用户名: 密码: 验证码:
冠菌素对小麦耐热性的调控效应及生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灌浆期高温是严重影响小麦产量的逆境之一。新型植物生长调节物质冠菌素(Coronatine, COR)能提高植物体抗逆性而备受关注。本研究以不同类型的小麦(Triticum aestivum L.)品种长武134与辽春17为试验材料,分别在温室与田间条件下系统研究了高温胁迫对苗期小麦与灌浆期小麦光合作用、抗氧化作用、细胞膜稳定性、渗透调节能力和激素系统的影响,以及冠菌素减轻高温胁迫伤害的调控效应,主要结果如下:
     1高温胁迫条件下,0.1μmol·L-1的COR处理可使小麦叶片保持较高的相对含水量,促进小麦幼苗叶片中可溶性蛋白的积累,降低叶片的质膜透性和丙二醛含量,维持细胞膜的完整性。表明0.1μmol·L-1COR能提高苗期小麦的耐热性。
     2高温胁迫条件下,灌浆前期0.1μmol·L-1的COR处理可以维持小麦旗叶较高的相对含水量,降低了叶片的质膜透性,从而维持了细胞膜的完整性,同时也增强了小麦旗叶的光合能力,使小麦千粒重提高了9.1%。
     3小麦幼苗的倒二叶蛋白组结果显示,高温胁迫条件下,与常温条件相比,cp31BHv、Ps16、叶绿体小分子热激蛋白表达下调,而过氧化物酶4、谷胱甘肽转移酶、hypothetical protein(gi|147860809)表达上调;高温胁迫条件下经COR处理后,cp31BHv、Psl6、谷胱甘肽转移酶表达量下降,而过氧化物酶4表达上调。
     4灌浆期小麦旗叶的蛋白组结果显示,高温胁迫条件下,与常温条件相比,蛋白二硫键异构酶2前体、cp31BHv、病程相关蛋白4、30S核糖体蛋白S1、半胱氨酸合成酶等11种蛋白表达下调,而S-like RNase、predicted protein (gi|326496957)表达量上升;高温胁迫条件下COR处理,cp31BHv、病程相关蛋白4、30S核糖体蛋白S1、半胱氨酸合成酶等六种蛋白表达下调,而蛋白二硫键异构酶、S-like RNase等表达上调。
     5拟南芥中部分差异蛋白对应的基因功能验证结果表明,当PD1L1-1、GS2、cp31BHv和CysM这四个下调基因被敲除后,拟南芥的抗逆性明显增强,而50s ribosomal、 ACyl-CoAN-acyltransferase、PR4hevein-like protein和HSP17.4这四个上调基因敲除后,植物对于逆境胁迫更加敏感。
Heat stress in grain filling period is one of severe natural hazards in wheat production, and coronatine is a new plant regulator which can help plants resistent stress. Our study mainly focused on mechanism of heat tolerance in wheat (Triticum aestivum L.cv.Changwul34and Liaochun17). We studied the photosynthesis system、the oxidation reduction system、osmotic adjustment and plant hormones system. The results as follows:
     1. Under heat stress condition, the seedling leaves treated with0.1μmol·L-1COR could maintain higher relative water content, increase soluble protein content, decrease membrane permeability and malondialdehyde content.
     2. Under heat stress conditions, the flag leaves treated with0.1μmol·L-1COR could maintain higher relative water content, decrease membrane damage. Meanwhile, it also increased the capacity of photosynthesis, TKW (Thousand Kernel Weight) increased9.05%, and the theoretical yield increased496kg per hectare and consequently reduced the production loss.
     3. Under heat stress conditions, the proteome of wheat seedling showed that:compare to the normal conditions, the expression level of cp31BHvμPs16and chloroplast small heat shock proteins were down regulated, while peroxidase4、lutathione transferase、hypothetical protein (gi|147860809) were up regulated. After coronatine treatment, the expression level of cp31BHv、Ps16、glutathione transferase decreased and peroxidase4increased.
