用户名: 密码: 验证码:
叠合板式剪力墙的抗震性能试验分析及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叠合板式剪力墙结构体系是一种新型的住宅体系,该结构体系与传统的剪力墙体系相比,便于质量控制,建造速度快,对环境污染小,造价较低,工业化生产水平高,在施工过程中大量减少了模板的使用,利用该体系施工而成的墙体将在取代传统的剪力墙方面具有强大竞争力和广阔的应用前景。叠合板式剪力墙在实际工程应用之前,一般要编制相应的技术规程,叠合板式剪力墙技术规程与传统的剪力墙体系设计规范都包含一个相似的规定,但由于是一种全新的住宅体系,需要对其进行详细的试验研究和理论分析。
     在此背景下,对叠合板式剪力墙的抗震性能进行具有重要的现实意义。本文结合国家自然科学基金项目(编号:90715016)和建设部科学技术项目计划(编号:2008-K3-2),对叠合板式剪力墙的抗震试验和抗震分析作了以下的研究:
     (1)通过对4个叠合板式剪力墙和2个普通剪力墙模型在低周反复荷载下的对比试验研究,考查了竖向荷载、水平配筋率、纵向配筋率、边缘约束构件构造措施等对该种剪力墙力学性能的影响;较系统地分析了试件的破坏形态、变形能力、承载力、延性、刚度退化、滞回特性、耗能能力等抗震性能。本文根据试验中各墙体在水平荷载作用下裂缝宽度的变化规律提出叠合板式墙体裂缝宽度的控制标准,对叠合板式墙体的裂缝的开展机理也进行了探讨。此外,通过对试验各墙体在水平荷载作用下的位移变化分析,提出了叠合板式墙体的位移控制标准。
     (2)在上述试验分析研究的基础上,本文建立了该种墙体分析和设计方法,提出合理的构造措施,指导工程实践;推导了其开裂承载力、极限承载力、抗侧刚度等计算公式,为实际工程应用提供了依据。并基于理论公式及试验数据,建立了往复荷载作用下构件的三折线型恢复力模型,与试验结果较为吻合。并基于小波变换原理,提出了一种基于小波变换的恢复力模型特征参数的计算方法。
     (3)为了评价结构或构件在遭受地震作用后的破坏状态,判断结构或构件受损情况,采用基于刚度的破损指标和基于位移及耗能的破损指标计算模型对构件进行了分析比较,两种不同的破损指标计算结果与试验现象符合良好。基于刚度的破损指标计算较为简便,可优先考虑使用。并基于小波变换原理,提出了一个基于小波变换的破损指标计算模型,并用此指标对4个两种不同边缘约束措施的叠合板式剪力墙和2个普通剪力墙模型的损伤进行了分析,计算结果与低周反复荷载下的试验结果吻合良好。该指标不仅可以反映试件不同加载阶段的损伤程度,还可以为判断结构何时屈服提供一定的依据。同时在上述基础上建立了考虑损伤的剪力墙单元力学模型,并利用该模型编制相应程序,计算结果与试验结果吻合较好。
     (4)最后,在试验研究基础上,采用ANSYS有限元分析程序,对叠合板式剪力墙在单向加载下的性能作了非线性分析,从理论计算角度进一步了解其在水平荷载作用下的开裂、变形及破坏全过程,有限元分析与试验结果符合较好。同时利用CANNY程序对低周反复荷载试验进行了摸拟计算,考察所采用的力学分析模型和计算参数的正确性,结果表明这些模型和参数能比较准确模拟剪力墙在低周反复荷载作用下的变形特征,为叠合板式剪力墙的抗震时程分析提供了依据。
     通过上述的试验研究和理论分析,本文为编制《叠合板式混凝土剪力墙结构技术规程》的地方行业标准提供可靠的科学依据,同时也为实际工程应用提供了依据。
The superimposed slab shear wall system was a new apartment structural system. This structural system possessed several advantages compared to normal shear wall system, such as good quality control, speedy construction, low-cost of constructions, the high level industrialization of production and reduction of the form work during the process of construction. As a result, the superimposed slab shear wall system could replace the normal shear wall system and be utilized widely. Before the practical engineer application, the standards for superimposed slab concrete shear wall structure must be revised. The new standards would include a similar content as those for the normal shear wall system. As a total new system, systematically analytical study to the superimposed slab shear walls was necessary.
     Under this background, the study to the superimposed slab shear walls had vital practical significance. Supported by National Science Foundation(No:90715016) and MOHURD Science and Technology Project Plan(No:2008-K3-2), this paper studied seismic design by simulation and experiments.
     (1)Based on comparative experimental studies on superimposed slab shear walls and two general shear walls under low cyclic loading, the effects of vertical loads, horizontal reinforcement, vertical reinforcement and edge restricted measure were taken in to account. Such as the structural failure feature, deformation capacity, bearing capacity, ductility, stiffness, hysteresis property, energy dissipation were analyzed systematically. The theory of crack in the wall was analyzed and the control criterion of wall cracks width was brought forward based on the results of wall experiments. Additionally the control criterion of displacement was brought forward based on the results of wall experimental study.
