用户名: 密码: 验证码:
高迁移率族蛋白1在原发性肝细胞癌发展中的潜在作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:原发性肝癌是一种病死率很高的临床危重症,在我国原发性肝癌最常见的病因是病毒性肝炎,其中主要的是乙肝病毒(hepatitis B virus, HBV)感染。而高迁移率族蛋白1 (high mobility group box chromosal protein 1, HMGB1)在细胞外作为一种关键的“晚期”炎症因子,已经成为癌症防治研究中一个重要的新靶标。有研究表明HMGB1可能在某些癌症发生发展中发挥着重要的作用。本研究旨在探讨HMGB1在原发性肝癌发生发展中的潜在作用。
     目的:(1)研究肝癌患者肝组织、血清及外周血单个核细胞(PBMC)中HMGB1的表达水平。(2)体外观察HMGB1刺激是否能促进人肝细胞株HepG2细胞增殖并初步探讨其可能的机制。(3)探讨小干扰RNA(small interfering RNA, siRNA)抑制HMGB1基因对人肝细胞株HepG2细胞生物学功能的影响。
     方法:(1)分别收集健康对照者血清及外周血单个核细胞(PBMC),肝癌患者血清、PBMC、肝癌组织及癌旁组织,利用RT-PCR、Western blot和免疫组化技术,分别从mRNA水平和蛋白质水平研究肝癌患者组织、血清及PBMC中HMGB1表达的情况。同时行HE染色,评估肝组织的病理学改变。(2)体外用不同浓度重组HMGB1 (rHMGB1)刺激人肝细胞株HepG2细胞,不同时间点分别收集细胞。台盼蓝拒染法和噻唑蓝(MTT)法测定细胞存活率,TUNEL法检测细胞凋亡率,以明确细胞是否凋亡或坏死。RT-PCR和Westernblot检测细胞中PCNA、cyclin D1表达的变化。(3)设计并化学合成针对HMGB1的3对siRNA分子序列(siRNAH1、siRNAH2、siRNAH3),同时设未转染组(Lipo组)及转染阴性siRNA组(阴性siRNA对照组)。脂质体法瞬时转染HepG2细胞,通过RT-PCR和Western blot检测HMGB1基因在mRNA水平及蛋白质水平的变化以验证HMGB1 siRNA抑制效果;MTT法检测细胞存活率并绘制生长曲线;RT-PCR和Western blot检测PCNA、cyclin D1表达的变化,TUNEL法检测细胞凋亡率,以明确抑制HMGB1表达后能否诱导细胞凋亡,同时测定培养上清中AFP的含量。
     结果:(1)肝癌患者癌组织中HMGB1无论是mRNA水平(2.02±0.25)还是蛋白水平(0.78±0.13)均明显高于相对应的癌旁组织的mRNA水平(1.08±0.12)和蛋白水平(0.325±0.11)(P<0.01)。同样,免疫组化结果显示癌组织中HMGB1表达明显高于相对应的癌旁组织。而血清中HMGB1蛋白相对浓度及PBMC中HMGB1 mRNA的含量与健康对照组之间无差别(P>0.05)。(2)MTT结果显示不同剂量(10、50、100ng/ml) rHMGB1组HepG2细胞增殖能力均明显高于HepG2细胞空白对照组(P<0.05)。HMGB1抗体(20μg/ml)能阻断HMGB1 (10ng/ml)对HepG2细胞的增殖作用。Western blot和RT-PCR显示,HMGB1能明显上调HepG2细胞中PCNA、cyclin D1蛋白和mRNA的表达(P<0.05), HMGB1抗体能明显抑制HMGB1上调PCNA、cyclinD1蛋白和mRNA表达的作用(P<0.05)。台盼蓝拒染法和TUNEL检测排除了细胞处于凋亡或坏死状态。(3)3对特异性HMGB1-siRNAs转染HepG2细胞后,HMGB1 mRNA相对表达量分别为1.147±0.024,1.014±0.042,0.415±0.055,较单纯脂质体对照组(Lipo组)的1.411±0.065明显减少(t值分别为7.187、9.018和20.689,P值均<0.01);3对特异性HMGB1-siRNAs转染HepG2细胞后,HMGB1蛋白相对表达量分别为0.369±0.035,0.340±0.028,0.097±0.020,较Lipo组的0.553±0.051明显减少(t值分别为6.678、7.919和17.287,P值均<0.01),以siRNAH3抑制作用最强,抑制率可达到70-80%。转染siRNAH3后HepG2细胞的增殖能力在72h、96h、120h时受到明显抑制,与Lipo组相比,其F值分别为34.651、540.550、3778.197,P值均<0.01,HepG2细胞中PCNA及cyclin D1 mRNA和蛋白表达下降,AFP含量也下降(P<0.01),而细胞凋亡指数明显增高(P<0.01)。
     结论:(1)证实HMGB1在肝癌癌组织中是明显升高的,其表达与肝癌的发生、发展密切相关。(2) HMGB1明显促进HepG2细胞增殖,HMGB1抗体能拮抗外源性HMGB1的增殖作用。(3)靶向HMGB1基因的siRNA分子片段可以有效地抑制人肝细胞HepG2的生长,诱导HepG2细胞凋亡,其作用与下调HMGB1的表达有关,HMGB1可能是肝癌治疗的一个潜在靶点。
Objectives:(1) To identify the expression levels of HMGB1 in liver tissues, serum and peripheral blood mononuclear cell (PBMC) from hepatocellular carcinoma patients. (2) To investigate the effect of high mobility group box-1 protein (HMGB1) on proliferative activity of human hepatoma cell line HepG2 and its potential regulating mechanism. (3) To investigate the effect of specific inhibiting HMGB1 gene expression by small interfering RNAs (siRNA) on the proliferation and apoptosis of human hepatoma cell line HepG2.