     4. Under heat stress conditions, the proteome of wheat flag leaves showed that:compare to the normal conditions, the expression level of protein disulfide isomerase2precursor、cp31BHv、protein disulfide isomerase2precursor、pathogenesis-related protein4、30S ribosomal protein S1、Cysteine synthase and other6protein were down regulated, while predicted protein (gi|326496957) and S-like RNase were up regulated; after coronatine treatment, the expression level of cp31BHv、 pathogenesis-related protein4、30S ribosomal protein S1、Cysteine synthase、predicted protein (gi|326496613)、predicted protein (gi|326499830)、unnamed protein product (gi|755762) are significantly decreaed, and protein disulfide isomerase2precursor、S-like RNase、predicted protein (gi|326504766) and hypothetical protein (gi|225467488) are increased.
     5. We aslo found homologous genes in arabidopsis to do further study. We found that when we knocked out PDIL1-1、GS2、cp31BHv and CysM which were down regulated by coronatine, the mutants showed stress resistant phenotype, and when we knocked out50s ribosomal ACy1-CoAN-acyltransferase、PR4hevein-like protein and HSP17.4which were up regulated by coronatine, the plant showed stress sensitive phenotype.
引文
[1]艾林,李召虎,李建民,等.植物生长物质冠菌素诱导早稻、水稻幼苗抗旱性的效应及生理机制.中国水稻科学,2008,22(4):443-446.
    [2]董爱香,郝宝刚,张西西,等.5个一串红品种耐热性鉴定.中国农学通报,2007,4:265-269.
    [3]柴翠翠,徐迎春,钱仙云.10种观赏草叶片的细胞膜热稳定性鉴定.江苏农业学报,2009,25(4):876-879.
    [4]陈志刚,谢宗强,郑海水.不同地理种源西南桦苗木的耐热性研究.生态学报,2003,23(11):2327-2332.
    [5]邓振镛,徐金芳,黄蕾诺,等.我国北方小麦干热风危害特征研究.安徽农业科学,2009,37(20):9575-9577.
    [6]杜秀敏,殷文璇,张慧,等.超氧化物歧化酶(SOD)研究进展.中国生物工程杂志,2003,23(1):48-50.
    [7]李训贞,梁满中,周广洽,等.水稻开花时的环境条件对花粉活力和结实的影响.作物学报,2002,28(3):417-420.
    [8]田婧,郭世荣.黄瓜的高温胁迫伤害及其耐热性研究进展.中国蔬菜,2012,(18):43-52.
    [9]商侃侃,张德顺,王铖.高温胁迫下植物抗性生理研究进展.园林科技,2008,1(1):1-5.
    [10]马永战,邹琦,程炳嵩.高温锻炼与解除对冬小麦叶片细胞膜热稳定性的影响.山东农业大学学报,1998,19(2):55-58.
    [11]郭文善,施劲松,彭永欣,等.灌浆期高温对小麦光合产物运作的影响.核农学报,1998,12(1):21-27.
    [12]封超年,郭文善,施劲松,等.小麦花后高温对籽粒胚乳细胞发育及粒重的影响.作物学报,2000,26(4):399-405.
    [13]何钟佩.农作物化学控制实验指导.北京:北京农业大学出版社,1993,60-68.
    [14]胡安生,管彦良,蒋斌芳,等.高温胁迫与积幼苗超氧物歧化酶活性和脂质过氧化作用的关系.浙江农业学报,1996,8(2):96-101.
    [15]孔繁翔,桑伟莲.铝对小麦生理生化的影响.应用与环境生物学报,2004,10(5):559-562.
    [16]李冰,刘宏涛,孙大业,等.植物热激反应的信号转导机理.植物生理与分子生物学学报,2002,28(1):1-10.
    [17]李合生.植物生理生化实验原理与技术.北京:高等教育出版社,2000.
    [18]李东升.干热风天气对小麦的危害及防御对策.河南农业,2007(12):18-19.
    [19]李永庚,于振文,张秀杰,等.小麦产量与品质对灌浆不同阶段高温胁迫的响应.植物生态学报,2005,29(3):461-466.
