用户名: 密码: 验证码:
纳米氧化锌对海马神经元电生理特性的影响及对PC12细胞生物学效应的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是指至少在一维空间上粒径≤100nm的材料,由于其尺寸很小,结构特殊,因此具有许多新的物理化学特性,如小尺寸效应、大的比表面、极高的反应活性、量子效应等。随着纳米技术的产业化,各种纳米材料因其优良特性及新奇功能而具有广泛的应用前景,遍及工业、农业、制造业、军事、医疗等诸多领域。而日常的生活用品,如化妆品、食品、织物、涂料、抗菌材料等,也含有纳米材料,人们接触纳米材料的机会日益增多。由此,纳米材料的生物效应和安全性问题也凸显出来,尤其是纳米颗粒对人体健康、生存环境和社会安全等方面是否存在潜在的负面影响。毒理学研究结果表明纳米颗粒可以各种途径进入人体或生物体,包括吸入、摄食吸收、皮肤渗透等,随后在生物体的不同水平产生毒理学效应。最近的研究显示中枢神经系统亦是纳米颗粒作用的重要靶器官。因此纳米颗粒对中枢神经系统的影响也得到更多的关注,纳米颗粒可以通过最强的生物屏障,如血脑屏障。可以通过嗅神经途径进入中枢神经系统,并转至不同脑区沉积。且脑区中的海马亦是纳米颗粒作用主要的靶点。
     纳米ZnO因其独特的光、电、磁学等性能的重要应用而取得突破性的成就,并倍受瞩目。同时,在化妆品、纺织、涂料、陶瓷、催化、抗菌、医疗诊断等方面都有很好的应用。目前体内外的实验证实纳米ZnO可在不同程度上对细菌、水生生态动物、哺乳动物细胞及哺乳动物产生毒性作用,然而纳米ZnO对神经系统的影响鲜有报道。本文采用神经生长因子(NGF)诱导分化的PC12细胞,利用四甲基偶氮唑盐法(MTT)检测细胞存活率、荧光标记法测定ROS含量、流式细胞仪分析凋亡细胞比例等方法,探索纳米ZnO对PC12细胞的神经毒性影响。
     由于中枢神经系统神经细胞膜表达多种类型的离子通道,细胞膜上离子通道开放引起的电活动是一切细胞生理功能活动的基础。离子通道参与递质释放、激素分泌、信号转导、代谢调控及细胞生长乃至学习和记忆等重要生理过程的调控。而离子通道又是许多药物和毒物作用的靶点,因此,实验进一步采用全细胞膜片钳技术,研究记录了纳米ZnO对海马锥体神经元离子通道的影响,包括对电压门控钠通道、钾通道、钙通道及其神经元兴奋性活动的影响,以分析纳米ZnO对神经系统作用的潜在机制。
     主要实验结果如下:
     1.MTT法检测细胞存活率:不同浓度的纳米ZnO(10-6g/ml,10-5g/ml,10-4 g/ml)与神经生长因子(NGF)诱导分化的PC12细胞共孵育6、12、24h后,细胞存活率随着浓度和时间增大而下降,表现为时间依赖性和浓度依赖性。而10-4g/ml的纳米ZnO可明显降低PC12细胞的存活率(P<0.05)。
     2.细胞内ROS含量的变化:不同浓度的纳米ZnO(10-6g/m1,10-5g/ml,10-4 g/ml)与PC12细胞共孵育6h后,经GENMED工作液和GENMED保存液处理。使用倒置荧光显微镜观察,设定激发光波长为490nm,散发波长530nm。与对照组的荧光强度相比,ZnO处理组的荧光强度随浓度增加而逐渐增强,说明细胞内ROS含量增高。
     3.流式细胞仪分析凋亡细胞比例:不同浓度的纳米ZnO(10-6g/ml,10-5g/ml, 10-4g/ml)与PC12细胞共孵育24h后,与正常细胞凋亡率(8.75%)相比,10-4g/ml的纳米ZnO促进PC12细胞的凋亡(34.24%,P<0.05);而预先给培养的PC12细胞加入ROS清除剂MPG(3 mM),再用10-4g/ml的纳米ZnO处理PC12细胞24h,凋亡比例降至15.78%(P<0.05)。提示ROS清除剂可抑制纳米ZnO诱导PC12细胞凋亡
     4.ROS清除剂的保护作用:培养的PC12细胞用3 mM的ROS清除剂MPG预处理30min后,加入10-4g/ml的纳米ZnO孵育24h,PC12细胞的存活率增大,与10-4g/ml的纳米ZnO组相比,差异显著(P<0.05)。
     5.纳米ZnO对海马锥体神经元电压门控钠通道的影响:10-4g/ml的纳米ZnO在阶跃电位-50mV~+20mV显著提高了海马神经元电压门控钠电流(INa)的电流幅度(P<0.05),I-V曲线下移;药物作用前后激活曲线无明显改变;稳态失活曲线左移且Vh变化明显,分别为-52.54±0.43 mV和-54.67±0.39mV(P<0.01),k值没有明显变化;失活后恢复曲线左移,药物作用前后时间常数(τ)分别为5.40±0.19 ms和3.95±0.15 ms(P<0.01)
     6.纳米ZnO对海马锥体神经元电压门控钾通道的影响:10-4g/ml的纳米ZnO提高了海马神经元瞬时外向钾电流(IA)和延迟整流钾电流(IK)的电流幅度,其中在阶跃电位+20mV~+90mV更为显著地提高了IK的电流幅度(P<0.05);而药物作用前后IA和IK的激活曲线变化不明显;并且,药物作用前后IA的稳态失活曲线及失活后恢复曲线也未有显著改变。
     7.纳米ZnO对海马锥体神经元高电压激活的钙通道的影响:在实验组和对照组,海马锥体神经元高电压激活的钙电流表现为run up和随后的run down现象。而10-4 g/ml的纳米ZnO对海马神经元高电压激活的钙电流有上调作用,从最初作用的10分钟开始,到记录结束的30分钟纳米ZnO在阶跃电位-15 mV~+15 mV显著地提高了高电压激活的钙电流幅度(P<0.05);与对照组相比,激活曲线及稳态失活曲线没有显著改变。
     8.纳米ZnO对海马锥体神经元兴奋性活动的影响:电流钳结果显示,10-4 g/ml的纳米ZnO提高了单个动作电位的幅值及超射(P<0.01),缩短了动作电位的半宽时程(P<0.05);提高了连续动作电位的频率(P<0.05);提高了自发放电的频率(P<0.05)。
     主要实验结论如下:
     1.纳米ZnO可降低PC12细胞的存活率,表现为时间依赖性和浓度依赖性;并促进细胞凋亡;细胞内ROS的增加是纳米ZnO诱导PC12细胞凋亡的机制之一。
     2.纳米ZnO通过延迟整流钾通道增加K+外流使细胞质中K+减少而诱导细胞凋亡
     3.纳米ZnO上调HVA Ca2+通道,引起细胞内Ca2+浓度升高,将导致ROS产生,并由此促进细胞凋亡。
     4.纳米ZnO通过增加钠通道的电流幅度,并使钠通道快速失活,及失活后快速恢复而提高神经元的兴奋性,进而可能对神经元产生去极化诱导的损伤;纳米ZnO通过上调HVA Ca2+通道将改变细胞内钙稳态,将由此增强神经退行性过程。
     5.纳米ZnO通过增大INa、IK及HVA Ca2+电流的电流幅度而导致神经元兴奋性增加,并使单个动作电位的幅值及超射增加,动作电位的半宽时程缩短;提高了连续动作电位和自发放电的频率。后续重复放电的跨膜电位幅度和超射值的减小与纳米ZnO造成的Na+-K+-ATP酶的功能不足有关。
Nanomaterials have been defined as material with one dimension of less than 100 nm. Due to their small size and the special structure, they have many new physical and chemical properties, such as small size effect, the large specific surface, high reactivity, quantum size effects. With the industrialization of nanotechnology, a variety of nanomaterials have a broad range of applications across industry, agriculture, manufacturing, military, medical and many other fields because of their excellent properties and novel functions. Nanomaterials are also widely used in daily life products, such as cosmetics, food, fabrics, coatings, antibacterial materials, etc., and public exposure to nanoparticles are increasing daily. Therefore, the biological effects and safety issues of nanomaterials have also been raised, especially the potential negative impacts of nanoparticles on human health, living environment and social security. Toxicological studies have shown