     Methods:(1)Serum and PBMC from healthy control were collected. Similarly, serum, PBMC and liver tissues from HCC patients were also collected. Then, all samples were subjected to Western blot, RT-PCR or immunohistochemical analysis for the expression of HMGB1, respectively. At the same time HE staining was performed to evaluate the feature of liver tissue damage. (2) The cultured HepG2 cells were treated with recombinant HMGB1 (10、50、100ng/ml) or HMGB1-Ab, or both for 24h. Cell proliferation was observed by MTT and trypan blue exclusive analysis. Western blot and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to detect the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 protein and mRNA respectively. In situ apoptosis was evaluated by terminal deoxynucleotidyl transferase-deoxyuridine triphosphate nick end labeling (TUNEL) assay. (3) Three specific siRNAs of HMGB1 were designed and synthesized, and transiently transfected into HepG2 cells by Lipofectamine TM 2000.The HMGB1 expression in HepG2 cells was detected by RT-PCR and Western blot after transfection respectively. The proliferation activity in vitro was assessed by MTT assay. Western blot and RT-PCR were used to detect the expression of PCNA and cyclin Dl protein and mRNA respectively. In situ apoptosis was evaluated by TUNEL assay. The concentration of supernatant AFP from the transfected HepG2 cells was detected using chemiluminescence immunoassay (CLIA) method.
     Results:(1) According to immunohistochemical staining and Western blot analysis, HMGB1 protein levels were significantly overexpressed in carcinoma tissues, as compared to the corresponding non-cancerour tissues from the same HCC patient. Correspondingly, HMGB1 mRNA levels were also elevated in carcinoma tissues, as compared to noncancerous counterparts from the same HCC patient. However, HMGB1 neither protein in serum nor mRNA levels in PBMCs had any difference between HCC patients and healthy controls. (2) Compared with no-treatment, HMGB1 at the concentration of 10ng/ml, 50ng/ml and 100ng/ml obviously increased HepG2 cells proliferation, cyclin Dl and PCNA protein and mRNA expression after treatment for 24 hours respectively (P<0.05). However, when both HMGB1 (10ng/ml) and anti-HMGB1 (20μg/ml) treated HepG2 cells, anti-HMGB1 could significantly inhibit the proliferation effect and cyclin Dl and PCNA mRNA and protein expression of HMGB 1 on HepG2 cells (P<0.05). (3) All of these specific HMGB1-siRNAs (1,2,3) efficiently and specifically inhibited the expression of the HMGB1 gene and the levels of HMGB 1 mRNA were 1.147±0.024,1.014±0.042,0.435±0.055, respectively, in HMGB1-siRNAs transfection group, which were significantly lower than that in LipofectamineTM2000 alone group (1.411±0.065, P<0.01); Correspondingly, all of these specific HMGB1-siRNAs (1,2,3) could efficiently and specifically inhibit the expression of the HMGB 1 protein and the levels of HMGB1 protein were 0.369±0.035,0.340±0.028, 0.097±0.020, respectively, in HMGB1-siRNAs transfection group, which was significantly lower than that in LipofectamineTM2000 alone group (0.553±0.051, P<0.01). Of the 3 specific HMGB1-siRNAs, HMGB1-siRNA-3 (siRNAH3) had the highest inhibition rate (70-80%). The proliferation of HepG2 cells was markedly inhibited by siRNAH3 transfection. Compared to mock-transfection, seventy-two hours after introduction of siRNAH3 into HepG2 cells, siRNAH3 dramatically suppressed not only the proliferation activity of HepG2 cells but also the expression of PCNA and cyclin D1 mRNA and protein, as well as the secretion of AFP in the culture supernatant (P<0.01). Moreover, siRNAH3 can induce apoptosis by inhibiting HMGB1 expression (P<0.01).
     Conclusions:(1) It is further identified that HMGB1 levels were significantly elevated in hepatocellular carcinoma tissues. Our data indicate a strong correlation between expression of HMGB1 and HCC development. (2) HMGB1 has potent growth-promoting effect on HepG2 cells proliferation, and anti-HMGB1 can reverse this effect. (3) siRNA targeting HMGB1 mRNA can specifically reduce HMGB1 gene and protein expression. siRNAH3 can effectively suppress the proliferation and induce apoptosis of HepG2 cells by inhibiting HMGB1 expression, providing a novel target for hepatocarcinoma therapy.
引文
[1]中国抗癌协会肝癌专业委员会、中国抗癌协会临床肿瘤学协作委员会、中华医学会肝病学分会肝癌学组.原发性肝癌规范化诊治专家共识.临床肿瘤学杂志,2009,14(3):259-269
    [2]Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet,2003, 362(9399):1907-1917
    [3]梁扩寰,李绍白.肝脏病学.北京:人民卫生出版社,2003:1126-1160
    [4]El-Serag HB, Rudolph L. Hepatocellular carcinoma:Epidemiology and molecular carcinogenesis. Gastroenterology,2007,132(7):2557-2576
    [5]Luo RH, Zhao ZX, Zhou XY, et al. Risk factors for primary liver carcinoma in Chinese population. World J Gastroenterol,2005,11(28):4431-4434
    [6]Tanaka A, Uegaki S, Kurihara H, et al. Hepatic steatosis as a possible risk factor for the development of hepatocellular carcinoma after eradication of hepatitis C virus with antiviral therapy in patients with chronic hepatitis C. World J Gastroentero,2007,13(39):5180-5187
    [7]Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem, 1973,38(1):14-19
    [8]Yotov WV, Starnaud R. Nucleotide sequence of a mouse cDNA encoding the nonhistone chromosomal high mobility group protein-1 (HMG1). Nucleic Acids Res,1992,20(13):3516-3516
    [9]Fashena SJ, Reeves R, Ruddle NH. A poly(dA-dT) upstream activating sequence binds high-mobility group I protein and contributes to lymphotoxin (tumor necrosis factor-beta) gene regulation. Mol Cell Biol,1992, 12(2):894-903
    [10]Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell, 1992,71(5):777-789
    [11]Baldassarre G, Battista S, Belletti B, et al. Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol Cell Biol,2003,23(7):2225-2238
    [12]Brunetti A, Manfioletti G, Chiefari E, et al. Transcriptional regulation of human insulin receptor gene by the high-mobility group protein HMGI(Y). Faseb J,2001,15(2):492-500
    [13]Landsman D, Bustin M. A signature for the HMG-1 box DNA-binding proteins. Bioessays,1993,15(8):539-546
    [14]Melvin VS, Edwards DP. Coregulatory proteins in steroid hormone receptor action:The role of chromatin high mobility group proteins HMG-1 and-2. Steroids,1999,64(9):576-586
    [15]Muller S, Scaffidi P, Degryse B, et al. The double life of HMGB1 chromatin protein:architectural factor and extracellular signal. Embo J,2001, 20(16):4337-4340
    [16]Wang HC, Bloom O, Zhang MH, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science,1999,285(5425):248-251
    [17]Ellerman JE, Brown CK, de Vera M, et al. Masquerader:High mobility group box-1 and cancer. Clin Cancer Res,2007,13(10):2836-2848
    [18]Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein:Friend and foe. Cytokine Growth Factor Rev,2006,17(3):189-201
    [19]Thomas JO, Travers AA. HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem Sci,2001,26(3):167-174
    [20]Kuniyasu H, Chihara Y, Kondo H. Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int J Cancer,2003, 104(6):722-727
    [21]Kuniyasu H, Chihara Y, Kondo H, et al. Amphoterin induction in prostatic stromal cells by androgen deprivation is associated with metastatic prostate cancer. Oncol Rep,2003,10(6):1863-1868
    [22]Flohr AM, Rogalla P, Meiboom M, et al. Variation of HMGB1 expression in breast cancer. Anticancer Res,2001,21(6A):3881-3885
    [23]Takada M, Hirata K, Ajiki T, et al. Expression of receptor for advanced glycation end products (RAGE) and MMP-9 in human pancreatic cancer cells. Hepato-gastroenterol,2004,51(58):928-930
    [24]Poser I, Golob M, Buettner R, et al. Upregulation of HMG1 leads to melanoma inhibitory activity expression in malignant melanoma cells and contributes to their malignancy phenotype. Mol Cell Biol,2003, 23(8):2991-2998
    [25]Ishiguro H, Nakaigawa N, Miyoshi Y, et al. Receptor for advanced glycation end products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate,2005,64(1):92-100
    [26]Wu D, Ding Y, Wang S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with progression and poor prognosis in human nasopharyngeal carcinoma. J Pathol,2008,216(2):167-175
    [27]Volp K, Brezniceanu ML, Bosser S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut,2006, 55(2):234-242
    [28]Taguchi A, Blood DC, del Toro G, et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature,2000, 405(6784):354-360
    [29]彭建平,范学工,刘洪波.慢性乙型肝炎患者高迁移率族蛋白1 mRNA的表达及其临床意义.世界华人消化杂志,2006,14(2):167-172
    [30]刘洪波,范学工,黄建军,等.乙型肝炎患者血清高迁移率族蛋白-1含量的检测及临床意义.中华肝脏病杂志,2007,15(11):812-815
    [31]Ekici H, Nowak P, Barqasho B, et al. Elevated levels of HMGB-1 in chronic hepatitis type C. J Leukocyte Biol,2008,84(2):A33-A34
    [32]韩红莉,赵中夫,杨柳絮,等.高迁移率族蛋白B1在肝纤维化发生发展中的作用研究.长治医学院学报,2008,22(5):321-324
    [33]Kao YH, Jawan B, Goto S, et al. High-mobility group box 1 protein activates hepatic stellate cells in vitro. Transplant Proc,2008,40(8):2704-2705
    [34]韩红莉,杨柳絮,吴红样,等.HMGB1对肝星状细胞细胞外基质合成的影响.长治医学院学报,2009,23(2):85-87
    [35]Perz JF, Armstrong GL, Farrington LA, et al. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol,2006,45(4):529-538
    [36]Tanaka K, Hirohata T, Takeshita S, et al. Hepatitis B virus, cigarette smoking and alcohol consumption in the development of hepatocellular carcinoma:a case-control study in Fukuoka, Japan. Int J Cancer,1992,51(4):509-514
    [37]Bosch FX, Ribes J, Cleries R, et al. Epidemiology of hepatocellular carcinoma. Clin Liver Dis,2005,9(2):191-211
    [38]Raza SA, Clifford GM, Franceschi S. Worldwide variation in the relative importance of hepatitis B and hepatitis C viruses in hepatocellular carcinoma: a systematic review. Brit J Cancer,2007,96(7):1127-1134
    [39]安海燕.乙肝病毒相关性肝硬化及原发性肝癌血清证候蛋白质组初步研究:[博士学位论文].广州:南方医科大学,2007
    [40]Kawahara N, Tanaka T, Yokomizo A, et al. Enhanced coexpression of thioredoxin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin. Cancer Res,1996,56(23):5330-5333
    [41]Cheng BQ, Jia CQ, Liu CT, et al. Serum high mobility group box chromosomal protein 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Digest Liver Dis,2008,40(6):446-452
    [42]周蓉蓉,范学工,刘洪波,等.脂多糖诱导肝细胞HepG2释放HMGB1的研究.生命科学研究,2008,12(4):359-364
    [43]周蓉蓉,范学工,刘洪波,等.TNF-α诱导人肝细胞系HepG2细胞释放HMGB1的研究.中国免疫学杂志,2009,25(2):126-131
    [44]刘洪波,范学工,Wang H,等.人HMGB1基因的克隆、融合表达与生物学活性.中国生物工程杂志,2006,26(11):20-22
    [45]周蓉蓉.肝衰竭时肝细胞高迁移率族蛋白1的移位及释放研究:[博士学位 论文].长沙:中南大学,2009
    [46]刘洪波.晚期炎症介质HMGB1在暴发性肝衰竭发展中的作用及抗HMGB1药物的初步筛选:[博士学位论文].长沙:中南大学,2007
    [47]Goldstein RS, Gallowitsch-Puerta M, Yang LH, et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock, 2006,25(6):571-574
    [48]刘洪波,范学工,刘悦晖,等.肝损伤模型小鼠高迁移率族蛋白-1的表达.生命科学研究,2008,12(2):168-173
    [49]Xu Y, Sumter TF, Bhattacharya R, et al. The HMG-I oncogene causes highly penetrant, aggressive lymphoid malignancy in transgenic mice and is overexpressed in human leukemia. Cancer Res,2004,64(10):3371-3375
    [50]Stros M, Ozaki T, Bacikova A, et al. HMGB1 and HMGB2 cell-specifically down-regulate the p53-and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J Biol Chem,2002,277(9):7157-7164
    [51]Maeda S, Hikiba Y, Shibata W, et al. Essential roles of high-mobility group box 1 in the development of murine colitis and colitis-associated cancer. Biochem Bioph Res Co,2007,360(2):394-400
    [52]Tsung A, Klune JR, Zhang X, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4-dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med,2007,204(12):2913-2923
    [53]Kuniyasu H, Chihara Y, Takahashi T. Co-expression of receptor for advanced glycation end products and the ligand amphoterin associates closely with metastasis of colorectal cancer. Oncol Rep,2003,10(2):445-448
    [54]Sharma A, Ray R, Rajeswari MR. Overexpression of high mobility group (HMG) B1 and B2 proteins directly correlates with the progression of squamous cell carcinoma in skin. Cancer Invest,2008,26(8):843-851
    [55]Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB):Nuclear weapon in the immune arsenal. Nat Rev Immunol,2005,5(4):331-342
    [56]Muller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB 1, a chromatin protein with a cytokine function. J Intern
    Med,2004,255(3):332-343
    [57]Yang H, Wang HC, Czura CJ, et al. The cytokine activity of HMGB1. J Leukocyte Biol,2005,78(1):1-8
    [58]Bianchi ME. Significant (re)location:how to use chromatin and/or abundant proteins as messages of life and death. Trends Cell Biol,2004,14(6):287-293
    [59]Harris HE, Andersson U. The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol,2004,34(6):1503-1512
    [60]Wang H, Yang H, Tracey KJ. Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med,2004,255(3):320-331
    [61]Raucci A, Palumbo R, Bianchi ME. HMGB1:A signal of necrosis. Autoimmunity,2007,40(4):285-289
    [62]Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med,2005, 83(11):876-886
    [63]Huttunen HJ, Rauvala H. Amphoterin as an extracellular regulator of cell motility:from discovery to disease. J Intern Med,2004,255(3):351-366
    [64]Lotze MT, DeMarco RA. Dealing with death:HMGB1 as a novel target for cancer therapy. Curr Opin Investig Drugs,2003,4(12):1405-1409
    [65]Rauvala H, Huttunen HJ, Fages C, et al. Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biol, 2000,19(5):377-387
    [66]Parkkinen J, Raulo E, Merenmies J, et al. Amphoterin, the 30-kDa protein in a family of HMG1-type polypeptides. Enhanced expression in transformed cells, leading edge localization, and interactions with plasminogen activation. J Biol Chem,1993,268(26):19726-19738
    [67]Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature,2002,418(6894):191-195
    [68]Palumbo R, Sampaolesi M, De Marchis F, et al. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol,2004,164(3):441-449
    [69]Treutiger CJ, Mullins GE, Johansson ASM, et al. High mobility group 1 B-box mediates activation of human endothelium. J Intern Med,2003, 254(4):375-385
    [70]Dimov SI, Alexandrova EA, Beltchev BG. Differences between some properties of acetylated and nonacetylated forms of HMG1 protein. Biochem Bioph Res Co,1990,166(2):819-826
    [71]Fiuza C, Bustin M, Talwar S, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood,2003, 101(7):2652-2660
    [72]De Mori R, Straino S, Di Carlo A, et al. Multiple effects of high mobility group box protein 1 in skeletal muscle regeneration. Arterioscl Throm Vas, 2007,27(11):2377-2383
    [73]Limana F, Germani A, Zacheo A, et al. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac c-kit(+) cell proliferation and differentiation. Circ Res,2005,97(8):E73-E83
    [74]Zimmermann K, Volkel D, Pable S, et al. Native versus recombinant high-mobility group B1 proteins:Functional activity in vitro. Inflammation, 2004,28(4):221-229
    [75]Altmann S, Lange S, Pommerencke J, et al. High Mobility Group Box 1-Protein expression in canine haematopoietic cells and influence on canine peripheral blood mononuclear cell proliferative activity. Vet Immunol Immunop,2008,126(3-4):367-372
    [76]Hamada N, Maeyama T, Kawaguchi T, et al. The role of high mobility group box1 in pulmonary fibrosis. Am J Resp Cell Mol,2008,39(4):440-447
    [77]Yang H, Ochani M, Li JH, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proceedings of the National Academy of Sciences of the United States of America,2004,101(1):296-301
    [78]Chung HW, Lee SG, Kim H, et al. Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J Transl Med,2009,7:38
    [79]Suzuki S, Takeshita K, Asamoto M, et al. High mobility group box associated with cell proliferation appears to play an important role in hepatocellular carcinogenesis in rats and humans. Toxicology,2009,255(3):160-170
    [80]Bassi R, Giussani P, Anelli V, et al. HMGB1 as an autocrine stimulus in human T98G glioblastoma cells:role in cell growth and migration. J Neuro oncol, 2008,87(1):23-33
    [81]Labat-Moleur F, Guillermet C, Lorimier P, et al. TUNEL apoptotic cell detection in tissue sections:Critical evaluation and improvement. J Histochem Cytochem,1998,46(3):327-334
    [82]Henson PM, Tuder RM. Apoptosis in the lung:induction, clearance and detection. Am J Physiol Lung Cell Mol Physiol,2008,294(4):L601-611
    [83]Duan WR, Garner DS, Williams SD, et al. Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol,2003,199(2):221-228
    [84]Hurst PR, Mora JM, Fenwick MA. Caspase-3, TUNEL and ultrastructural studies of small follicles in adult human ovarian biopsies. Hum Reprod,2006, 21(8):1974-1980
    [85]Burton JD. The MTT assay to evaluate chemosensitivity. Chemosensitivity, In Vitro Assays,2005,110(1):69-78
    [86]成海燕,祝秀丹.实体肿瘤体外药敏技术研究进展及其临床应用研究.中国小儿血液与肿瘤杂志,2008,2(13):40-43
    [87]Sherr CJ. MAMMALIAN G(1)-CYCLINS. Cell,1993,73(6):1059-1065
    [88]Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol,1999,39:295-312
    [89]Fu MF, Wang CG, Li ZP, et al. Minireview:Cyclin D1:Normal and abnormal functions. Endocrinology,2004,145(12):5439-5447
    [90]Kim JK, Diehl JA. Nuclear cyclin D1:an oncogenic driver in human cancer. J Cell Physiol,2009,220(2):292-296
    [91]Buyukbayram H, Cureoglu S, Arslan A, et al. Prognostic value of PCNA and mutant p53 expression in laryngeal squamous cell carcinoma. Cancer Invest, 2004,22(2):195-202
    [92]董敬东,王莉芬.原发性肝癌影像学特征与PCNA、AFP的表达.中国医药导报,2008,5(15):16-18
    [93]Nakano A, Watanabe N, Nishizaki Y, et al. Immunohistochemical studies on the expression of P-glycoprotein and p53 in relation to histological differentiation and cell proliferation in hepatocellular carcinoma. Hepatol Res, 2003,25(2):158-165
    [94]Brezniceanu ML, Volp K, Bosse S, et al. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. Faseb J,2003,17(8):1295-1297
    [95]Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998, 391(6669):806-811
    [96]Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol,2002, 20(5):500-505
    [97]Kayhan H, Karatayli E, Turkyilmaz AR, et al. Inhibition of hepatitis B virus replication by shRNAs in stably HBV expressed HepG2 2.2.15 cell lines. Arch Virol,2007,152(5):871-879
    [98]Ying R-S, Zhu C, Fan X-G, et al. Hepatitis B virus is inhibited by RNA interference in cell culture and in mice. Antivir Res,2007,73(1):24-30
    [99]Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell,2002, 2(3):243-247
    [100]Wang YH, Liu S, Zhang G, et al. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res,2005,7(2):R220-R228
    [101]Miao GY, Lu QM, Zhang XL. Downregulation of survivin by RNAi inhibits growth of human gastric carcinoma cells. World J Gastroentero,2007, 13(8):1170-1174
    [102]Chen ZT, Varney ML, Backora MW, et al. Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res,2005, 65(19):9004-9011
    [103]Lv W, Zhang C, Zhou DH, et al. RNAi-mediated gene silencing of vascular endothelial growth factor inhibits growth of colorectal cancer. Cancer Biother Radio,2007,22(6):841-852
    [104]Couzin J. Small RNAs make big splash. Science,2002,298(5602):2296-2297
    [105]黄庆先,孙念峰,王国斌,等.反义核苷酸抑制人高迁移率族蛋白1表达对胰腺癌细胞的影响.华中科技大学学报(医学版),2004,33(5):562-565
    [106]Gnanasekar M, Thirugnanam S, Ramaswamy K. Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis. Int J Oncol,2009, 34(2):425-431
    [107]Yu M, Wang J, Li W, et al. Proteomic screen defines the hepatocyte nuclear factor 1 alpha-binding partners and identifies HMGB1 as a new cofactor of HNF1 alpha. Nucleic Acids Res,2008,36(4):1209-1219
    [108]Kang HJ, Koh KH, Li LS, et al. HMGB1 overexpression patterns in colorectal carcinoma cell lines and hepatocellular carcinoma cell lines. Mol Cell Proteomics,2004,3(10):S73-S73
    [109]Tuschl T. Expanding small RNA interference. Nat Biotechnol,2002, 20(5):446-448
    [110]McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet,2002,3(10):737-747
    [111]Vickers TA, Koo S, Bennett CF, et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents-A comparative analysis. J Biol Chem,2003,278(9):7108-7118
    [112]郭金英,文阳安,姜习新,等.RNA干扰沉默STAT3基因对肝癌细胞株HepG2和SMMC-7721的影响.中华肝脏病杂志,2008,16(2):144-145
    [113]Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol,2004,22(3):326-330
    [114]Bohula EA, Salisbury AJ, Sohail M, et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J Biol Chem,2003, 278(18):15991-15997
    [115]Asahina K, Fujimori H, Shimizu-Saito K, et al. Expression of the liver-specific gene Cyp7al reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells,2004,9(12):1297-1308
    [116]Abelev GI, Eraiser TL. Cellular aspects of alpha-fetoprotein reexpression in tumors. Semin Cancer Biol,1999,9(2):95-107
    [117]Evan G, Littlewood T. A matter of life and cell death. Science,1998, 281(5381):1317-1322
    [118]Ashkenazi A, Dixit VM. Death receptors:Signaling and modulation. Science, 1998,281(5381):1305-1308
    [119]Park YN, Chae KJ, Kim YB,et al. Apoptosis and proliferation in hepatocarcinogenesis related to cirrhosis. Cancer,2001,92(11):2733-2738
    [120]Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer,2005,5(11):876-885
    [1]Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins having a high content of acidic and basic amino acids. Eur J Biochem, 1973,38(1):14-19
    [2]Bustin M. Revised nomenclature for high mobility group (HMG) chromoso-mal proteins. Trends Biochem Sci,2001,26(3):152-153
    [3]Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol,1999,19(8): 5237-5246
    [4]Yotov WV, Starnaud R. Nucleotide sequence of a mouse cDNA encoding the nonhistone chromosomal high mobility group protein-1 (HMG1). Nucleic Acids Res,1992,20(13):3516-3516
    [5]Bustin M, Lehn DA, Landsman D. Structural features of the HMG chromoso-mal proteins and their genes. Biochem Biophys Acta,1990,1049(3):231-243
    [6]Weir HM, Kraulis PJ, Hill CS, et al. Structure of the HMG box motif in the B-domain of HMG1.Embo J,1993,12(4):1311-1319
    [7]Ellerman JE, Brown CK, de Vera M, et al. Masquerader:High mobility group box-1 and cancer. Clin Cancer Res,2007,13(10):2836-2848
    [8]Li JH, Kokkola R, Tabibzadeh S, et al. Structural basis for the proinflamma-tory cytokine activity of high mobility group box 1. Mol Med,2003,9(1-2):37-45
    [9]Bentley DR, Deloukas P, Dunham A, et al. The physical maps for sequencing human chromosomes 1,6,9,10,13,20 and X. Nature,2001,409(6822):942-943
    [10]Lum HK, Lee KLD. The human HMGB1 promoter is modulated by a silencer and an enhancer-containing intron. Biochim Biophys Acts,2001,1520(1):79-84
    [11]Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein:Friend and foe. Cytokine Growth Factor Rev,2006,17(3):189-201
    [12]Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem, 1992,267(21):14998-15004
    [13]Park JS, Arcaroli J, Yum HK, et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol-cell Ph,2003, 284(4):C870-C879
    [14]Fiuza C, Bustin M, Talwar S, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood,2003,101(7):2652-2660
    [15]Treutiger CJ, Mullins GE, Johansson ASM, et al. High mobility group 1 B-box mediates activation of human endothelium. J Intern Med,2003,254(4):375-385
    [16]Li M, Carpio DF, Zheng Y, et al. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol,2001,166(12):7128-7135
    [17]Park JS, Svetkauskaite D, He QB, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem, 2004,279(9):7370-7377
    [18]Degryse B, Bonaldi T, Scaffidi P, et al. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganiza-tion in rat smooth muscle cells. J Cell Biol,2001,152(6):1197-1206
    [19]Chuang TH, Ulevitch RJ. Cloning and characterization of a sub-family of human Toll-like receptors:hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw, 2000,11 (3):372-378
    [20]Rock FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA,1998, 95(2):588-593
    [21]Takeuchi O, Kawai T, Sanjo H, et al. TLR6:A novel member of an expanding Toll-like receptor family. Gene,1999,231(1-2):59-65
    [22]Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol,2005, 17(1):1-14
    [23]Couillault C, Pujol N, Reboul J, et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol,2004,5(5):488-494
    [24]Huttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappa B require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem,1999,274(28):19919-19924
    [25]Taguchi A, Blood DC, del Toro G, et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature,2000,405(6784): 354-360
    [26]Huttunen HJ, Kuja-Panula J, Sorci G, et al. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem,2000, 275(51):40096-40105
    [27]Wang HH, Yang H, Czura CJ, et al. HMGB1 as a late mediator of lethal syste-mic inflammation. Am J Resp Crit Care,2001,164(10):1768-1773
    [28]Sappington PL, Yang R, Yang H, et al. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology,2002,123(3):790-802
    [29]Bustin M, Reeves R. High-mobility-group chromosomal proteins:Architectu-ral components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol, Vol 54,1996,54:35-100
    [30]Yuan FH, Lu LY, Guo SL, et al. Evidence for involvement of HMGB1 protein in human DNA mismatch repair. J Biol Chem,2004,279(20):20935-20940.
    [31]Melvin VS, Edwards DP. Coregulatory proteins in steroid hormone receptor action:The role of chromatin high mobility group proteins HMG-1 and-2. Steroids,1999,64(9):576-586
    [32]Yang H, Wang HC, Czura CJ, et al. The cytokine activity of HMGB1. J Leukocyte Biol,2005,78(1):1-8
    [33]Thomas JO, Travers AA. HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem Sci,2001,26(3):167-174
    [34]Brezniceanu ML, Volp K, Bosse S, et al. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. Faseb J,2003,17(8):1295-1297
    [35]Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature,2002,418(6894):191-195
    [36]Melvin VS, Harrell C, Adelman JS, et al. The role of the C-terminal extension (CTE) of the estrogen receptor alpha and beta DNA binding domain in DNA binding and interaction with HMGB. J Biol Chem,2004,279(15):14763-14771
    [37]Das D, Peterson RC, Scovell WM. High mobility group B proteins facilitate strong estrogen receptor binding to classical and half-site estrogen response elements and relax binding selectivity. Mol Endocrinol,2004,18(11):2616-2632
    [38]Huang JC, Zamble DB, Reardon JT, et al. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc Natl Acad Sci USA,1994,91 (22):10394-10398
    [39]Nagatani G, Nomoto M, Takano H, et al. Transcriptional activation of the human HMG1 gene in cisplatin-resistant human cancer cells. Cancer Res, 2001,61(4):1592-1597
    [40]Dumitriu IE, Baruah P, Manfredi AA, et al. HMGB1:guiding immunity from within. Trends Immunol,2005,26(7):381-387
    [41]Bonaldi T, Talamo F, Scaffidi P, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. Embo J,2003, 22(20):5551-5560
    [42]Gardella S, Andrei C, Ferrera D, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. Embo Rep,2002,3(10):995-1001
    [43]Wang HC, Bloom O, Zhang MH, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science,1999,285(5425):248-251
    [44]Zeh HJ, Lotze MT. Addicted to death-Invasive cancer and the immune response to unscheduled cell death. J Immunother,2005,28(1):1-9
    [45]Dimov SI, Alexandrova EA, Beltchev BG. Differences between some properties of acetylated and nonacetylated forms of HMG1 protein. Biochem Bioph Res Co,1990,166(2):819-826
    [46]Rouhiainen A, Kuja-Panula J, Wilkman E, et al. Regulation of monocyte migration by amphoterin (HMGB1). Blood,2004,104(4):1174-1182
    [47]Messmer D, Yang H, Telusma G, et al. High mobility group box protein 1:An endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol,2004,173(1):307-313
    [48]Degryse B, de Virgilio M. The nuclear protein HMGB1, a new kind of chemokine? Febs Lett,2003,553(1-2):11-17
    [49]Palumbo R, Sampaolesi M, De Marchis F, et al. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol,2004,164(3):441-449
    [50]Rauvala H, Huttunen HJ, Fages C, et al. Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biol, 2000,19(5):377-387
    [51]Parkkinen J, Raulo E, Merenmies J, et al. Amphoterin, the 30-kDa protein in a family of HMG1-type polypeptides. Enhanced expression in transformed cells, leading edge localization, and interactions with plasminogen activation. J Biol Chem,1993,268(26):19726-19738
    [52]Parkkinen J, Rauvala H. Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin. Enhancement of t-PA-catalyzed plasminogen activation by amphoterin. J Biol Chem,1991,266(25):16730-16735
    [53]Fages C, Nolo R, Huttunen HJ, et al. Regulation of cell migration by amphoterin. J Cell Sci,2000,113(4):611-620
    [54]Nestl A, Von Stein OD, Zatloukal K, et al. Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res,2001, 61(4):1569-1577
    [55]俞燕,谢岷,贺钰磊,等.高迁移率族蛋白1对阿霉素诱导的白血病K562细胞凋亡的影响.癌症,2008,27(9):929-933
    [56]Sasahira T, Kirita T, Oue N, et al. High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci,2008, 99(9):1806-1812
    [57]Takada M, Hirata K, Ajiki T, et al. Expression of receptor for advanced glycation end products (RAGE) and MMP-9 in human pancreatic cancer cells. Hepato-gastroenterol,2004,51(58):928-930
    [58]Akaike H, Kono K, Sugai H, et al. Expression of high mobility group box chromosomal protein-1 (HMGB-1) in gastric cancer. Anticancer Res,2007, 27(1A):449-457
    [59]Volp K, Brezniceanu ML, Bosser S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut,2006, 55(2):234-242
    [60]Kawahara N, Tanaka T, Yokomizo A, et al. Enhanced coexpression of thioredoxin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin. Cancer Res,1996,56(23):5330-5333
    [61]Meyer A, Staratschek-Jox A, Springwald A, et al. Non-Hodgkin lymphoma expressing high levels of the danger-signalling protein HMGB1. Leuk Lymphoma,2008,49(6):1184-1189
    [62]Muller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med,2004,255(3):332-343
    [63]Poser I, Bosserhoff AK. Transcription factors involved in development and progression of malignant melanoma. Histol Histopathol,2004,19(1):173-188
    [64]Poser I, Golob M, Buettner R, et al. Upregulation of HMG1 leads to melanoma inhibitory activity expression in malignant melanoma cells and contributes to their malignancy phenotype. Mol Cell Biol,2003, 23(8):2991-2998
    [65]Vangroningen JJM, Bloemers HPJ, Swart GWM. Identification of melanoma inhibitory activity and other differentially expressed messenger RNAs in human melanoma cell lines with different metastatic capacity by messenger RNA differential display. Cancer Res,1995,55(24):6237-6243
    [66]Golob M, Buettner R, Bosserhoff AK. Characterization of a transcription factor binding site, specifically activating MIA transcription in melanoma. J Invest Dermatol,2000,115(1):42-47
    [67]Jacob K, Wach F, Holzapfel U, et al. In vitro modulation of human melanoma cell invasion and proliferation by all-trans-retinoic acid. Melanoma Res,1998, 8(3):211-219
    [68]Bosserhoff AK, Hauschild A, Hein R, et al. Elevated MIA serum levels are of relevance for management of metastasized malignant melanomas:Results of a German multicenter study. J Invest Dermatol,2000,114(2):395-396
    [69]黄庆先,王国斌,孙念峰,等.高迁移率族蛋白框1反义核酸抑制人胰腺癌细胞系PCNA-1侵袭的研究.癌症,2004,23(9):1036-1040
    [70]Takaha N, Resar LMS, Vindivich D, et al. High mobility group protein HMGI (Y) enhances tumor cell growth, invasion, and matrix metalloproteinase-2 expression in prostate cancer cells. Prostate,2004,60(2):160-167
    [71]Kuniyasu H, Chihara Y, Kondo H, et al. Amphoterin induction in prostatic stromal cells by androgen deprivation is associated with metastatic prostate cancer. Oncol Rep,2003,10(6):1863-1868
    [72]Ishiguro H, Nakaigawa N, Miyoshi Y, et al. Receptor for advanced glycation end products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate,2005,64(1):92-100
    [73]Kuniyasu H, Chihara Y, Kondo H. Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int J Cancer,2003, 104(6):722-727
    [74]Kuniyasu H, Yano S, Sasaki T, et al. Colon cancer cell-derived high mobility group 1/amphoterin induces growth inhibition and apoptosis in macrophages. Am J Pathol,2005,166(3):751-759
    [75]Sasahira T, Akama Y, Fujii K, et al. Expression of receptor for advanced glycation end products and HMGB1/amphoterin in colorectal adenomas. Virchows Archiv,2005,446(4):411-415
    [76]Flohr AM, Rogalla P, Meiboom M, et al. Variation of HMGB 1 expression in breast cancer. Anticancer Res,2001,21(6A):3881-3885
    [77]Cheng BQ, Jia CQ, Liu CT, et al. Serum high mobility group box chromosomal protein 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Digest Liver Dis,2008,40(6):446-452
    [78]Ishii Y, Ito R, Sakamoto T, et al. Significance of inflammatory mediators in hepatocellular carcinoma. Gastroenterology,2008,134(4):A825-A825
    [79]Yu M, Wang J, Li W, et al. Proteomic screen defines the hepatocyte nuclear factor 1 alpha-binding partners and identifies HMGB1 as a new cofactor of HNF1 alpha. Nucleic Acids Res,2008,36(4):1209-1219
    [80]Kang HJ, Koh KH, Li LS, et al. HMG131 overexpression patterns in colorectal carcinoma cell lines and hepatocellular carcinoma cell lines. Mol Cell Proteomics,2004,3(10):S73-S73
    [81]Lotze MT, DeMarco RA. Dealing with death:HMGB1 as a novel target for cancer therapy. Curr Opin Investig Drugs,2003,4(12):1405-1409
    [82]Lin XC, Yang H, Sakuragi T, et al. alpha-Chemokine receptor blockade reduces high mobility group box 1 protein-induced lung inflammation and injury and improves survival in sepsis. Am J Physiol-lung C,2005, 289(4):L583-L590
    [83]Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med,2005, 201(7):1135-1143