     (2)Based on the above mentioned experimental analysis results, the analysis and design methods of the superimposed slab shear walls were presented. The reasonable constitution measures were given to guide construction. The cracking bearing capacity, ultimate bearing capacity and stiffness resistance to side load were inferred to instruct the practical engineer application. Based on the theoretic formulas and testing data, the three trilinear restoring models under low cyclic load were established. The models showed good agreement with the testing results. Based on wavelet transform, a calculating method about character parameter of the restoring force model was also advanced.
     (3)In order to appraise and judge the damage of the structure or component after earthquake, the seismic damage model based on stiffness and the seismic damage model based on displacement and energy for these shear walls were analyzed and compared. The calculating results of the two different seismic damage indexes and the experimental phenomenon were in good agreement. The seismic damage model based on stiffness computed more easily and could be used first. Based on wavelet transform, a damage model for these shear walls was advanced. This seismic damage model for four superimposed slab shear walls with edge restricted measures of two different forms and two general shear walls were analyzed. The calculating results of this seismic damage indexes and the experimental phenomenon were in good agreement. This damage index could not only represent the damage extent at every load stage, but also be referred to judge when the structure was yielded. On the basis of the above, the shear wall element model with damage is presented. By use of the model, the calculated results were closed to the test results.
     (4)At last, based on the test, nonlinear finite element analysis of the shear walls under unidirectional load was carried out by ANSYS program in order to study the crack, deformation and failure feature in theory computing. The finite element computing results agreed with the test well. Then the simulation of low cyclic loading test using CANNY program was carried out to validate the selected element analytical models and analytical parameters. The result showed that the analytical models and parameters were accurate and powerful in simulating the deformation response of the walls. The result also provided base for elasto-plastic time history analysis on the superimposed slab shear walls.
     Based on the above mentioned analysis results, this paper provided the reliable scientific basis for the local standards Technical specification for superimposed slab concrete shear wall structure. In addition, this paper also provided instruction for the practical engineer application.
引文
[1]王有为.实施绿色建筑对环境保护的重要意义[J].浙江建筑,2008,25(9):1-4.
    [2]荆平,贾海峰,许碧霞.城市可持续发展的趋势预测及预警方法研究[J].重庆建筑大学学报,2008,30(2):116-120.
    [3]张建伟.带暗支撑剪力墙体系抗震性能及设计理论研究[D].北京:北京工业大学,2004.4.
    [4]索跃宁.钢筋砼空心剪力墙板及基本构件抗震性能试验研究[D].西安:西安建筑科技大学,2004.6.
    [5]夏晓东.钢筋混凝土有边框带缝槽低剪力墙抗震性能的试验研究和延性设计[D].南京:东南大学,1989.6.
    [6]叶列平,康胜,曾勇.双功能带缝剪力墙的弹性受力性能分析[J].清华大学学报,1999 , 39(12):79-81.
    [7]李爱群.钢筋混凝土剪力墙结构抗震控制及其控制装置研究[D].南京:东南大学,1992.6.
    [8]吕西林,孟良.一种新型抗震耗能剪力墙结构模型的振动台试验研究[J].世界地震工程,1995,2(1):29-34.
    [9]赵家妹.免拆模薄壁剪力墙抗震性能试验研究及非线性有限元分析[D].石家庄:河北工业大学,2005.1.
    [10]戚春坡.免拆模板及其剪力墙体系抗震性能研究[D].石家庄:河北工业大学,2004.2.
    [11]何远宏.Dipy模网混凝土剪力墙力学性能试验分析与设计研究[D].上海:同济大学,2004.3.
    [12] Ned M. Cleland. Design for Lateral Force Resistance with Precast Concrete Shear Walls[J].PCI Journal,1997,42(5):44-64.
    [13] Robin L. Hutchinson, et al. Horizontal Post- tensioned Connection for Precast Concrete Load Bearing Shear Wall Panels[J].PCI Journal, 1991,36 (6):64-76.
    [14] Willem Van Zyverden, Richard Sause. Horizontal Connection for Precast Concrete Shear Walls Subjected to Cyclic Deformations[J].PCI Journal,1995,40(4):78-96.
    [15] Code of Practice for Precast Concrete Construction[S].Buildings Department of Hong Kong, 2003.
    [16] PCI Committee on Precast Sandwich Wall Panels. State-of-Art of Pecast/Prestressed Sandwich Wall Panels[J].PCI Journal, 1997,42(2):32-49.
    [17] Yaw-Jeng Chiou, Yuh-Wehn Liou, et al. Seismic Behavior of Precast Reinforced Concrete Walls[C].4th International Conference on Earthquake Engineering,Taipei,October 12-13,2006.
    [18] Jun Hee Kim, Performance- Based Seismic Design of Light- Frame Shearwalls[D].PHD Dissertation,Oregon State University,USA,2004.
    [19] Pierino Lestuzzi, Hugo Bachmann. Displacement Ductility and Energy Assessment from Shaking Table Tests on RC Structural Walls[J].Engineering Structures,2006,32 (6):32-36.
    [20] Amin Einea, David C. Salmon, Gyula J. Fogarasi, et al. State- of - the- Art of Precast Concrete Sandwich Panels[J].PCI Journal,1991,36 (6):78-93.