    [20]欧祖兰,曹福亮.植物耐热性研究进展.林业科技开发,2008,22(1):1-5.
    [21]张显强,罗在柒,唐金刚,等.高温和干旱胁迫对鳞叶藓游离脯氨酸及可溶性糖含量的.广西植物,2004,24(6):570-573.
    [22]齐付国,李建民,段留生,等.冠菌素和茉莉酸甲酯诱导小麦幼苗低温抗性的研究.西北植物学报,2006,26(9):1776-1780.
    [23]任安芝,高玉葆,刘爽.铬与镉对青菜叶片中游离脯氨酸的影响.应用与环境生物学报,2000,6(2):112-116.
    [24]商侃侃,张德顺,王铖.高温胁迫下植物抗性生理研究进展.园林科技,2008,1(107):1-5.
    [25]徐如强,孙其信,张树榛.小麦耐热性研究现状与展望.中国农业大学学报,1998,3(3):33-40.
    [26]云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展.西北植物学报,2006,26(3):0641-0648
    [27]张家政,范明.蛋白质技术手册.北京:科技出版社,1990.
    [28]张志良.植物生理学实验指导.北京:高等教育出版社,1990.
    [29]周于毅,沈雪峰,张明才,等.冠菌素诱导小麦幼苗抗高温胁迫的生理机制.麦类作物学报,2011,31(1):139-142.
    [30]Ai L, Li ZH, Xie ZX, et al. Coronatine alleviates polyethylene glycol-induced water stress in two rice (Oryza sativa L.) cultivars. Journal of Agronomy and Crop Science,2008,194:360-368.
    [31]Ahmad P, Prasad MNV. Environmental adaptations and stress tolerance of plants in the era of climate change. New York,2012,515.
    [32]Berry JA, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology,1980,31:491-543.
    [33]Baer HA, Singer M. Global warming and the political ecology of health:emerging crises and systemic solutions. California:Left Coast Press,2009,238.
    [34]Chen Q, Vierling E. Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Molecular Genetics and Genomics.1991,226:425-431.
    [35]Criddle RS, Hopkin MS, McArthur ED, et al. Plant distribution and the temperature confficient of metabolism. Plant Cell Enironment,2000,17(3):233-243.
    [36]Chaitanya KV, Sundar D, Masilamani S, et al. Variation in heat stress-induced antioxidant enzyme activities among three mulberry cuhivars. Plant Growth Regulation,2001,36(2): 175-180.
    [37]Collins GG, Nie XL, Saltveit ME. Heat shock proteins and chilling sensitivity of mung bean hypocotyls. Journal of Experimental Botany,1995,46:795-802.
    [38]Eaton JJ, Tripathy BC, Sharkey TD, et al. Plastid biology energy conversion and carbon assimilation. New Zealand Journal of Botany,2013,51(2):145-146.
    [39]Gdbor K, Gabriella S, Attila V. Genetic study of glutathione accumulation during cold hardening in wheat. Planta,2000,21.
    [40]Ghouil H, Montpied P, Epron D, et al. Thermal optima of photosynthetic functions and thermostability of photo chemistry in cork oak seedlings. Tree Physiology,2003.23:1031-1039.
    [41]Hof M, Hutterer R, Fidler V. Advanced methods and their applications to membranes, proteins, DNA, and cells. Fluorescence spectroscopy in biology,2005,305.
    [42]Henry T, Nguyen, Jian W, et al. A Wheat (Triticum aestivum) cDNA Clone Encoding a Plastid Localized Heat Shock Protein. Plant Physiology,1993,103:675-676.
    [43]Hales JRS, Richards DAB, Menzies Foundation. Heat stress:physical exertion and environment: proceedings of the 1st World Conference on Heat Stress, Physical Exertion and Environment, New York:Elsevier Science Publishing Company,1987.
    [44]Janiszewski M, Lopes LP, Carmo A, et al. Regulation of NADPH oxidaae by associmed protein disulfide isomerase in vascular cells. Journal of Biological Chemistry,2005,280(49): 40813-40819.
    [45]Lutts S, Kinet JM, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany,1996,78:389-398.