that nanoparticles could enter into the human body through several distinct routes including inhalation, ingestion, and dermal penetration. Subsequently they could elicit toxicological effects at different levels of biological systems. Recent studies have shown that the central nervous system (CNS) is an important target organ for nanoparticles. Therefore, the effects of nanoparticles on the CNS have also gained more attention. Nanoparticles can cross most strong biological barriers such as blood-brain barrier and via the olfactory neuronal pathway enter into the CNS and accumulate in different brain regions. So the hippocampus is also the main target for nanoparticles.
     Breaking achievements and great attention have been gained in the important applications of Nano-ZnO because of its unique optical, electrical and magnetic properties. Meanwhile, Nano-ZnO have excellent applications in cosmetics, textiles, paints, ceramics, catalysis, antibacterial, medical diagnostics. Some researchers have demonstrated that nanostructures of ZnO were toxic to the bacteria, the aquatic biota or eco-relevant species, the mammalian cells and mammals. However, little is known about the possible impacts of manufactured nano-ZnO on the CNS. In the present study, differentiated PC12 cells induced by nerve growth factor (NGF) were used to investigate the cytotoxicity of the nano-ZnO. The viability of the cells was observed by a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and the generation of ROS for the cells was evaluated by a fluorometry assay. The apoptosis of cells were detected and analyzed by flow cytometry.
     The neurons in the CNS express various types of ion channels, and the cell electrical activity caused by the opening of ion channels are the basis of physiological function. Ion channels involved in transmitter release, hormone secretion, signal transduction, metabolic regulation and cell growth as well as learning and memory and other important physiological processes, and they are also targets for many toxins and drugs. Therefore, whole-cell patch clamp technique was used to study the effects of nano-ZnO on ion channels of hippocampal pyramidal neurons, including voltage-gated sodium channels, potassium channels, calcium channels and neuronal excitability, and investigate the potential mechanism of nano-ZnO on the CNS. The main results are as follows:
     1. MTT cell viability assay:Nerve growth factor (NGF) induced differentiation of PC12 cells were incubated with different concentrations of the nano-ZnO (10-6 g/ml,10-5 g/ml,10-4 g/ml) for the periods 6,12,24 hours, and cell viability was decreased in a dose-dependent and time-dependent manner. Nano-ZnO (10-4 g/ml) caused a significant decrease in cell viability (P<0.05).
     2. Changes in intracellular ROS levels:PC12 cells were incubated with different concentrations of the nano-ZnO (10-6 g/ml,10-5 g/ml,10-4 g/ml) for 6h, and then treated by GENMED working solution and GENMED preserving fluid. Using the inverted fluorescence microscope, setting the excitation wavelength at 490nm and 530nm, the fluorescence intensity of nano-ZnO treatment group gradually increased with the increasing concentration of nano-ZnO compared to that of the control group. The result indicated that intracellular ROS levels were increased.
     3. The proportion of apoptotic cells by flow cytometry analysis:PC12 cells were incubated with different concentrations of the nano-ZnO (10-6 g/ml,10-5 g/ml,10-4 g/ml) for 24 hours, and the apoptosis rate of PC12 cells was increased from 8.75% in control group to 34.24% (P<0.05) after the cell exposure to the nano-ZnO (10-4 g/ml) for 24h, However, a pre-treatment to the cells using MPG (3 mM) and then treatment to PC12 cells 24h with nano-ZnO (10-4 g/ml) reduced the cellular apoptosis to 15.78% (P<0.05). The result indicated that pre-treated the ROS scavenger can inhibit the nano-ZnO induced apoptosis in PC 12 cells.