    [21] Kim S Elliott, Research and Development in Precast Concrete Framed Structures[J].Prog. Struct. Engng. Master. 2000,126 (2):405-428.
    [22] Priestley M J N. Overview of the PRESSS Program[J].PCI Journal,1991,36(4):50-57.
    [23] Stanton J F, Nakaki S D. Design Guidelines for Precast Concrete Seismic Structural Systems [R].PRESSS Report No. 01/03-09. Department of Civil Engineering, University of Washington, Seattle,2002.
    [24] Allen M, Kurama Y C. Design of Rectangular Openings in Unbonded Post- Tensioned Precast Concrete wall[R].Structural Engineering Research Report,#NDSE-01-01,Department of Civil Engineering and Geological Sciences,University of Notre Dame,Notre Dame,Indiana,2001.
    [25]张展.高性能混凝土剪力墙平面内承载力分析[D].上海:同济大学,2004.3.
    [26]徐铨彪.基于抗裂性能的混凝土小型空心砌块建筑试验研究及结构设计方法[D].杭州:浙江大学,2002.1.
    [27] Collins M P,Mitchell D.Prestressed Concrete Structures[M].Prentice Hall,1991.
    [28] Vecchio F J,CollinsM P.The Modified Compression-field Theory for Reinforced Concrete Element Subjected to shear[J].ACI Journal,1986,19(2):219-231.
    [29] HSU T T C.Softening Truss Model Theory for Shear and Torsions[J].Structural Journal of the American Concrete Institute,1988,85(6):624-635.
    [30] HSU T T C,MO Y T.Softening of concrete in low-rise shear walls[J].Structural Journal of the American Concrete Institute,1985,82(6):883-889.
    [31] Zhi Chao,Zhang Cheng-tzu,HSU T T C.Shear Strengthening of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymer Laminates[J].Journal of Composites for Construction,2004,8(5):403-414.
    [32] YU Hsin-wan,Hwang Shyh-jiann.Evaluation of Softened Truss Model For Strength Prediction of Reinforced Concrete Squat Walls[J].Structural Journal of the American Concrete Institute,2005,131(8):839-846.
    [33] Belarbi A,HSU T T C.Constitutive Laws of Softened Concrete in Tension and Reinforcing Bars Stifened by Concrete[J].Structural Journal of the American Concrete Institute,1994,91(4):465-474.
    [34] Pang Xiao-bo,HSU T T C.Behavior of Reinforced Concrete Membrane Elements inShear[J].ACI Structural Journal,1995,92(6):665-679.
    [35] Mo Y L,Robert H.Effect of Softening Models on Behavior of Reinforced Concrete Framed Shear Walls[J].ACI Structural Journal,1997,94(6):730-744.
    [36]李庆扬.数值分析基础教程[M].北京:高等教育出版社,2001.
    [37] Golub G H,Van Loan C F.Matrix Computations[M].The Johns Hopkins University Press,1996.
    [38] Walter Fudin.Principle of Mathematical Analysis[M].China Machine Press,2003.
    [39]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [40]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1996.
    [41]王海波,陈伯望,沈蒲生.双向压弯钢筋混凝土柱的非线性分析[J].计算力学学报,2006,23(4):502-507.
    [42]汪梦甫,周锡元.钢筋混凝土剪力墙多垂直杆非线性单元模型的改进及其应用[J].建筑结构学报,2002,23(1):38-43.
    [43]王社良,赵祥,惠宽堂等.大型火电厂主厂房带边框柱剪力墙有限元分析[J].工程力学,2007,24(12):100-105.
    [44] kabeyasawa,Shioara T H,Otani S.US-Japan cooperative research on R/C full-scale building test [A].Procs 8th WCEE,1984,Vol6:627-634.
    [45] Volcano A,Bertero V V,Colottj V.Analytical Modeling of R/C Structural Walls[A].Procs 9th WCEE,1988,Vol4:627-634.
    [46] Milev J I.Two Dimensional Analytical Model of Reinforced Concrete Shear Walls[A].Procs 11th WCEE,1996,Paper No:320.
    [47] Shiral N,Sato T.Inelastic Analysis of Reinforced Concrete Shear Walls Structures—Material Modeling of Reinforced Concrete [A].IABSE Colloquium,1981,197-210.
    [48] Scott B D,Park R,Priestley M J N.Stress-Strain Behavior of Concrete Confined by Overlapping Hoopa at Low and High Strain Rates[J].ACI Journal,1982,79(1):13-17.
    [49] Saatcioglu M,Takayanagi T,Derecho A T.Dyanmic Response of Reinforced Concrete Shear Wall Systems[A].Procs 7th WCEE,1980,Vol5:49-56.
    [50] Lai S S,Geerge T W.R/C Space frames with column axial force and biaxial bending moment interactions[J].Journal of Structural Engineering,1986,112(7):1553-1572.
    [51] Jing Y,Lai S S.Four-spring Elements for Cycle Response of R/C Column[J].Journal of Structural Engineering,1990,116(4):1018-1029.
    [52] Saiidi M,Ghusn G,Jing Y.Five-spring Elements for Biaxially Bend R/C Column [J].Journal of Structural Engineering,1989,115(2):1553-1572.