    [46]Lobell DB, Asner GP. Climate and management contributions to recent trends in US agricultural yields. Science,2003,299:1032.
    [47]Larkindale J, Hall JD, Knight MR, et al. Heat stress phenotypes of arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology,2005,138(2): 882-897.
    [48]Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227:680-685.
    [49]Miller G, Mittler R. Could heat shock transcription factors functionas hydrogen peroxide sensors in plants. Annals of Botany,2006,98(2):279-288.
    [50]Mehdi I, Daniel E, Michel D. Effects of drought precondition on thermotolerance of photosystem Ⅱ and susceptibility of photosynthesisto heat stress in cedar seeding. Tree Physiology,2000, 20(18):1235-1241.
    [51]Michel H, Florence T. Loss of chlorophyll with limited reduction of photosynthesis as an adaptivere -sponse of syrianbarleyl and races to high-light and heat stress. Australian Journal of Plant Physiology,1999,26(6):569-578.
    [52]Monneveux P, Pastenes C, Reynolds MP. Limitations to photosynthesis under light and heat stress in three high yielding wheat genotypes. Journal of Plant Physiology,2003,160(6):657-666.
    [53]Quinn PJ, Williams WP. Environmentally induced changes in chloroplasts membranes and their effects on photosynthesis. Photosynthetic mechanisms and the environment. Amsterdam: Elsevier,1985:1-47.
    [54]Shainnfer T, Ban DH. Chlorophyll degradation in heat treated Chlorellapyrenoidosa, a flow cytometric study. Australian Journal of Plant Physiology,2001,28(1):79-83.
    [55]Sinsawat V, Leipner J, Stamp P, et al. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environmental and Experimental Botany,2004,52(2):123-129.
    [56]Shi QH, Bao ZY, Zhu ZJ, et al. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, andantioxidant enzyme activity inseedlings of Cucumis sativa L. Plant Growth Regulation,2006,48(2):127-135.
    [57]Stier JC. American Society of Agronomy:Soil Science Society of America. Crop Science Society of America,2013,1307-1302.
    [58]Soliman WS, Fujimori M, Tase K, et al. Oxidative stress and physiological damage under prolonged heat stress in C3 grass Lolium perenne. Grassland Science,2011,57:101-106.
    [59]Triboi E, Martre P, Triboi AM. Enviromentally induced changes in protein composition in developing grains of wheat are related to changes in total protein content. Jounal of Experiment Botany,2003,54(388):1731-1742.
    [60]Uppalapati SR, Ayoubi P, Weng H, et al. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. The Plant Journal,2005,42(2):201-217.
    [61]Vieira CL, Campos A, Azeyedo H, et al. In situ and in vito senescenee induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. Journal of Experient Botany,2001,52(355):351-360.
    [62]Vandenbroeck K, Martens E, Alidza I. Muhi—chaperone complexes regulate the folding of interferon gammain the endoplasmie retieulum. Cytokine,2006,33:264-273.
    [63]Weng J, Wang ZF, Nguyen HT. Nucleotide sequence of a Triticum aestivum cDNA clone which is homologous to the 26 kDa chloroplast-localized heat shock protein gene of maize. Plant Molecular Biology,1991,117:255-258.
    [64]Wu MT, Wallner SJ. Heat stress responses in cultured plant cells:Development and comparison of viability tests. Plant Physiology,1993,72:817-820.
    [65]Xie ZX, Duan LS, Tian XL, et al. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. Journal of Plant Physiology,2008, 165:375-384.
    [66]Zhang XR, Henriques R, Lin SS, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols,2006,1(2):1-6.
    [67]Yeh DM, Lin HF. Thermo stability of cell membranes as a measure of heat tolerance and relationship to flowering delay in chrysanthemum. American Society for Horticultural Science, 2003,128:656-660.
    [68]Yan SH. Effect of High Temperature during Grain Filling on Starch Accumulation, Starch Granule Distribution and Activities of Related Enzymes in Wheat Grains. Acta Agronomica Sinica, 2008,34(6):1092-1096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700