C, Segers K, Georges M, Ferguson-Smith AC. Comparative sequence analysis of the imprinted Dlkl-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region. Genome Res,2001,11,2085-2094.
    92. Rehfeldt C. Consequences of birth weight for postnatal growth performance. J Anim Sci,2005,83:91-91.
    93. Reik W, Constancia M, Fowden A, Anderson N, Dean W, Ferguson-Smith A, Tycko B, Sibley C. Regulation of supply and demand formaternal nutrients in mammals by imprintedgenes. J Physiol,2003,547:35-44.
    94. Reik W, Walter J. Genomic imprinting:parental influence on the genome. Nat Rev Genet,2001,2(1):21-32.
    95. Riesewijk AM, Blagitko N, Schinzel AA, Hu L, Schulz U, Hamel BC, Ropers HH, Kalscheuer VM. Evidence against a major role of PEG1/MEST in Silver-Russel syndrome. Eur J Hum genet,1998,6 (2):114-120.
    96. Sato S, Atsuji K, Saito N, Okitsu M, Komatsuda A, Mitsuhashi T, Nirasawa K, Hayashi T, Sugimoto Y, Kobayashi E. Identification of quantitative trait loci affecting corpora lutea and number of teats in a Meishan x Duroc F2 resource population. Journal of animal science,2006,84 (11):2895-2901.
    97. Schmidt JV, Matteson PG, Jones BK, Guan XJ, Tilghman SM. The Dlkl and Gtl2 genes are linked and reciprocally imprinted. Genes & Dev,2000,14:1997-2002.
    98. Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M, Wakisaka N, Hino T, Suzuki-Migishima R, Kohda T, Ogura A, Ogata T, Yokoyama M, Kaneko-Ishino T, Ishino F. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nature Genet,2008,40:243-248.
    99. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science,2009,326(5949):140-144.
    100.Sing A, Pannell D, Karaiskakis A, Sturgeon K, Djabali M, Ellis J, Lipshitz HD, Cordes SP. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell.2009,138(5):885-897.
    101.Suh YH, Kim WH, Moon C, Hong YH, Eun SY, Lim JH, Choi JS, Song J, Jung MH. Ectopic expression of Neuronatin potentiates adipogenesis through enhanced phosphorylation of cAMP-response element-binding protein in 3T3-L1 cells. Biochem Biophys Res Commun,2005,337(2):481-489.
    102.Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature,1984,308:548-550.
    103.Tevendale M, Watkins M, Rasberry C, Cattanach B, Ferguson-Smith AC. Analysis of mouse conceptuses with uniparental duplication/deficiency for distal chromosome 12: comparison with chromosome 12 uniparental disomy and implications for genomic imprinting. Cytogenet. Genome Res,2006,113,215-222.
    104.Tung YC, Ma M, Piper S, Coll A, O'Rahilly S, Yeo GS. Novel leptin-regulated genes revealed by transcriptional profiling of the hypothalamic paraventricular nucleus. J Neurosci,2008,28(47):12419-12426.
    105.Villar AJ, Pedersen RA. Parental imprinting of the Mas protoonco-gene in mouse Nature Genetics,1994,8(4):373-379.
    106.Vrang N, Meyre D, Froguel P, Jelsing J, Tang-Christensen M, Vatin V, Mikkelsen J D, Thirstrup K, Larsen LK, Cullberg KB. The imprinted gene neuronatin is regulated by metabolic status and associated with obesity. Obesity,2010,18:1289-1296.
    107.Wang L, Hoque A, Luo RZ, Yuan J, Lu Z, Nishimoto A, Liu J, Sahin AA, Lippman SM, Bast RC Jr, Yu Y. Loss of the expression of the tumor suppressor gene ARHI is associated with progression of breast cancer. Clin Cancer Res,2003,9:3660-3666.
    108.Wegmann D, Hess P, Baier C, Wieland FT, Reinhard C. Novel Isotypic γ/ζ, Subunits Reveal Three Coatomer Complexes in Mammals. Mol Cell Biol,2004, 24(3):1070-1080.
    109.White B R, Lan Y H, McKeith F K, Novakofski J, Wheeler M B, McLaren D G. Growth and body composition of Meishan and Yorkshire barrows and gilts. J Anim Sci,1995,73:738-749.
    110. Wilkinson LS, Davies W, Isles AR. Genomic imprinting effects on brain development and function. Nat. Rev. Neurosci,2007,8,832-843.
    111.Wolf RJ, Walter. Genomic imprinting:parental influence on the genome. Nature Reviews. Genetics,2001,2:21-25.
    112.Wylie AA, Murphy SK, Orton TC, Jirtle RL. Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res,2000,10:1711-1718.
    113.Xu F, Xia W, Luo RZ, Peng H, Zhao S, Dai J, Long Y, Zou L, Le W, Liu J, Parlow AF, Hung MC, Bast RC Jr, Yu Y. The human ARHI tumor suppressor gene inhibits lactation and growth in transgenic mice. Cancer Res,2000,60:4913-4920.
    114.Yamasaki K, Hayashida S, Miura K, Masuzaki H, Ishimaru T, Niikawa N, Kishino T. The novel gene, gamma2-COP (COPG2), in the 7q32 imprinted domain escapes genomic imprinting. Genomics,2000,68:330-335.
    115.Yu Y, Fujii S, Yuan J, Luo RZ, Wang L, Bao J, Kadota M, Oshimura M, Dent SR, Issa JP, Bast RC Jr. Epigenetic regulation of ARHI in breast and ovarian cancer cells. Ann N Y Acad Sci.2003,983:268-277.
    116.Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, Cuevas B, Kuo WL, Gray JW, Siciliano M. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci,1999,96 214-219.
    117.Yuan J, Luo RZ, Fujii S, Wang L, Hu W, Andreeff M, Pan Y, Kadota M, Oshimura M, Sahin AA, Issa JP, Bast RC Jr, Yu Y Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. Cancer Res,2003,15;63(14):4174-4180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700