    [53] Li Kang-ning,Geerge T W.Nonlinear Earthquake Response of Space Frame with Triaxial Interaction[J].Earthquake Resistance of Reinforced Structure,1993,12(25):441-452.
    [54]王元汉,李丽娟,李银平.有限元法基础与程序设计[M].广州:华南理工大学出版社,2001.
    [55]李围.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2007.
    [56]赖永标,胡仁喜,黄书珍.ANSYS 11.0土木工程有限元分析典型范例[M].北京:电子工业出版社,2007.
    [57]张胜民.基于有限元软件ANSYS 7.0的结构分析[M].北京:清华大学出版社,2003.
    [58]李权.ANSYS 10.0在土木工程中的应用[M].北京:人民邮电出版社,2005.
    [59]徐鹤山.ANSYS在建筑工程中的应用[M].北京:机械工业出版社,2005.
    [60]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004.
    [61]李红云,赵社戌,孙雁.ANSYS 10.0基础及工程应用[M].北京:机械工业出版社,2008.
    [62]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [63]王新敏.ANSYS 10.0有限元分析自学手册[M].北京:人民邮电出版社,2007.
    [64]李卫民,杨红义,王宏祥.ANSYS工程结构实用案例分析[M].北京:化学工业出版社,2007.
    [65]任辉启.ANSYS 7.0工程分析实例详解[M].北京:人民邮电出版社,2003.
    [66]陈晓霞.ANSYS 7.0高级分析[M].北京:机械工业出版社,2004.
    [67]邢静忠.ANSYS 7.0分析实例与工程应用[M].北京:机械工业出版社,2004.
    [68]王新荣,陈永波.有限元法基础及ANSYS应用[M].北京:机械工业出版社,2008.
    [69]黄国权.有限元法基础及ANSYS应用[M].北京:机械工业出版社,2004.
    [70]郝文化,肖新标等.ANSYS 7.0实例分析与应用[M].北京:清华大学出版社,2004.
    [71] Daubechies I. Ten lectures on wavelet[M]. Philadelphia: Capital city press.1992.
    [72]伊廷华,李宏男,李兵,孙丽.地震动信号小波谱分析与结构损伤评估[J].振动与冲击,2006,25(5):32-36.
    [73]李合龙.基于EMD和小波分析的建筑结构损伤检测探讨[J].中山大学学报,2005,44(6):20-23.
    [74]薛景宏,张敏政.基于时域相关分析的结构损伤指数[J].地震工程与工程振动,2006,26(2):62-65.
    [75]刘海卿,陈小波,王学庆.基于损伤指数的框架结构倒塌分析综述[J].自然灾害学报,2008,17(1):186-190.
    [76]孙增寿,任伟新,陈隽.基于小波包分析的框架结构损伤识别[J].防灾减灾工程学报,2006,26 (4):431-436.
    [77]李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验分析[J].土木工程学报,2003,36(5):52-57.
    [78]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90.
    [79]宋廷苏.小波分析在结构损伤识别中的应用研究[D].哈尔滨:中国地震局工程力学研究所,2006.12.
    [80]郭健.基于小波分析的结构损伤识别方法研究[D].杭州:浙江大学,2004.5.
    [81]林宝龙.小波变换在结构损伤识别中的应用研究[D].杭州:浙江大学,2006.3.
    [82]蒋建国,周绪红,邹银生等.小波分析在单自由度动力分析中的应用[J].湖南大学学报,2002,29(10):104-109.
    [83]吴德伦,赵明阶.结构动力响应分析的小波方法初探[J].物探化探计算技术,2002,24(2):163-168.
    [84]张斌.基于小波方法的结构损伤识别研究[D].南京:南京理工大学,2006.6.
    [85]蒋欣.基于小波分析的梁损伤识别方法研究[D].长沙:长沙理工大学,2007.1.
    [86]任宜春.基于小波分析的结构损伤诊断方法研究[D].长沙:湖南大学,2004.4.
    [87]吴琛.小波分解法在多自由度线性体系地震反应分析中的应用[J].福建工程学院学报,2008,6(3):213-218.
    [88] Hou Z,Noori M,Amand R.Wavelet -based approach for Structual Damage Detection [J].Journal of Engineering Mechanics,2000,126(7):677-683.
    [89] Sun Z,Chang C C.Structual Damage Assessment based on Wavelet Packet Transform [J].Journal of Engineering Mechanics,2002,128(10):1354-1361.
    [90] Zou Y.Vibration-based Model Dependent Damage (Delamination) Identification and Health Monitoring for Composite Structure:A Review[J].Journal of Sound and Vibration,2000,230(2):357-378.
    [91] Narkis Y.Identification of Crack Location in Vibration Simply Supported Beams [J].Journal of Sound and Vibration,1994,172(4):549-558.
    [92] Zou Y.Vibration-based Model Dependent Damage (Delamination) Identification and Health Monitoring for Composite Structure:A Review[J].Journal of Sound and Vibration,2000,230(2):357-378.
    [93] Pothisiri T,Hjelmstad K.Structure Damage Detection ana Assessment from Model Response[J].Journal of Engineering Mechanics,2003,129(2):135-145.
    [94] Hani M,Hansang K.Damage Detection in Concrete by Fourier and Wavelet Analysis [J].Journal of Engineering Mechanics,2003,129(5):571-577.