     4. Protective effects of ROS scavengers:PC12 cells were pre-treated with MPG (3 mM) for 30 min and then were incubated with nano-ZnO (10-4 g/ml) for 24h.The viability of PC 12 cells was significantly increased compared to that of the nano-ZnO treatment group (P<0.05).
     5. Effects of nano-ZnO on voltage-gated sodium channels in hippocampal pyramidal neurons:In the present of final concentration of 10-4g/ml nano-ZnO, the peak amplitudes of INa were increased considerably from-50 mV to+20 mV(P<0.05), and the current-voltage curve of sodium current (INa) was decreased. Meanwhile, the values of Vh for inactivation of Ina before and after addition of nanoparticle ZnO are-52.54±0.43 mV and-54.67±0.39mV (P<0.01); The time constants (r) before and after addition of nano-ZnO were 5.40±0.19 ms and 3.95±0.15 ms (P<0.01), respectively. However, the steady-state activation curve of INa was not shifted by the nano-ZnO.
     6. Effects of nano-ZnO on voltage-gated potassium channels in hippocampal pyramidal neurons:The amplitudes of transient outward potassium current (IA) were increased by the nano-ZnO solution (10-4g/ml), while the current-voltage curve of delayed rectifier potassium current (Ik) was significantly increased from+20 mV to +90 mV (P<0.05). However, it is apparent that the nano-ZnO solution didn't shift the steady-state activation curve of IA and IK, and neither had significant effects on the inactivation and the recovery from inactivation of IA.
     7. Effects of nano-ZnO on high-voltage activated (HVA) calcium currents in hippocampal pyramidal neurons:HVA calcium currents had a tendency of enhancement (run up) in the first 5 minutes of the recording in both the experimental and control groups, and were followed by a decline (run down) with time. At 10 minutes of the recording,10-4g/ml nano-ZnO first altered the current-voltage curve and the peak amplitudes of HVA calcium currents (P<0.05), and at the end of 30 minutes the peak current amplitudes were increased significantly from-15 mV to+15 mV(P<0.05) compared to that of the control group. But there were no statistically significance the steady-state activation curve and the steady-state inactivation curve of HVA calcium currents compared with that of the control group.
     8. Effects of nano-ZnO on excitable activity in hippocampal pyramidal neurons excitability:the results of current clamp showed that peak amplitude and overshoot of the evoked single action potential were increased in the presence of the 10"4g/ml nano-ZnO solution (P<0.05) and half-width was diminished (P<0.05). Simultaneously, a prolonged depolarizing current injection enhanced repetitive firing evoked firing rate(P<0.05) and firing rate of spontaneous firing was also increased (P<0.05).
     The main conclusions are as follows:
     1. Nano-ZnO can cause a significant decrease in cell viability in a dose-dependent and time-dependent manner and promote apoptosis in PC 12 cells; while the increase of intracellular ROS are one of potential mechanisms of cellular apoptosis induced by nano-ZnO.
     2. Nano-ZnO could involve in the neuronal apoptosis caused by the loss of cytoplasmic K+ due to increased K+ efflux through delayed rectifier potassium channels.
     3. Nano-ZnO could cause the elevation of cytosolic calcium levels by up-regulation HVA calcium channels, which would increase the generation of intracellular ROS, and consequently, promote neuronal apoptosis.
     4. Nano-ZnO could enhance the neuronal excitability by increasing the peak amplitudes of INa and promoting the inactivation and the recovery from inactivation of INa, which may involve in depolarization-induced neuronal injury by activation of voltage-gated Na+ channels. Meanwhile, nano-ZnO would potentially perturb cellular calcium homeostasis by up-regulation HVA calcium channels, and contribute to the neurodegenerative process.
     5. Nano-ZnO could enhance the neuronal excitability by increasing the peak amplitudes of INa, IK and HVA calcium currents, and therefore increase the peak amplitude and overshoot of the evoked single action potential and diminish half-width. Simultaneously, firing rate of repetitive firing and spontaneous firing were aslso increased. The decrease of peak amplitude and overshoot of the subsequent action potentials of repetitive firing may due to the dysfunction or deficiency of Na+-K+-ATPase.
引文
[1]白春礼.纳米科技及其发展前景.科学通报,2001,46(2):89-92
    [2]张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001.6
    [3]张梅,陈焕春,杨绪杰,等.纳米材料的研究现状及展望.导弹与航天运载技术,2000,3:11-16
    [4]汪冰,丰伟悦,赵宇亮,等.纳米材料生物效应及其毒理学研究进展.中国科学B辑化学,2005,35(1):1-10
    [5]Roco MC. Nanotechnology:convergence with modern biology and medicine. Curr Opin Biotechnol,2003,14:337-346
    [6]Freitas RA. What is nanomedicine? Nanomedicine,2005,1:2-9
    [7]Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med,2006,56(5):300-306
    [8]Brody AL. Nano and food packaging technologies converge. Food Technol,2006,60:92-94
    [9]赵宇亮.纳米颗粒的毒性问题.2007
    [10]Dagani R. "Nanomaterials:Safe or unsafe? Chem Eng News,2003,81(17):30-33
    [11]Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ International,2006,32:967-976
    [12]Priestly B, Harford A, Sim M. Nanotechnology:a promising new technology-but how safe? Med J Aust,2007,186(4):187-188
    [13]Service RF. American Chemical Society meeting. Nanomaterials show signs of toxicity. Science,2003,300(5617):243
    [14]Colvin VL. The potential environmental impacts of engineered nanomaterials. Nat Biotechnol,2003,21:1166-1170
    [15]Service RF. Nanotoxicology. Nanotechnology grows up. Science,2004,304:1732-1734
    [16]Holsapple MP, Farland WH, Landry TD, et al. Research strategies for safety evaluation of nanomaterials, part Ⅱ:toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci,2005,88(1):12-17
    [17]Kipen HM, Laskin DL. Smaller is not always better:nanotechnology yields nanotoxicology. Am. J. Physiol. Lung Cell Mol. Physiol,2005,289(5):L696-697
    [18]Borm PJ, Robbins D, Haubold S, et al. The potential risks of nanomaterials:a review carried out for ECETOC. Part Fibre Toxicol,2006,3:11
    [19]Nel A, Xia T, Madler L, Li N. Toxic potential of materials at nanolevel, Science,2006,311: 622-627
    [20]Handy RD, Shaw BJ. Toxic effects of nanoparticles and nanomaterials:implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc,2007,9:125-144
    [21]Handy RD, von der Kammer F, Lead JR, et al. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology,2008,17(4):287-314
    [22]Maurer-Jones MA, Bantz KC, Love SA, et al. Toxiciry of therapeutic nanoparticles. Nanomedicine (Lond),2009,4(2):219-241
    [23]Ju-Nam Y, Lead JR. Manufactured nanoparticles:an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ,2008,400(1-3): 396-414
    [24]Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles. Environ Hlth Perspect,2005,113(7):823-839.