    [84]Merenmies J, Pihlaskari R, Laitinen J, et al.30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth:amino acid sequence and localization in the filopodia of the advancing plasma membrane. J Biol Chem, 1991,266(25):16722-16729
    [85]van Beijnum JR, Dings RP, van der Linden E, et al. Gene expression of tumor angiogenesis dissected:specific targeting of colon cancer angiogenic vasculature. Blood,2006,108(7):2339-2348
    [86]Erlandsson Harris H, Andersson U. Mini-review:The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol,2004,34(6):1503-1512
    [87]Yang H, Ochani M, Li JH, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA,2004, 101(1):296-301
    [88]Kokkola R, Li J, Sundberg E, et al. Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum,2003,48(7):2052-2058
    [89]Arumugam T, Simeone DM, Schmidt AM, et al. S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE). J Biol Chem,2004,279(7):5059-5065
    [90]Hanford LE, Enghild JJ, Valnickova Z, et al. Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J Biol Chem,2004,279(48):50019-50024
    [91]Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappa B. Diabetes,2001, 50(12):2792-2808
    [92]Hofmann MA, Drury S, Fu CF, et al. RAGE mediates a novel proinflammatory axis:A central cell surface receptor for S100/calgranulin polypeptides. Cell,1999,97(7):889-901
    [93]Ulloa L, Ochani M, Yang H, et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA,2002,99(19):12351-12356
    [94]Lim SC, Choi JE, Kim CH, et al. Ethyl pyruvate induces necrosis-to-apoptosis switch and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells. Int J Mol Med,2007,20(2):187-192
    [95]Liang XY, Chavez ARD, Schapiro NE, et al. Ethyl pyruvate administration inhibits hepatic tumor growth. J Leukocyte Biol,2009,86(3):599-607
    [96]Mantell LL, Parrish WR, Ulloa L. HMGB-1 as a therapeutic target for infectious and inflammatory disorders. Shock,2006,25(1):4-11
    [97]Chen GQ, Li JH, Qiang XL, et al. Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res,2005,46(4):623-627
    [98]Yan JJ, Jung JS, Lee JE, et al. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med,2004,10(2):161-167
    [99]Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med,2004, 10(11):1216-1221
    [100]Tracey KJ. The inflammatory reflex. Nature,2002,420(6917):853-859
    [101]Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov,2005,4(8):673-684
    [102]Matthay MA, Ware LB. Can nicotine treat sepsis? Nat Med,2004, 10(11):1161-1162
    [103]姚咏明,张立天,陆家齐,等.脓毒症大鼠肾组织高迁移率族蛋白-1对肿瘤坏死因子-α表达的影响.解放军医学杂志,2002,27(9):757-759
    [104]Zhang LT, Yao YM, Lu JQ, et al. Sodium butyrate prevents lethality of severe sepsis in rats. Shock,2007,27(6):672-677
    [105]Huuskonen J, Suuronen T, Nuutinen T, et al. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Brit J Pharmacol,2004,141(5):874-880
    [106]宋舟,刘屹,包国强,等.HMGB1在大肠癌组织中的表达及其意义.现代肿瘤医学,2008,16(7):1191-1194
    [107]Killeen ME, Englert JA, Stolz DB, et al. The phase 2 enzyme inducers ethacrynic acid, DL-sulforaphane, and oltipraz inhibit lipopolysaccharide- induced high-mobility group box 1 secretion by RAW 264.7 cells. J Pharmacol Exp Ther,2006,316(3):1070-1079
    [108]余尧,刘伟平,高文桂,等.铂类抗癌药物脂质体的研究进展.中国新药杂志,2007,16(10):753-757
    [109]Mitkova E, Ugrinova I, Pashev IG, et al. The inhibitory effect of HMGB-1 protein on the repair of cisplatin-damaged DNA is accomplished through the acidic domain. Biochemistry-us,2005,44(15):5893-5898
    [110]Zong WX, Ditsworth D, Bauer DE, et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Gene Dev,2004,18(11):1272-1282
    [111]Carvajal IM, Baron RM, Perrella MA. High-mobility group-I/Y proteins: Potential role in the pathophysiology of critical illnesses. Crit Care Med,2002, 30(1):S36-S42
    [112]黄庆先,孙念峰,王国斌.转染人高迁移率族蛋白1反义基因对胰腺癌细胞增殖和凋亡的影响.中华普通外科杂志,2005,20(3):180-183
    [113]宋登新,陈安民,郭风劲,等.siRNA抑制人高迁移率族蛋白1表达对前列腺癌PC-3增殖的影响.中国肿瘤临床,2008,35(6):339-343
    [114]Gnanasekar M, Thirugnanam S, Ramaswamy K. Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis. Int J Oncol,2009, 34(2):425-431
    [115]吴艳梅.血栓调节蛋白一种新型肿瘤标志物.医药论坛杂志,2008,29(2):124-127
    [116]Zhang YM, Weiler-Guettler H, Chen J, et al. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest, 1998,101(7):1301-1309
    [117]Abeyama K, Stern DM, Ito Y, et al. The N-terminal domain of thrombomodu-lin sequesters high-mobility group-B1 protein, a novel antiinflammatory me-chanism. J Clin Invest,2005,115(5):1267-1274
    [118]Ito T, Kawahara K, Nakamura T, et al. High-mobility group box 1 protein promotes development of microvascular thrombosis in rats. J Thromb Haemost,2007,5(1):109-116
    [119]Ito T, Kawahara KI, Okamoto K, et al. Proteolytic cleavage of high mobility group box 1 protein by thrombin-Thrombomodulin complexes. Arterioscl Throm Vas,2008,28(10):1825-1830
    [120]余跃,任大宾,孙仁宇,等.调控高迁移组蛋白1诱导大鼠肺泡巨噬细胞表达诱生型一氧化氮合酶的信号通路.中国医学科学院学报,2006,28(6):781-785
    [121]姚咏明,胥彩林,任爱兰,等.内毒素休克大鼠组织生物喋呤与高迁移率族蛋白B1表达的关系.中华急诊医学杂志,2004,13(8):525-528
    [122]Wang HC, Li W, Li JH, et al. The aqueous extract of a popular herbal nutrient supplement, Angelica sinensis, protects mice against lethal endotoxemia and sepsis. J Nutr,2006,136(2):360-365
    [123]Chen XT, Li W, Wang HC. More tea for septic patients? Green tea may reduce endotoxin-induced release of high mobility group box 1 and other pro-inflammatory cytokines. Med Hypotheses,2006,66(3):660-663
    [124]Li W, Li JH, Ashok M, et al. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinfiammatory mediator, high mobility group box 1. J Immunol,2007,178(6):3856-3864

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700