    [95] Liew K,Wang Q.Application of Wavelet Theory of Crack Identification in Structure [J].Journal of Engineering Mechanics,1998,124(2):152-157.
    [96]高层建筑混凝土结构技术规程(JGJ3-2002).北京:中国建筑工业出版社,2002.
    [97]曹万林,董宏英,胡国振等.不同暗支撑型式的带暗支撑双肢剪力墙抗震性能试验研究[J].土木工程学报,2005,38(8):18-25.
    [98]黄选明,曹万林,吕西林.不同型式暗支撑短肢剪力墙抗震性能试验研究[J].地震工程与工程震动,2005,25(3):60-66.
    [99] Marwan T Shedid,Robert G. Drysdale,Wael W El-Dakhakhni.Behavior of Fully Grouted Reinforced Concrete Masonry Shear Walls Failing in Flexure: Experimental Results[J].Journal of Structural Engineering,ASCE,2008,134(10) :1754-1767.
    [100] Jeffrey W. Berman,Michel Bruneau.Experimental Investigation of Light-gauge Steel Plate Shear Walls[J].Journal of Structural Engineering,ASCE,2005,131(2) :259-267.
    [101]杨建民,郑刚,王维汉等.带边框柱剪力墙模型抗震性能试验研究[J].西安建筑科技大学学报,2004,36(3):275-279.
    [102]赵详,王社良,刘瑞杰等.不同暗支撑型式的带暗支撑双肢剪力墙抗震性能试验研究[J].土木工程学报,2005,38(8):18-25.
    [103]叶献国,王海波,孙利民等.钢筋混凝土桥墩抗震耗能能力的试验研究[J].合肥工业大学学报:自然科学版,2005,28(9):1171-1177.
    [104]郭棣,吴敏哲,谢异同.宽肢T形柱的滞回特性及耗能分析[J].世界地震工程,2002,18(2):146-149.
    [105] David W. Dinehart,Harry W. Shenton.Model for Dynamic Analysis of Wood Frame Shear Wall[J].Journal of Engineering Mechanics,ASCE,2000,126(9) :899-908.
    [106]王仪.预应力混凝土框架梁能量耗散—损伤积累特性的研究[D].扬州:扬州大学,2004.5.
    [107]常广勋.长肢一字形截面柱抗震性能试验研究及理论分析[D].北京:北京工业大学,2005.5.
    [108]田瑞华.砼空心小砌块配筋砌体墙体的剪切承载力的试验研究与理论分析[D].西安:西安建筑科技大学,2001.6.
    [109]徐伟栋.配置高强钢筋的混凝土柱抗震性能研究[D].上海:同济大学,2007.3.
    [110] Toko Hitaka,Chiaki Matsui.Experimental Study on Steel Shear Wall with Slits[J].Journal of Structural Engineering,ASCE,2003,129(5) :586-595.
    [111]王学民.锈蚀钢筋混凝土构件抗震性能试验[D].西安:西安建筑科技大学,2003.3.
    [112]马峰.轴压比的变化对格构式复合剪力墙抗震性能影响的试验研究[D].天津:天津大学,2000.6.
    [113]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51.
    [114]徐亚洲.型钢混凝土弯矩—曲率滞回关系研究[D].西安:西安建筑科技大学,2005.3.
    [115]陈云涛.钢筋混凝土结构恢复力特性的分析研究和数字化[D].上海:同济大学,2002.3.
    [116]耿继国.框架柱抗震设计时综合考虑轴压比与剪跨比的初步研究[D].成都:西南交通大学,2006.4.
    [117]李剑群.钢筋混凝土结构考虑负刚度的随机层恢复力模型的研究[D].成都:四川大学,2004.11.
    [118]邓大鹏.密肋复合墙体损伤机理及恢复力模型研究[D].北京:北京交通大学,2004.3.
    [119]李亮.部分预应力混凝土受弯构件恢复力模型研究[D].上海:同济大学,2007.3.
    [120]徐超,张耀春,卢孝哲.方形设肋薄壁钢管混凝土柱的恢复力模型[J].哈尔滨工业大学学报,2008,40(4):514-520.
    [121]辛学忠,蒋丽忠,曹华.钢-混凝土连续组合梁的恢复力模型[J].建筑结构学报,2006,27(1):83-89.
    [122]阎石,肖潇,阚立新,孟庆国.高强钢筋高强混凝土柱恢复力模型[J].沈阳建筑大学学报,2005,21(2):81-85.
    [123]郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学报,2004,37(5):32-38.
    [124]孟海.密肋复合墙板试验研究及刚度分析[D].西安:西安建筑科技大学,2004.5.
    [125]冯颖慧.一种新型复合剪力墙的抗震试验研究[D].天津:天津大学,1999.12.
    [126]徐铨彪.基于抗裂性能的混凝土小型空心砌块建筑试验研究及结构设计方法[D].杭州:浙江大学,2002.1.
    [127]李国强,崔大光.钢骨混凝土梁柱框支剪力墙试验与恢复力模型研究[J].建筑结构学报,2008,29(4):73-80.
    [128]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型与试验研究[J].建筑结构学报,2004,25(5):35-42.
    [129]尹邦信,赵明波,袁西贵.钢筋混凝土恢复力特征参数计算方法的对比[J].绵阳经济技术高等专科学校学报,2002,19(1):9-13.
    [130] Mallat S,Hwang W L.Singularity Detection and Processing with Wavelets.IEEE Trans Inform Theory, 1992,38(2):617-643.
    [131] Mallat S . A Theory for Multiresolution Signal Decomposition: the Wavelet Representation.IEEE Trans Pattern Anal Machine Intell,Theory, 1989,11(7):674-693.
    [132]刘涛,曾祥利,曾军.实用小波分析入门[M].北京:国防工业出版社,2006.
    [133]梁学章,何甲兴,王新民等.小波分析[M].北京:国防工业出版社,2005.
    [134]陈仲英,巫斌.小波分析[M].北京:科学出版社,2007.
    [135]张国华,张文娟,薛鹏翔.小波分析与应用基础[M].西安:西北工业大学出版社,2006.
    [136]曹万林,田宝发,王洪星等.钢筋混凝土带暗支撑双功能剪力墙的力学计算模型[J].地震工程与工程震动,2001,21(2):84-88.
    [137]刘宏欣.钢筋混凝土粉煤灰小型空心砌块砌体组合剪力墙试验研究[D].南京:东南大学,2001.6.
    [138]江见鲸.有限元法及其应用[M].北京:机械工业出版社,2006.
    [139]朱伯芳.有限元法原理与应用[M].北京:水利电力出版社,1981.
    [140] Logan D.A First Course in the Finite Element Method[M].PWS Publishing Company,1993.
    [141] Cook R.Finite Element Modeling for Stress Analysis[M].John Wiley & Sons,1995.
    [142] Cook R,Malkus D,Plesha M.Concepts and Applications of Finite Element Analysis [M].John Wiley & Sons,1989.
    [143] Reddy J.An Introduction to the Finite Element Method[M].McGraw-Hill,1993.
    [144] Bathe K-J.Finite Element Procedures[M].Prentice Hall,1996.
    [145] Zienkiewicz O,Taylor R.The Finite Element Method[M].Butterworth-Heinemann,2000.
    [146] Chandrupatla T,Belegundu A.Introduction to the Finite Element in Engineering[M].Prentice Hall,1997.
    [147] Henwood D,Bonet J.Finite Element:A Gentle Introduction [M].Macmillan Press,1996.
    [148] Lewis P,Ward J.The Finite Element Method:Principles and Applications[M]. Addison Wesley,1996.
    [149] Buchanan G,Schaums Outlines.Finite Element Analysis[M].McGraw-Hill,1995.
    [150]陆新征,江见鲸.用ANSYS SOLID65单元分析混凝土组合构件复杂应力[J].建筑结构,2003,33(6):22-24.
    [151]崔大光.型钢混凝土梁柱框支剪力墙抗震性能研究[D].上海:同济大学,2006.9.
    [152]董宏英,曹万林,霍达等.钢筋混凝土带暗支撑低矮剪力墙非线性有限元分析[J].地震工程与工程振动,2002,22(5):66-70.
    [153]刘元珍,李珠,张泽平等.保温墙模带缝剪力墙非线性有限元分析[J].工程力学,2008,25(4):152-157.
    [154]李珠,李罡,刘元珍.小剪跨比带缝剪力墙非线性分析[J].西安建筑科技大学学报,2008,40(1):8-12.
    [155]郑万仁.不同轴压比下混凝土剪力墙结构性能研究[D].上海:同济大学,2004.1.
    [156]赵衍.混凝土小型砌块墙体受力性能的数值模拟研究[D].长沙:湖南大学,2005.5.
    [157]秦从律,张爱晖,钱磊.底商住宅在罕遇地震作用下的弹塑性时程分析[J].地震工程与工程震动,2006,26(3):87-90.
    [158]庄金钊,高小旺,杨仁树.高层钢-混凝土结构连接方式对抗震性能影响[J].中国矿业大学学报,2005,34(5):644-649.
    [159]刘加进.基于三维非线性地震响应分析的结构损伤评估与抗震设计研究[D].杭州:浙江大学,2006.5.
    [160]赵日崇.复杂高层建筑弹塑性地震反应分析应用软件的开发及应用[D].上海:同济大学,2002.3.
    [161]高学勇.基础隔震结构的动力分析和基于性能的抗震设计研究[D].合肥:合肥工业大学,2007.12.
    [162]秦雷.钢筋混凝土异形柱结构弹塑性动力分析与基于性能的抗震设计研究[D].合肥:合肥工业大学,2003.2.
    [163]方明霁.高层结构线弹性及弹塑性地震反应分析[D].大连:大连理工大学,2002.3.
    [164]王晓琳.医院功能性实用系统的抗震可靠性分析[D].北京:北京工业大学,2005.5.
    [165]苏娟.钢砼结构在双向水平地震下的损伤分析与设计[D].南京:南京工业大学,2004.5.
    [166]李康宁,洪亮,叶献国.结构三维弹塑性分析方法及其在建筑物震害研究中的应用[J].建筑结构,2001,31(3):53-59.
    [167]叶献国.基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟[J].土木工程学报,1998,31(4):3-13.
    [168]徐永基,王润昌,鱼水滢等.陕西省信息大厦超高层结构设计和安全性分析[J].建筑结构学报,2002,23(1):89-95.
    [169]吕西林,龚治国.某复杂高层建筑结构弹塑性时程分析及抗震性能评估[J].西安建筑科技大学学报,2005,38(5):593-602.[116]
    [170]汪梦甫,周锡元.钢筋混凝土剪力墙单元非线性分析模型及其应用[J].力学季刊, 2002,23(1):1-8.
    [171]孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元[J].地震工程与工程振动,2001, 21(2):78-83.
    [172]李康宁.CANNY manual[M].August 2004.
    [173] Kabeyasawa,Shioara, Otani S.US-Japan Cooperative Research on R/C Full-scale Building Test-Part 5:discussion on dynamic response system[C].Procs 8th WCEE,1984.6:627-634.
    [174] Ozcebe G, Saatcioglu M. Hysteretic Shear Model for Reinforced Concrete Members [J].J Struct Engrg,1989,115(1):132-148.
    [175]龚治国,吕西林,姬守中.不同边缘构件约束的剪力墙抗震性能[J].武汉大学学报,2007,40(2):92-98.
    [176]叶献国,徐勤,李康宁等.地震中受损钢筋混凝土建筑弹塑性时程分析与振动台试验研究[J].土木工程学报,2003,36(12): 20-25.
    [177]章宇明.密肋复合墙板损伤模型及基于损伤性能目标的抗震设计方法研究[D].西安:西安建筑科技大学,2006.4.
    [178]郭子雄,刘阳,杨勇.结构震害指数研究评述[J].地震工程与工程震动,2004,24(5):56-61.
    [179]李维涛.地震力作用下钢筋混凝土框架结构损伤演化研究及数值模拟[D].石家庄:河北工业大学,2004.3.
    [180]周雁群.钢筋混凝土拱结构的损伤分析与非线性行为研究[D].长沙:长沙理工大学,2006.4.
    [181]李强.混凝土受压损伤本构模型研究[D].重庆:重庆大学,2006.5.
    [182]沈祖炎,董宝,曹文衔.结构损伤累积分析的研究现状和存在的问题[J].同济大学学报, 1997,25(2):135-140.
    [183]王东升.钢筋混凝土梁式桥的地震破损研究[D].哈尔滨:中国地震局工程力学研究所,2002.9.
    [184]林燕清,欧进萍.混凝土多级等幅疲劳的变形发展规律试验研究[J].哈尔滨建筑大学学报,1999,32(1):11-16.
    [185]李洪泉,雷立宏,吕西林.钢筋混凝土压弯构件低周疲劳损伤的抗力衰减试验研究[J].南京建筑工程学院学报,1998,32(3):10-16.
    [186]张国彬.基于两次Pushover的钢筋混凝土框架整体损伤分析模型[D].重庆:重庆大学,2003.6.
    [187] Young Ji Rark , Alfredo H S Ang . Mechanistic Seismic Model for Reinforced Concrete[J].Journal of Structural Engineering,1985,111(4):722-739.
    [188] Young Ji Rark,Alfredo H S Ang.Seismic Damage Analysis of Reinforced Concrete Buildings[J].Journal of Structural Engineering,1985,111(4):740-756.
    [189] Andrew W Taylor,William C Stone,Sashi K Kunnath.Performance-Based Specifications for the Seismic Design,Retrofit and Repair of RC Bridge Columns[EB/OL]. http://mceer.buffalo.edu/publications/bulletin/97/11-01/jan97n2.html.
    [190]王海波.钢筋混凝土桥墩抗震性能试验及损伤指数的分析研究[D].合肥:合肥工业大学,2005.5.
    [191]关履泰.小波方法与应用[M].北京:高等教育出版社,2007.
    [192]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004.
    [193]崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995.
    [194]唐晓初.小波分析及其应用[M].重庆:重庆大学出版社,2006.
    [195]刘明才.小波分析及其应用[M].北京:清华大学出版社,2005.
    [196]潘泉,张磊,孟晋丽等.小波滤波方法及应用[M].北京:清华大学出版社,2005.
    [197]王大凯,彭进业.小波分析及其在信号处理中的应用[M].北京:电子工业出版社,2006.
    [198] Chui C K.An Introduction to Wavelets[M].Academic Press,1992.
    [199] Chan Y T.Wavelets Basics[M].Kluwer Academic,1995.
    [200] Newlans D E.An Introduction to Random Vibrations,Spectral and Wavelets Analysis [M].Wiley,1993.
    [201] Mallat S G.A Wavelets Tour of Signal Processing[M].Academic Press,1999.
    [202] Benedetto J J,Frazier N W.Wavelets:Mathematics and Applications[M].CRC Press,1993.
    [203] Chan Y T.Approximation Theory and Functional Analysis[M].Academic Press,1991.
    [204] Chan Y T.Wavelets:A Tutorial in Theory and Application [M].Academic Press,1992.
    [205] Addison P S.The Illusttrated Wavelet transform handbook:Introductory Theory and Application in Science,Engineering,Medicine and Finance[M].Academic Press,2002.
    [206] Zou Y.Vibration-based Model Dependent Damage (Delamination) Identification and Health Monitoring for Composite Structure:A Review[J]. Journal of Sound and Vibration,2000,230(2):357-378.
    [207] Daubechies I.The Wavelet Transform,Time-frequency Localization and Signal Analysis [J].IEEE Trans,1990,36(5):961-1005.
    [208] Mallat S.Singularity Detection and Processing with Wavelets[J].IEEE Trans,1992,38(2):617-643.
    [209] Mallat S.A Theory of Multiesolution Signal Decomposition:The Wavelet Transform [J].IEEE Trans,1989,11(7):674-693.
    [210] Mallat S.Zero-crossing of a Wavelet Transfom[J].IEEE Trans,1991,37(4):1019-1033.
    [211]李宏男,孙鸿敏.基于小波分析和神经网络的框架结构损伤诊断方法[J].地震工程与工程震动,2003,23(5):141-148.
    [212]邓迎晓.基于小波技术的梁体裂缝检测灵敏度分析[D].杭州:浙江大学,2005.3.
    [213]侯健.基于小波变换的结构损伤检测理论与应用方法研究[D].西安:西安建筑科技大学,2005.3.
    [214]蒋庆,叶献国,连星等.基于小波变换的地震损伤指标的研究[J].合肥工业大学学报,2009,32(6):890-894.
    [215]胡昌华,李国华,刘涛.基于MATLAB6.X的系统分析与设计——小波分析[M].西安:西北电子科技大学出版社,2004.
    [216]阮沈勇,王永利,桑群芳.MATLAB程序设计[M].北京:电子工业出版社,2003.
    [217]葛娜.精通MATLAB 7编程与数据库应用[M].北京:电子工业出版社,2007.
    [218]陈杰.MATLAB宝典[M].北京:电子工业出版社,2007.
    [219]蔡旭晖,刘卫国,蔡立燕.MATLAB基础与应用教程[M].北京:人民邮电出版社,2009.
    [220]董霖.MATLAB使用详解:基础、开发及工程应用[M].北京:电子工业出版社,2009.
    [221]张磊,毕靖,郭莲英.MATLAB实用教程[M].北京:人民邮电出版社,2008.
    [222]楼顺天,姚若玉,沈俊霞.MATLAB 7.x程序设计语言[M].西安:西安电子科技大学出版社,2007.
    [223]张笑,杨奋强.MATLAB 7.x基础教程[M].西安:西安电子科技大学出版社,2008.
    [224]苏金明,阮沈勇.MATLAB 6.1实用指南[M].北京:电子工业出版社,2002.
    [225]陈永春.MATLAB M语言高级编程[M].北京:清华大学出版社,2004.
    [226]李南南,吴清,曹辉林.MATLAB 7简明教程[M].北京:清华大学出版社,2006.
    [227] Kwon Y,Bang H.The Finite Element Method Using MATLAB[M].CRC Press,2000.
    [228] Sennett R.Matrix Analysis of Structures[M].Prentice Hall,1994.
    [229] Part-Enander E,Sjoberg A.The MATLAB 5 Handbook[M].Addison Wesley,1999.
    [230] Biran A,Breiner M.MATLAB 5 for Engineers[M].Addison Wesley,1999.
    [231] Higham D,Higham N.MATLAB Guide[M].SIAM,2000.
    [232] Hanselman D,Littlefield B.Mastering MATLAB 6[M].Prentice Hall,2000.
    [233] Chen K,Ciblin P,Irving A.Mathematical Exploration with MATLAB[M].Cambridge University Press,1999.
    [234] Etter D.Engineering Problem Solving with MATLAB[M].Prentice Hall,1996.
    [235] Palm W.Introduction to MATLAB 6 for Engineers[M].McGraw-Hill,2000.
    [236] Fausett L.Applied Numerical Analysis Using MATLAB[M].Prentice Hall,1999.
    [237]王日光.基于试验和有限元分析的钢筋混凝土桥墩抗剪性能研究[D].合肥:合肥工业大学,2005.5.
    [238]左晓明.钢筋混凝土桥墩试验研究及MARC有限元数值模拟[D].合肥:合肥工业大学,2005.5.
    [239]金元,勒海水.小波分析方法在混凝土检测中的应用[J].无损检测,2003,25(12):616-619.
    [240]吴浪.混凝土早期力学性能试验研究[D].长沙:南昌大学,2007.6.
    [241]刘旭艳.天津港陆上建筑物的地基承载力可靠度分析[D].天津:天津大学,2003.1.
    [242]张玲.基于三次样条曲线拟合公路平面线形方法研究[D].武汉:武汉理工大学,2007.4.
    [243]尤明庆.试验结果的数学拟合与力学模型[J].岩土力学与工程学报,2008,27(2):251-257.
    [244]陈伯望,王海波,沈蒲生.剪力墙多垂直杆单元模型的改进及应用[J].工程力学,2005,22(3):183-189.
    [245]蒋欢军,吕西林.一种宏观剪力墙单元模型应用研究[J].地震工程与工程振动,2003,23(1):38-43.
    [246]蒋欢军,吕西林.用一种墙体单元模型分析剪力墙结构[J].地震工程与工程振动,1998,18(3):40-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700