    [25]Maynard AD. Nanotechnology:assessing the risk. Nanotoday,2006,1(2):22-33
    [26]Oberdorster G, Finkelstein JN, Johnston C, et al. Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff lnst,2000, (96):5-74
    [27]SemmlerM, Seitz J, Erbe F, et al. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. lnhal Toxicol,2004,16 (6-7):453-459
    [28]Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats.Toxicol. Sci,2004,77(1):117-125
    [29]Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci,2004,77(1): 126-134
    [30]Shvedova AA, Kisin ER, Mercer R, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol, 2005,289(5):L698-708
    [31]Shvedova AA, Kisin E, Murray AR, et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice:inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol,2008,295(4):L552-L565
    [32]Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J,2009,34(3):559-567
    [33]Dhawan A, Taurozzi JS, Pandey AK, et al. Stable colloidal dispersions of C60 fullerenes in water:evidence for genotoxicity. Environ Sci Technol,2006,40:7394-7401
    [34]Federici G, Shaw BJ, Handy RD.Toxicity of titanium dioxide nanoparticles to rainbow trout, (Oncorhynchus mykiss):gill injury, oxidative stress, and other physiological effects. Aquat Toxicol,2007,84:415-430
    [35]Smith CJ, Shaw BJ, Handy RD.Toxicity of single walled carbon nanotubes on rainbow trout, (Oncorhynchus mykiss):respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol,2007,82:94-109
    [36]Wang B, Feng WY, Wang TC, et al. Acute toxicity of nano- and micro-scale zinc powder in healthy adultmice. Toxicol Lett,2006,161 (2):115-123
    [37]Chen Z, Meng H, Xing G, et al.Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett,2006,163(2):109-120
    [38]Folkmann JK, Risom L, Jacobsen NR, et al. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect,2009;117(5):703-708
    [39]Peters A, Veronesi B, Calderon-Garciduenas L, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol, 2006,3:1-13
    [40]Lockman PR, Oyewumi MO, Koziara JM, et al. Brain uptake of thiamine-coated nanoparticles. J Control Release,2003,93:271-282
    [41]Lockman PR, Koziara JM, Mumper RJ, et al. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target,2004,12:635-641
    [42]Oberdorster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol,2004,16:437-445
    [43]Elder A, Gelein R, Silva V, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect,2006,114:1172-1178
    [44]Wang B, Feng WY, Wang M, et al. Transport of intranasally instilled fine Fe2O3 particles into the brain:micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res,2007,;118(3):233-243
    [45]Wang B, Feng WY, Zhu MT, et al. Neurotoxicity of low-dose repeatedly intranasal instillation of nano-and submicron-sized ferric oxide particles in mice. J Nanopart Res, 2009,11(1):41-53
    [46]Wang JY, Liu Y, Jiao F, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles. Toxicology,2008, 254(1-2):82-90
    [47]Wang JY, Chen CY, Liu Y, et al. Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol Lett,2008, 183(1-3):72-80
    [48]Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect12004,112:1058-1062
    [49]Wang ZL. Nanostructures of zinc oxide. Materialstoday,2004,7(6):26-33
    [50]Wang ZL. Splendid One-Dimensional Nanostructures of Zinc Oxide:A New Nanomaterial Family for Nanotechnology. ACS Nano,2008,2(10):1987-1992
    [51]Wang ZL, Song JH. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science,2006,312:242-246
    [52]Wang XD, Song JH, Liu J, et al. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science,2007,316:102-105
    [53]Qin Y, Wang XD, Wang ZL. Microfiber-Nanowire Hybrid Structure for Energy Scavenging. Nature,2008,451809-451813
    [54]Yang RS, Qin Y, Li C, Zhu G, et al.Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator. Nano Lett,2009,9 (3):1201-1205
    [55]Serpone N, Dondi D, Albini A. Inorganic and organic UV filters:Their role and efficacy in sunscreens and suncare products, Inorg Chim Acta,2007,360:794-802
    [56]Ghule K, Ghule A, Chen BJ, et al. Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem,2006,8(12):1034-1041
    [57]Zhang L, Jiang Y, Ding Y, et al. Investigation into the antibacterial behaviour of suspensions of ZnO Nanoparticles (ZnO nanofluids), J. Nanopart Res,2007,9:479-489
    [58]Tam KH, Djurisic AB, Chan CMN, et al. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films,2008,516(18):6167-6174
    [59]Jing L Q, Xu Z L, Sun X J, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl Surf Sci,2001,180:308-314
    [60]Lee Seungsin.Developing UV-protective textiles based on electrospun zinc oxide nanocomposite fibers. Fibers and Polymers,2009,10(3):295-301
    [61]Alessio B, Maximilian D, Pierandrea LN,et al. Synthesis and characterization of zinc oxide nanoparticles:application to textiles as UV-absorbers. J Nanopart Res,2008,10(4): 679-689
    [62]Xu WZ, Ma DZ, Liang L.Effect of Nano-zinc Oxide on Crosslinking and Thermal Stability of Natural Rubber. Chinese Journal of Applied Chemistry,2002,19(12):
    [63]Wu X. Application of nano-zinc oxide in rubber compound. Tire industry,2004,24(2):
    [64]Lee DD, Lee DS. Environmental gas sensors. IEEE Sens J,2001,1(3):214-224
    [65]Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelt s. Appl Phys Lett,2002,81(10):1869-1871
    [66]Kumar SA, Chen SM. Nanostructured Zinc Oxide Particles in Chemically Modified Electrodes for Biosensor Applications. Analytical Letters,2008,41:141-158
    [67]The Royal Society and Royal Academy of Engineerings, Nanoscience and nanotechnologies: Opportunities and uncertainties.2004, http://www.nanotec.org.uk/finalReport.htm
    [68]Wang JX, Sun XW, Wei A, et al. Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett,2006,88(23):233106 (1-3)
    [69]Li Z, Yang RS, Yu M, et al. Cellular Level Biocompatibility and Biosafety of ZnO Nanowires. J Phys Chem C,2008,112 (51):20114-20117
    [70]Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti M.F, Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett,2006,6(4):866-870
    [71]Reddy KM, Feris K, Bell J, et al. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett,2007,90(213902):2139021-2139023
    [72]Heinlaan M, Ivask A, Blinova I, et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere,2008,71(7):1308-1316
    [73]Nair S, Sasidharan A, Divya Rani VV, et al. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med,2009,20:235-241
    [74]Jiang W, Mashayekhi H, Xing B. Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut,2009,157(5):1619-1625
    [75]Adams LK, Lyon DY, McIntosh A, et al. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Sci Technol,2006,54:327-334
    [76]Zhu XS, Zhu L, Chen YS, et al. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res,2009,11(1):67-75
    [77]Wiench K, Wohlleben W, Hisgen V, et al. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere,2009,76 (10):1356-1365
    [78]Franklin NM, Rogers NJ, Apte SC, et al. Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnC12 to a Freshwater Microalga (Pseudokirchneriella subcapitata):The Importance of Particle Solubility.Environ Sci Technol,2007,41(24):8484-8490
    [79]Aruoja V, Dubourguier HC, Kasemets K, et al.Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ,2009, 407(4):1461-1468
    [80]Ma H, Bertsch PM, Glenn TC, et al. Toxicity of Manufactured Zinc Oxide Nanoparticles in the Nematode Caenorhabditis Elegans. Environ Toxicol Chem,2009,28(6):1324-1330
    [81]Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and bulk ZnO, A12O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut,2009,157(4):1171-1177
    [82]Bai W, Zhang ZY,Tian WJ, et al. Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J. Nanopart. Res,2009, DOI: 10.1007/s11051-009-9740-9
    [83]Zhu X, Zhu L, Duan Z, et al. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A,2008,43(3):278-284
    [84]Zhu X, Wang J, Zhang X, et al. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology,2009,20(19):195103
    [85]Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A,2006,41 (12):2699-2711
    [86]Gojova A, Guo B, Kota RS, et al. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles:effect of particle composition. Environ Health Perspect,2007, 115(3):403-409
    [87]Lin WS, Xu Y, Huang CC, et al. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res,2009,11(1):25-39
    [88]Musarrat J, Saquib Q, Azam A, et al. Zinc oxide nanoparticles-induced DNA damage in human lymphocytes. International Journal of Nanoparticles,2009,2:402-405
    [89]Yang H, Liu C, Yang D, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials:the role of particle size, shape and composition. J Appl Toxicol,2009,29(1):69-78
    [90]Deng X, Luan Q, Chen W, et al. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology.2009; 20(11). doi:10.1088/0957-4484/20/11/115101
    [91]Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles:comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci,2007,97(1): 163-180
    [92]Wang B, Feng WY, Wang M, et al. Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res,2008,10(2):263-276
    [93]Beckett WS, Chalupa DF, Pauly-Brown A, et al. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults:a human inhalation study. Am J Respir Crit Care Med,2005,171(10):1129-1135
    [94]Blanc P, Wong H, Bernstein M, et al. An experimental human model of metal fume fever. Ann Intern Med,1991,114:930-936
    [95]Fine JM, Gordon T, Chen LC, et al. Metal fume fever:characterization of plasma 1L-6 responses in controlled human exposures to zinc oxide fume. J Occup Environ Med,1997, 39:722-726
    [96]Lin DH, Xing BS. Phytotoxiciry of nanoparticles:inhibition of seed germination and root growth. Environ Pollut.2007,150(2):243-250
    [97]Yamamoto O, Komatsu M, Sawai J, et al. Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci Mater Med,2004,15 (8):847-851
    [98]Brunner TJ, Wick P, Manser P, et al. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol, 2006,40:4374-4381
    [99]Harman D. Aging:a theory based on free radical and radiation chemistry. J Gerontol,1956, 11(3):298-300
    [100]Stadtman ER. Role of oxidant species in aging. Curr Med Chem,2004,31:1105-1112
    [101]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol,2007,39(1):44-84
    [102]Valko M, Morris H, Cronin MTD. Metals, toxicity and oxidative stress. Curr Med Chem, 2005,12:1161-1208
    [103]Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis,2000,21:361-370.
    [104]Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact,2006,160:1-40.
    [105]鞠躬主编.吕国蔚,王百忍副主编.神经生物学:供研究生使用.北京:人民卫生出版社.2004.334
    [106]Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med,2000,29:222-230
    [107]DeCoursey T E, Ligeti E. Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci.2005; 62:2173-2193
    [108]Dinauer MC, Deck MB, Unanue ER. Mice lacking reduced nicotinamide adenine dinucleotide phosphate oxidase activity show increased susceptibility to early infection with Listeria monocytogenes. J Immunol,1997,158:5581-5583
    [109]Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome:oxidants, myeloperoxidase, and bacterial killing. Blood,1998,92:3007-3017
    [110]Suh YA, Arnold RS, Lassegue B, et al. Cell transformation by the superoxide-generating oxidase Moxl. Nature,1999,401:79-82
    [111]Whidden MA, McClung JM, et al. Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction. J Appl Physiol,2009,106(2):385-394
    [112]Los M, Schenk H, Hexel K, et al.IL-2 gene expression and NF-B activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO J,1995,14: 3731-3740
    [113]Feng Xia LY, Garcia GE, Hwang D, et al. Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide. J Clin Invest,1995,95:1669-1675
    [114]Luo Y, Roth GS. The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration. Antioxidants Redox Signal,2000,2:449-460
    [115]Migliore L, Coppede F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res,2009,674(1-2):73-84
    [116]Cadenas E. Basic mechanisms of antioxidant activity. Biofactors,1997,6:391-397
    [117]Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev,2005,126:365-379
    [118]Carr A, McCall MR, Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species-reaction pathways and antioxidant protection. Arterioscl Thromb Vasc Biol,2000, 20:1716-1723
    [119]Kojo S. Vitamin C:Basic metabolism and its function as an index of oxidative stress. Curr Med Chem,2004,11:1041-1064
    [120]Pryor WA. Vitamin E and heart disease:Basic science to clinical intervention trials. Free Radic Biol Med,2000,28:141-164
    [121]Masella R, Di Benedetto R, Vari R, et al. Novel mechanisms of natural antioxidant compounds in biological systems:Involvement of glutathione and glutathionerelated enzymes. J Nutr Biochem,2005,16:577-586
    [122]Jones DP, Carlson JL, Mody VC, et al. Redox state of glutathione in human plasma. Free Radic Biol Med,2000,28:625-635
    [123]Burton GW, Ingold KU. Beta-carotene—An unusual type of lipid antioxidant. Science, 1984,224:569-573
    [124]El-Agamey A, Lowe GM, McGarvey DJ, et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys,2004,430:37-48
    [125]Smith AR, Shenvi SV, Widlansky M, et al. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem,2004,11,1135-1146
    [126]Schrauzer GN. Interactive effects of selenium and chromium on mammary tumor development and growth in MMTV-infected female mice and their relevance to human cancer. Biol Trace Element Res,2006,109:281-292
    [127]Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chem Res Toxicol, 2008,21(1):172-88
    [128]Sun T, Oberley LW. Redox regulation of transcriptional activators. Free Radic Biol Med, 1996,21:335-348
    [129]Droge W. Free radicals in the physiological control of cell function. Physiol Rev,2002,82: 47-95
    [130]Sundaresan M, Yu ZX, Ferrans VJ, et al. Regulation of reactive-oxygenspecies generation in fibroblasts by Racl. Biochem J,1996,318:379-382
    [131]Storz P. Reactive oxygen species in tumor progression. Front Biosci,2005,10:1881-1896
    [132]Poli G, Leonarduzzi G, Biasi F, et al. Oxidative stress and cell signalling. Curr Med Chem, 2004.11:1163-1182
    [133]Dhalla N S,Temsah RM, NetticadanT. Role of oxidative stress in cardiovascular diseases. J Hypertens,2000,18:655-673
    [134]Molavi B, Mehta JL. Oxidative stress in cardiovascular disease:Molecular basis of its deleterious effects, its detection, and therapeutic considerations. Curr Opin Cardiol,2004, 19:488-493
    [135]Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res,2004,61:461-470
    [136]Kasparova S, BrezovaV, Valko M, et al. Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neurochem Int,2005,46:601-611
    [137]Yamagishi S, Edelstein D, Du XL, et al. Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction. Diabetes,2001, 50(6):1491-1494
    [138]Herlein JA, Fink BD, O'Malley Y, et al. Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats. Endocrinology,2009,150(1):46-55
    [139]Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem,2004,266:37-56
    [140]Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact,2006,160:1-40
    [141]Maurice MM, Nakamura H, van der Voort EAM, et al. Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. J Immunol, 1997,158:1458-1465
    [142]Beal ME Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol, 1995,38(3):357-366
    [143]Schulz JB, Lindenau J, Seyfried J, et al. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem,2000,267:4904-4911
    [144]Andersen JK.Oxidative stress in neurodegeneration:cause or consequence? Nat Med,2004, 10 Suppl:S18-25
    [145]Vercesi AE, Kowaltowski AJ, Oliveira HC, et al. Mitochondrial Ca2+ transport, permeability transition and oxidative stress in cell death:implications in cardiotoxicity, neurodegeneration and dyslipidemias. Front Biosci,2006,11:2554-64
    [146]Migliore L, Coppede F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res,2009,674(1-2):73-84
    [147]翟中和,王喜忠,丁明孝主编.细胞生物学.北京:高等教育出版社.2000.454-466
    [148]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,1972,26 (4):239-257.
    [149]Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science,1995,267 (5203):1456-1462.
    [150]Hetts S W. To die or not to die:an overview of apoptosis and its role in disease. JAMA. 1998,279(4):300-307.
    [151]Perry G, Nunomura A, Lucassen P, et al. Apoptosis and Alzheimer's disease. Science,1998, 282:1268-1269
    [152]Rudin CM, Thompson CB. Apoptosis and disease:regulation and clinical relevance of programmed cell death. Annu Rev Med,1997,48:267-281
    [153]Hacker G. The morphology of apoptosis. Cell Tissue Res.2000;301(1):5-17
    [154]Martelli AM, Zweyer M, Ochs RL, et al. Nuclear apoptotic changes:an overview. J Cell Biochem,2001,82(4):634-646
    [155]Herrmann M, Lorenz HM, Voll R, et al. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acid Res,1994,22(24):5506-5507
    [156]Fesus L, Thomazy V, Falus A. Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett,1987,224(1):104-108
    [157]Fesus L. Biochemical events in naturally occurring forms of cell death. FEBS Lett,1993, 328(1-2):1-5
    [158]Autuori F, Farrace MG, Oliverio S, et al. "Tissue" transglutaminase and apoptosis. Adv Biochem Eng Biotechnol,1998,62:129-36
    [159]Melino G, Piacentini M. Tissue transglutaminase in cell death:A downstream or a multifunctional upstream effector? FEBS Lett,1998,430:59-63
    [160]Vermes I, Haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods,1995,184(1):39-51
    [161]van Engeland M, Nieland LJ,Ramaekers FC, et al. Annexin V-affinity assay:a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry,1998, 31(1):1-9
    [162]Stennicke HR, Salvesen GS. Properties of the caspases. Biochim Biophys Acta,1998, 1387(1-2):17-31
    [163]Nicholson DW, Thornberry NA. Caspases:killer proteases. Trends Biochem Sci,1997,22: 299-306
    [164]Cohen GM. Caspases:the executioners of apoptosis. Biochem J,1997,326 (Pt 1):1-16
    [165]Grutter MG. Caspases:key players in programmed cell death. Curr Opin Struct Biol,2000, 10(6):649-55
    [166]Green DR, Reed JC. Mitochondria and apoptosis. Science,1998,281(5381):1309-1312.
    [167]Wang X. The expanding role of mitochondria in apoptosis. Genes Dev,2001,15(22): 2922-2933
    [168]Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol,2000,1:11-21
    [169]Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death:the calcium-apoptosis link. Nat Rev Mol Cell Biol,2003,4:552-565
    [170]Rizzuto R, Pinton P, Ferrari D, et al. Calcium and apoptosis:facts and hypotheses. Oncogene,2003,22:8619-8627
    [171]Nicotera P, Orrenius S. The role of calcium in apoptosis. Cell Calcium,1998,23:173-180.
    [172]Giorgi C, Romagnoli A, Pinton P, et al. Ca2+ signaling, mitochondria and cell death. Curr Mol Med,2008,8(2):119-30
    [173]Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis,2000,5(5):415-418
    [174]Ishisaka R, Utsumi K, Utsumi T. Involvement of lysosomal cysteine protease in hydrogen peroxide-induced apoptosis in HL-60 cells. Biosci Biotechnol Biochem,2002,66 (9):1865-1872
    [175]Mates JM, Francisca M, Sanchez J. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J biochem. cell boil,2000,32:157-170
    [176]Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med,2001,29:323-333
    [177]Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie,2002,84(2-3):131-141
    [178]刘振伟编著.实用膜片钳技术.北京:军事医学科学出版社.2006;90-91
    [179]Terlau H, Stiihmer W. Structure and function of voltage-gated ion channels. Naturwissenschaften,1998,85(9):437-444
    [180]Noda M, Shimizu S, Tanabe T, et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature,1984,312:121-127
    [181]Noda M, Ikeda T, Kayano T, et al. Existence of distinct sodium channel messenger RNAs in rat brain. Nature,1986,320:188-192
    [182]Denac H, Mevissen M, Scholtysik G. Structure, function and pharmacology of voltage-gated sodium channels. Naunyn-Schmiedeberg's Arch Pharmacol,2000, 362(6):453-79
    [183]Messner DJ, Feller DJ, Scheuer T, Catterall WA. Functional properties of rat brain channels lacking the β1 or β2 subunit. J Biol Chem,1986,261:14882-14890
    [184]Lipkind GM, Fozzard HA. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J,1994,66:1-13
    [185]Hille B. Ionic channels of excitable membranes. Sinauer Associates, Sunderland. Mass. 1992
    [186]Taylor CP, Meldrum BS. Na+ channels as targets for neuroprotective drugs. Trends Pharmacol Sci,1995,6(9):309-316
    [187]Takahashi S, Shibata M, Gotoh J, et al. Astroglial cell death induced by excessive influx of sodium ions. Eur J Pharmacol,2000,408:127-135
    [188]Catterall WA. Structure and regulation of voltage-gated Ca2+channels. Annu Rev Cell Dev Biol 2000,16:521-555
    [189]Hofmann F, Lacinova L, Klugbauer N. Voltage-dependent calcium channels:from structure to function.Rev Physiol Biochem Pharmacol,1999,139:33-87
    [190]Pichler M, Cassidy TN, Reimer D, et al. subunit heterogeneity in neuronal L-type Ca2+ channels. J Biol Chem,1997,272:13877-13882
    [191]Witcher DR, De Waard M, Liu H, et al. Association of native Ca2+ channel subunits with the 1 subunit interaction domain.J Biol Chem,1995,270:18088-18093
    [192]Lacinova L.Voltage-dependent calcium channels. Gen Physiol Biophys,2005,24 Suppl 1: 1-78
    [193]Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol,1989, 51:367-384
    [194]Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature,1985,316:440-443
    [195]Tsien RW, Lipscombe D, Madison DV, et al. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci,1988,11:431-438
    [196]Mintz IM, Adams ME, Bean BP. P-type calcium channels in rat central and peripheral neurons. Neuron,1992,9:85-95
    [197]Randall A, Tsien RW. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci,1995,15:2995-3012
    [198]Tottene A, Moretti A, Pietrobon D. Functional diversity of P-type and R-type calcium channels in rat cerebellar neurons. J Neurosci,1996,16:6353-6363
    [199]Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature, 1983,301:569-574
    [200]Perney TM, Kaczmarek LK. The molecular biology of K+ channels. Curr Opin Cell Biol, 1991,3(4):663-670
    [201]Doyle DA, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science,1998,280 (5360):69-77
    [202]Choe S. Potassium channel structures. Nat Rev Neurosci,2002,3:115-121
    [203]Chanda B, Asamoah OK, Blunck R, et al. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature,2005,436:852-856
    [204]Posson DJ, Ge P, Miller C, et al. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature,2005,436:848-851
    [205]Kurata HT, Wang Z, Fedida D. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels. J Gen Physiol,2004,123:505-520
    [206]Pourrier M, Herrera D, Caballero R, et al. The Kv4.2 N-terminal restores fast inactivation and confers KChIP2 modulatory effects on N-terminal-deleted Kv1.4 channels. Pflugers Arch.-Eur J Physiol,2004,449:235-247
    [207]Martens JR, Kwak YG, Tamkun MM. Modulation of Kv channel/subunit interactions. Trends Cardiovasc Med,1999,9:253-258
    [208]Rasmusson RL, Wang S, Castellino RC, et al. The subunit, Kv 1.2, acts as a rapid open channel blocker of NH2 terminal deleted Kv1.4 -subunits. Adv Exp Med Biol, 1997,430:29-37
    [209]Gong J, Xu J, Bezanilla M, et al. Differential stimulation of PKC phosphorylation of potassium channels by ZIP1 and ZIP2. Science,1999,285:1565-1569
    [210]Sewing S. Roeper J, Pongs O. Kv 1 subunit binding specific for Shaker-related potassium channel subunits. Neuron,1996.16:455-463
    [211]Rettig J, Heinemann SH, Wunder F, et al. Inactivation properties of voltagegated K+ channels altered by presence of -subunit. Nature,1994,369:289-294
    [212]Shieh CC, Coghlan M, Sullivan JP, et al. Potassium channels:molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev,2000,52(4):557-594
    [213]Coetzee WA, Amarillo Y, Chiu J, et al. Molecular diversity of K+ channels. Ann NY Acad Sci,1999,868:233-285
    [214]Delmas P, Brown DA. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci,2005,6:850-862
    [215]Pape HC. Queer current and pacemaker:the hyperpolarization activated cation current in neurons. Annu Rev Physiol,1996,58:299-328
    [216]Huguenard JR., Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol,1996,58:329-348
    [217]Jahnsen H, Llina's R. Ionic basis for electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro.J Physiol (Lond),1984,349:227-247
    [218]McCormick DA, Pape HC. Properties of a hyperpolarizationactivated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol (Lond),1990, 431:291-318
    [219]Alonso A, Llina's R. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer Ⅱ. Nature,1989,342:175-177
    [220]Pennartz CM, Bierlaagh MA, Geurtsen AMS. Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus:involvement of a slowly inactivating component of sodium current. J Neurophysiol,1997,78:1811-1825
    [221]Feigenspan A, Gustincich S, Bean BP, et al. Spontaneous activity of solitary dopaminergic cells of the retina. J Neurosci,1998,18,6776-6789
    [222]Greene LA.Tischler AS, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA. 1976,73(7),2424-2428
    [223]Tischler AS. Chromaffin cells as models of endocrine cells and neurons. Ann NY Acad Sci, 2002,971:366-70
    [224]Vaudry D, Stork PJ, Lazarovici P, et al. Signaling pathways for PC12 cell differentiation: making the right connections. Science,2002,296:1648-1649
    [225]Neher E, Sakmann B. The patch clamp technique. J Sci Am.1992; 266(3):44-52
    [226]Sigworth FJ. The patch clamp is more useful than anyone had expected. J Federation Proc, 1986,45 (2):673-675
    [227]Neher E, Sakmann B. single channel currents recorded from membrane of nervated frog muscule fibers. Nature,1976,260:799-802
    [228]Hamill O P, Marty A, Neher E, et al. Improved patch-clamp technique for high-resolution current recording from cells and cell-free membrane patches. J Pflugers Arch,1981,391: 85-100
    [229]Sakmann B, Neher E. Single-Channel Recording. New York:Plenum,1983
    [230]陈军编著.膜片钳实验技术.北京:科学出版社.2001,3-6
    [231]Wagner JJ, Alger BE.GTP modulates run-up of whole-cell Ca2+ channel current in a Ca(2+)-dependent manner. J Neurophysiol,1994,71(2):814-816
    [232]Elhamdani A, Bossu JL, Feltz A. ADP exerts a protective effect against rundown of the Ca2+ current in bovine chromaffin cells. Pflugers Arch,1995,430(3):401-409
    [233]Martinez-Sanchez M, Striggow F, Schroder UH, et al. Na+ and Ca2+ homeostasis pathways, cell death and protection after oxygen-lucose deprivation in organotypic hippocampal slice cultures. Neuroscience,2004,28:729-740
    [234]Takahashi S, Shibata M, Fukuuchi Y. Role of sodium ion influx in depolarization-induced neuronal cell death by high KCI or veratridine. Eur J Pharmacol,1999,372:297-304
    [235]Takano H, Fukushi H, Morishima Y, et al. Calmodulin and calmodulin-dependent kinase Ⅱ mediate neuronal cell death induced by depolarization. Brain Res,2003,962:41-47
    [236]Akasofu S, Sawada K, Kosasa T, et al. Donepezil attenuates excitotoxic damage induced by membrane depolarization of cortical neurons exposed to veratridine. Eur J Pharmacol, 2008,588:189-197
    [237]Tarnawa I, Bolcskei H, Kocsis P. Blockers of voltage-gated sodium channels for the treatment of central nervous system diseases. Recent Patents CNS Drug Discov,2007, 2:57-78
    [238]Xiao AY, Wei L, Xia S, et al. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci,2002,22:1350-1362
    [239]Choi DW. Calcium-mediated neurotoxicity:relationship to specific channel types and role in ischemic damage. Trends Neurosci,1988,11:465-469
    [240]Jiang C, Agulian S, Haddad GG. Cl- and Na+homeostasis during anoxia in rat hypoglossal neurons:Intracellular and extracellular in vitro studies. J Physiol,1991,448:697-708
    [241]Friedman JE, Haddad GG. Anoxia induces an increase in intracellular sodium in rat central neurons in vitro. Brain Res,1994,663:329-334
    [242]Mitterdorfer J, Bean BP. Potassium Currents during the Action Potential of Hippocampal CA3 Neurons. J Neurosci,2002,22:10106-10115
    [243]Bortner CD, Hughes FM, Cidlowski JA. A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem,1997,272:32436-32442
    [244]Bortner CD, Cidlowski JA. Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem,1999,274:21953-21962.
    [245]Hughes Jr FM, Cidlowski JA. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul,1999.39:157-171
    [246]Montague JW, Bortner CD, Hughes Jr FM, et al. A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis. Steroids,1999,64:563-569
    [247]Vu CCQ, Bortner CD, