用户名: 密码: 验证码:
磁流变半主动减振器多场耦合分析及控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车的高速普及和集成技术的发展,汽车的NVH(Noise,Vibrtation,Harshness)特性要求不断提高,这对影响车辆行驶安全性和乘坐舒适性的悬架设计提出了技术挑战。基于磁流变减振器的半主动悬架以其控制效果接近主动悬架,而成本、功耗、结构复杂性、可靠性等优于主动悬架等特点,逐渐成为现代汽车悬架系统的最佳解决方案。然而,基于磁流变减振器的半主动悬架系统存在机、电、液、磁、热等多作用物理过程,使得其设计、分析与控制非常复杂,仍然需要深入开展理论与应用研究。为此,本文以磁流变流体半主动减振器为对象,开展多场耦合分析及控制研究,为车辆行驶安全及乘坐舒适性提供理论基础。
     本文通过对磁流变流体在两平板间运动工作模式的研究,导出了磁流变流体在多种运动模式下的的流变学方程,结合MRD工作缸内部的工作模式,完成了MRD阻尼力大小的计算方法。通过此方法进行计算,结合本项目要求,设计了磁流变流体减振器的初始结构、电磁线圈匝数、阻尼力范围的选择以及磁路等参数,利用这些参数设计出磁流变流体减振器。
     利用ADINA软件的结构模块,建立磁流变流体减振器的结构力学模型和流体力学模型。通过在ADINA前处理模块中分别对磁流变减振器的固体结构、流体结构和磁场结构进行各种边界条件的设置,再利用ADINA流固耦合、磁固耦合计算求解器进行求解,在ADINA后处理模块中得到磁流变流体减振器的固体结构动力学特性、磁流变流体减振器的流场特性、磁场分布图、磁流变流体减振器的速度特性曲线以及磁流变流体减振器的示功特性曲线。
     根据计算机仿真分析结果,提取磁流变流体减振器参数,对磁流变流体减振器进行样件开发。并对完成的磁流变流体减振器进行台架试验,得到磁流变流体减振器不同电流强度下的速度特性和示功特性。根据磁流变流体减振器的工作原理,对其在无电流和通电状态下的速度特性以及示功特性进行分析,并将有限元仿真结果与其进行对比分析。
     本文提出一种基于物理建模和快速控制原型相综合的磁流变减振器半主动悬架控制系统设计方法。首先采用四分之一车辆悬架归约模型,提出悬架控制算法的评价指标;而后为实现控制系统的高效不间断设计,提出一个融基于物理的模型、控制算法研究、仿真、软件及硬件协同设计的研究框架,即基于AMEsim、Matlab等进行工具链开发的快速控制原型,并对SH控制器、ADD控制器、SH-ADD混合控制器进行仿真分析,并根据悬架控制算法的评价指标对控制器进行了综合评价。为开展四分之一车辆悬架半主动控制测试,提出了控制系统软硬件设计解决方案。根据四分之一车辆悬架半主动控制测试试验台需求,完成了控制系统软硬件设计。
With the rapid popularization and development of automotive integrationtechnology, automotive NVH (Noise, Vibrtation, Harshness) characteristicsrequirements continue to increase, which affect vehicle safety and comfort of thesuspension design presents technical challenges. Based on magnetorheologicaldamper semi-active suspension control effect close to its active suspension, and thecost, power consumption, structural complexity, reliability, superior active suspensioncharacteristics, has become a modern vehicle suspension systems the best solution.However, semi-active suspension system based on magnetorheological damperpresence of mechanical, electrical, hydraulic, magnetic, thermal and other effects ofphysical processes, making its design, analysis and control very complex, still need tocarry out the theoretical and applied research. In this paper, magneto-rheological fluidto semi-active damper for the object, carry out multi-field coupling analysis andcontrol studies provide a theoretical basis for vehicle safety and comfort.
     Based on the study of magneto-rheological fluid movement between the twotablet operating mode, derived magnetorheological fluid movement patterns in avariety of rheological equations, combined with MRD cylinder internal workingmodel, complete MRD damping force calculated size. Calculated by this method, inconnection with the project requirements, the design of the initial structure of themagneto-rheological fluid damper, an electromagnetic coil turns, the range ofselection of the damping force and magnetic parameters, these parameters to design amagnetorheological fluid damper.
     Use of ADINA software module structure, the establishment ofmagnetorheological fluid damper structural mechanics model and hydrodynamicmodel. By ADINA pre-processing module of a solid structure, fluid structure andmagnetic structure of magnetorheological damper various boundary conditions wereset, and use ADINA fluid-structure interaction, magnetic solid coupled solver to solve,in ADINA solid structural dynamics were obtained after processing modulemagneto-rheological fluid damper, the flow characteristics of the magneto-rheologicalfluid damper, the magnetic field distribution, magneto-rheological fluid damper speed characteristic curve and magnetorheological dynamometer fluid damper characteristiccurve.
     According to the results of computer simulation analysis, extractionmagnetorheological fluid damper parameters of magneto-rheological fluid shockabsorber prototype development. And magneto-rheological fluid damper bench testdone, gain the speed characteristics and indicator characteristics undermagnetorheological fluid damper characteristics of different amperage. According themagneto-rheological fluid damper working principle,analysis of the velocitycharacteristics and indicator characteristics are shown, and its finite elementsimulation results were compared.
     This paper presents a physics-based modeling and rapid control prototypingphase integrated magneto-rheological damper semi-active suspension control systemdesign methods. Firstly fourth vehicle suspension reduction model proposedevaluation suspension control algorithms; then to achieve efficient and uninterruptedcontrol system design, proposed a financial model based on physical, controlalgorithm, simulation, software and hardware collaborative design researchframework, which is based AMEsim, Matlab, etc. for rapid control prototyping toolchain development, and SH controllers, ADD controller, SH-ADD hybrid controllersimulation analysis, and suspension control algorithm based on evaluation thecontroller is a comprehensive evaluation. To carry out a quarter of semi-active controlof vehicle suspension tests proposed control system hardware and software designsolutions. According fourth semi-active control of vehicle suspension test platformneeds to complete the control system hardware and software design.
引文
1.姚嘉伶,蔡伟义,陈宁.汽车半主动悬架系统发展状况[J].汽车工程.2006,28(3):276-280.
    2.倪建华,张智谦,张可等.一种新型的磁流变阻尼器及其在半主动控制悬架中的应用[J].机械科学与技术2004,23(1):4-6.
    3.廖昌荣,余森,陈伟民等.磁流变材料与磁流变阻尼器的潜在工程应用[J].机械工程材料.2001,25(l):2-3.
    4.袁长颂.液压减振器特性仿真及其参数化设计[D].安徽:安徽理工大学,2005:26-28.
    5. Duym S.Simulation tools,modelling and identification,for an automotiveshock absorber in the context of vehicle dynamics[J].Vehicle System
    6.张德庆.汽车减振器的建模及仿真设计[D].镇江:江苏大学,2003:22-23.
    7. Johnston G L, Krucke meyer W C, Longhouse R E. Passivemagnetorheological clutch. U. S. Patent5848678[P],1998.
    8. Kordonsky WI. Magnetorheological effect as a base of new devices andtechnologies. Journal of Magnetism and Magnetic Materials[J].1993,122:395-398.
    9. WinslowW.M,Indeed fibrillation of suspensions[J].APPal.Phys,1949,20:1137-114.
    10. RabinowJ.The Magnetie Fluid Clutch[J].AIEE Transaction.1948,67:1308-1315.
    11. Mitra S,Sinhamahapatra K P.2D simulation of fluid-structure interactionusing finite element method[J].Finite Elements in Analysis andDesign.2008,45:52-59.
    12.张潇,王延荣,张小伟等.基于多层动网格技术的流固耦合方法研究[J].船舶工程.2009,31(1):64-67.
    13.钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构.2008,14(1):3-15.
    14.李世民,吕振华.筒式液阻减振器技术发展[J].汽车技术,2001,8(3):10-16.
    15. Gilbertr,M jackson. Magnetic Ride Control[J],GM Techlink,2002,1(4):1-2.
    16.金昀,周刚毅.两种磁流变液测试系统的比较研究[J].实验力学,1999,14(3):288-293.
    17.陈祖耀等.合成聚丙酰胺一硫属半导体复合纳米材料的新技术[J].化学物理学报,1999,13(1):95-98.
    18.江万全,陈祖耀等.磁性粒子浓悬浮液体系中非磁性粒子的磁流变液性能增强效应[J].功能材料,2001,32(3):243-247.
    19. Carter,Angela K.Transient Motion Control of Passive and SemiactiveDamping for Vehicle Suspensions[D].America:Virginia.1998.07.15
    20. Mehdi Ahmadian.DIDE EVALUATION OF A CLASS8TRUCK WITHSEMIACTIVE SUSPENSIONS[J].Advanced AutomotiveTechnologies.1993,DSC-Vol.52.
    21. Shulman,Z.P.et al.Structure Physical Properties and Dynamics ofMagnetorheological Suspensions,Int.J.Mutiphase Flow,1986,12(6):935-955
    22. Shulman,Z.P.et al.Devices for the Diagnosis of Transfer Processes inMagnetorheological Suspensions.Heat Transfer,1987,19(5):864~880
    23. Kordonsky,W.I.Elements and Devices Based on MagnetorheologicalEffect.J.of Intel.Meter,Stru1993,4:65~69
    24. Kordonsky, W. I. Magnetorheological Effect As a Base of Newdevices and Technologies.J.of Magnetism and Magnetic Materials,1993,122:395~398
    25. Kordonsky, W. I. Magnetorheological Fluids and TheirApplications.Materials Technology,1993,8(11):240~242
    26. Kordonsky,W.I.Magnetorheological Valve and Devices IncorporatingMagnetorheological Elements.U.S.Patent,No:5353839,1994
    27.臧彦升.磁流变阻尼减振器减振控制算法研究[D].广州:广东工业大学硕士学位论文,2009:10-12.
    28.王冰,韩冰源,王岩,艾曦峰.汽车磁流变减振器研究综述[J].森林工程,2008,24(4):39-43.
    29.傅宇雁,高跃飞,杨建民.磁流变阻尼减振器的研究及应用现状[J].机械管理开发,2005(2):19-20.
    30. Carlson,J.D.,et al.Magnetorheological Fluid Damper.U.S.Patent,No:5277281,1994
    31. Weiss, K. D. et al. High Strength Magneto-and Electro-rheogicalFluids.Society of Automotive Engineers,SAE paper,No:932541,1993
    32. Ginder,J.M.,et al.Shear Stress in Magnetorheological Fluids:Role ofMagnetic Saturation.Applied Physics Letters,1994,65:3410~3418
    33.贾启芬,许恒波,王影,刘习军.基于磁流变阻尼器的汽车悬架半主动控制.天津大学学报,2006年第7期:768~772
    34.郭大蕾,胡海岩.基于磁流变阻尼器的车辆悬架半主动控制研究——间接自适应控制与实验.振动工程学报,2002,15(3):284~289
    35.关新春,李金海,欧进萍.足尺磁流变液耗能器的性能与试验研究工程力学.2005,22(6):207~211
    36.付伟庆,王玉铨,王焕定,张永山.磁流变变阻尼半主动控制结构的仿真分析.地震工程与工程振动,2003,23(4):165~170
    37.欧进萍,关新春.磁流变耗能器性能的试验研究.地震工程与工程振,1999,19(4):76~81
    38.李以农,郑玲.车辆半主动悬架非线性控制方法的研究.农业机械学报,2005,36(5):9~15
    39.廖昌荣,陈伟民,余淼,等.基于混合模式的汽车磁流变减振器阻尼特性分析与测试.机械工程学报,2001,37(5):11~14
    40.郑玲,邓兆祥.汽车半主动悬架的滑模控制与鲁棒特性.汽车工程,2004,26(6):678~682
    41. Winslow W.M,U.S.Patent,NO:2417850,1974.
    42. Winslow W.M, Induced fibrillation ofsuspensions[J].Appal.Phys.,1949,20:1137-1140
    43. RabinowJ.The magnetie Fluid cluteh[J].AIEETrans.1948,67:1308-1315.
    44. Carlson,J.David,What Makes a Good MR Fluid[J].8th InternationalConference on ER Fluids and MR Fluids Suspensions,Nice,Julyg-13,2001
    45.赵晓显,赵波.应用于车辆工程的磁流变液组成机理的探讨[J].汽车技术2004,10.
    46.汪建晓孟光.磁流变液研究进展[J].航空学报.2002,23(l).
    47.陈祖耀等.合成聚丙酞胺一硫属半导体复合纳米材料的新技术[J].化学物理学报,1999,13(l):95-98.
    48. Jolly,MarkR.,Bender,JonathanW.,andCarlson,J.David,ProPerties andApplications of Commercial Magnetotheological Fluids[J].SPIE5th AnnualSymPosium on Smart Structures and Materials,SanDiego,CA,March15,1998.
    49. Blanchard,Emmanuel Domihique. Onthe Control Aspects of semiactiveSuspensions for Automobile Applications[D].Ameriea:Virginia.2003.06.19
    50. Reiehert,Brian Anthony Jr. Applieation of Magnetotheological DamPers forVehieles Seat Suspentions[D].Ameriea:Virginia.1997.12.03
    51.朱华.基于磁流变技术的车用减振器[J].研究与开发,2009(4):68-70
    52.周云,谭平.磁流变阻尼控制理论与技术[M].科学出版社.2007:23-25.
    53. B.F.Spencer,T.T.Soong. New Applications and Devlopment of active,semi-active and hybrid control techniques for seismic and non-seismicvibration in the USA[J].Proceedings of International Post-SMIRTConference Seismic Isolation,Passive Energy Dissipation and Active Controlof Vibration of Structures.1999,8(1):23-25.
    54.王灵,黄文良.磁流变减振器在半主动振动控制中的应用[J].南京理工大学学报(自然科学版).2004,3(2):32-36.
    55. PhilliPs,R.W.,Engineering applications of fiuids with a variable yield stress[D].Ph.D.Disseration,University of Califomia.1969:22-26.
    56. S.A.Demehu,V.A.Kuz,min.Viseoelastie proPerties of MagnetotheologiealElastomers in the Regime of Dynamie Deformation[J]. JournalofEngineeringPsiesand Thermo Physies.2002,(2):32-34.
    57. Carlson J D.MR Fluid Technology-commercial Status in2006[C].Proceedings10thInt. Conf.on ER,MR Suspension,2006:389-395.
    58. LORD Corporation.LORD Corporation Awarded Contract for MRSuspension Installation and Test on U.S. Army [EB/OL].2010:25-26.
    59. Wray Andrea C, Anderfaas Eric. Magneto-rheolo-gical Fluid SemiactiveSuspension Performance Testing on a Stryker Vehicle[R]. Army ResearchOffice,2005:23-25.
    60. Frank Hoogterp. Suspesion White Paper[EB/OL].
    61. Elbeheiry,EL.M. Etal.. Advaneed Ground Vehiele Suspension System-aClassified Biblography[J]. Vehiele System Dynamies,1995,Vol.24:231-256.
    62.孙求理,张洪欣.主动悬架的发展和技术现状[J].世界汽车,1996,5(8):4-6.3.
    63.李以农,郑玲.车辆半主动悬架非线性控制方法的研究[J].农业机械学报,2005,5(3):9-15.
    64.郑晓静.电磁固体力-磁-电作用的耦合效应.兰州大学学报(自然科学版),1999,35(3):17-21.
    65. John Michopoulos,Charbel Farhat,Elias Houstis.Dynamic-Data-DrivenReal-Time Computational Mechanics Environment[C]. ICCS.2004:693-700.
    66. A.V.Smirnov. Multi-physics modeling environment for continuum andDiscrete dynamics[J].Modelling and Simulation.2004:1-12.
    67.张娜.减振器叠加节流阀片非线性特性仿真分析[J].计算机仿真.2012.,29(5):338-342.
    68.陈潇凯,王军.汽车悬架电子技术发展跟踪研究[A].中国汽车工程学会
    69.薛长久.越野车电液主动悬架系统控制技术研究[D].长春:吉林大学,2008
    70.杨笠.汽车主动悬架控制算法及实验系统研究[D].长沙:湖南大学,2007
    71. Walid H.El.Aouar,Finite Element Analysis Based Modeling of MagnetoRheological Dampers[D]. Master of Science In MechanicalEngineering,Blacksburg,Virginia,September23,2002
    72. Mehdi Ahmadian,Improving Heavy Vehicle Roll Safety by SemiactiveSuspensions with Fuzzy Logic Control[J].global truck and technology,2001
    73. Jeong-Hoi Koo,Dynamic Analysis Of Semi-Active Tuned VibrationAbsorbers Using Closed-Form Equivalent Models[J].2001InternationalMechanical Engineering Congress and Exposition November11-16,2001New York,New York
    74. Mark R.Jolly,Properties and applications of commercial Magnetorheologicalfluid[J].spie,Vol.33271998:262-275
    75. Carlson,J.D.,Catanzarite,D.M.,St.Clair,K.A.,commercial Magnetorheologicalfluid devices[J].,proc.of the5international conference on ER and MRfluids,1995,20-28
    76. Shulman,Z.P.,Structure physical properties and dynamics ofMagnetorheological suspension[J].,Int.J.Mutiphaseflow,Vol.12(6),1986,935-955
    77. Shulman,Z.P.,Devices for the diagnosis of transfer processes inMagnetorheological suspension[J].,Heat transfer,Vol.19(5),1987
    78. Anthony,E.A.,Dynamics transduction charaterization of Magnetorheologicalfluid[J].SPIE,Vol.3040.1997:174-174
    79.廖昌荣.汽车悬架系统磁流变阻尼器研究[D].博士学位,重庆大学,2001,11
    80. Jolly,M.R,,A Model of the behavior of Magnetorheologicalmaterials[J].smartmaster,strut.Vol3(5),1996:607-614
    81. Charles Lawrence. An overview of three approaches tomultidisciplinaryaeropropulsion simulations[J].NASA TM.1997:107-443.
    82. yuzhenhuan.On the simulation analysis of finite element about flow-structureinteraction of transient nonlinear characteristics of hydraulic damper'sthrottle valves[C],2011.
    83. C.Bailey, G.A.Taylor, M.Cross, etc. Discretisation procedures formulti-physics phenomena[J]. Journal of Computational and AppliedMathematics,1999(103):3-17.
    84. Michael T.Heath,Xiangming Jiao. Academic Channenges in Large-ScaleMultiphysics Simulations[C].ICCS.2005:52-59.
    85.陈云敏,叶肖伟,张民强等.多场耦合作用下重金属离子在粘土中的迁移性状试验研究[J].岩土工程学报,2005,27(12):1371-1375.
    86. Jeong-Hoi Koo. Dynamic Analysis of Semi-Aetive Tuned VibrationAbsobers Using Closed-Form Equivalent Models[J]. ASME2001International Mechanical Engineering Congress andExPosition,2001(11):11-16.
    87. SPencer BF, DykeSJ SainMK, CarlsonJD. Phenomenological model formagnetorheologieal dampers[J].J.Engineering Mechanics,1997,3:230-238.
    88. Jason,E, Lindle, Glen, A.Dimlck and NormanM. Wereley,Design of AMagnetotheological Automotive ShockAbsorber[J].SPIE,2000,3985:426-437.
    89.孙文策,李元明.工程流体力学[M].大连:大连理工出版社,2003:200-202.
    90. Wereleynm,liPang.Nodimension alanalysis of semi-active electrotheologicaland magnetotheological damper using approximate Parallel platemodels[J].smart materials and structures,1998,7(5):732-743.
    91. CHangCC, RosehkeR.Neural network modeling of amagnetorheologicaldamper[J].JInetll Mater Syst Struct.998,9(9):755~64
    92. EhrgotiRC,MasriSF.Modeling of oscillatory dynamic behavior ofElectrotheological matericalsins hear [J]. Smart Materials and Structures,1992(l):275-285.
    93.薛呈添,王乔敏.电磁学[M].北京:机械工业出版社,1994:25-28.
    94.林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987:203-206.
    95. ADINA R&D. ADINA theory and modeling guide[M]. volume IV:ADINAEM report.2012:23~68.
    96.邢景棠,周盛,兰查查.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    97.贺李平,顾亮,刘建勇,等.基于CFD的液压阻尼器低速特性仿真分析[J].汽车技术.2010(5):10-13.
    98.贺李平,顾亮等.基于流-固耦合的汽车减振器动态特性仿真分析[J].机械工程学报.2012(48)13:96-101.
    99.贺李平,顾亮等.减振器环形阀片大挠曲变形的高精度解析式[J].北京理工大学学报,2009,29(6):510-514.
    100. Zhang H, Zhang X, JiSetal. Recent development of fluid–structureinteraction capabilities in the ADINA system[J]. Computers and Structures,2003,81(11):1071-1085.
    101. Wen-Bin Shangguan, Zhen-Hua Lu.Experimental study and simulation of ahydraulic engine mount with fully coupled fluid–structure interaction finiteelement analysis model[J]. Computers and Structures,2004,182(5):751-1771.
    102. ADINA R&D Inc. ADINA Theory and Modeling Guide [M], Volume II:ADINA.Report ARD,1999:59-63.
    103. Bathe K J,Zhang H,Wang M H.Finite Element Analysis of incompressibleand compressible fluid flows with free surfaces and structural interaction[J].Computers and structures,1995,56(03):193-213.
    104. Robert Kroyer. FSI analysis in supersonic fluid flow[J]. Computers andStructures,2003,81(15):755-764.
    105.张丽霞,张伟,潘际銮.基于流固耦合理论的混流式叶片动力学分析[J].清华大学学报,2008,48(5):773-77
    106. Ni YQ, Ko JM, Ying ZG. Random seismic response analysis of adjacentbuildings coupled with non-linear hysteretic dampers[J]. Journal of Soundand Vibration2001,246(3):403-417
    107. Seung-Yong Ok, Junho Song, Kwan-Soon Park. Optimal design ofhysteretic dampers connecting adjacent structures using multi-objectivegenetic algorithm and stochastic linearization method [J]. EngineeringStructures,2008,30:1240-1249.
    108.陈助碧.1/4汽车半主动悬架系统的试验方法研究[D].杭州:浙江大学,2006.
    109. Cossalter, V., Doria, A.,&Lot, R. Optimum suspension design formotorcycle braking[J]. Vehicle System Dynamics: International Journal ofVehicle Mechanics and Mobility,2000,34:175-198.
    110. Williams, R. A. Automotive active suspensions: Part1and Part2[C].Proceedings of the Institution of Mechanical Engineers,1997,211(Part D),415-444.
    111.[英] Dave Crolla,喻凡.车辆动力学及控制[M].北京:人民交通出版社,2004.
    112.宗路航.磁流变阻尼器的动力学模型及其在车辆悬架中的应用研究[D].合肥:中国科学技术大学,2013.
    113.余志生.汽车理论[M].北京:机械工业出版社,1999.
    114.何耀华.汽车试验学[M].北京:人民交通出版社,2005.
    115.兰志宇,田韶鹏.四轮转向汽车操纵稳定性分析研究[J].农业装备与车辆工程,2012,50(4):41-43.
    116. ISO2631-1:1997(E).Mechanical vibration and shock-Evaluation of humanexposure to whole body vibration-Part1: General requirements[S].
    117. Savaresi, S. M., Silani, E., and Bittanti, S. Acceleration-Driven-Damper(ADD): An optimal control algorithm for comfort-oriented semi-activesuspensions [J]. ASME J. Dyn. Syst., Meas., Control,2005,27(2):218–229.
    118. Savaresi, S. M., Silani, E., Bittanti, S., and Porciani, N. On performanceevaluation methods and control strategies for semi-active suspensionsystems[C].42nd Control and Decision Conference,2003, Maui, Hawaii, pp.2264–2269.
    119. Savaresi, S. M.,&Spelta, C. A single sensor control strategy forsemi-active suspension[J]. IEEE Transactions on Control SystemsTechnology,2009,17(1):143-152.
    120. Cristiano Spelta, Sergio M. Savaresi, Luca Fabbri. Experimental analysis ofa motorcycle semi-active rear suspension[J]. Control Engineering Practice,2010(18):1239–1250.
    121. Sergio M. Savaresi, Cristiano Spelta. Mixed Sky-Hook and ADD:approaching the filtering limits of a semi-active suspension [J]. Transactionsof the ASME,2007,129:382-392.
    122. AMESim Real-time Simulaiton Rev12User’s Guide. LMS Imagine.Lab,2013.3.
    123. Poussot-Vassal, C., Sename, O., Dugard, L., Ramirez-Mendoza, R.,&Flores, L. Optimal skyhook control for semi-active suspensions[C]. InProceedings of the fourth IFAC symposium on mechatronics systems,2006,608-613, Heidelberg, Germany.
    124. Sammier, D., Sename, O.,&Dugard, L. Skyhook and HN control of semi-active suspensions: Some practical aspects[J]. Vehicle System Dynamics,2003,39(4):279-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700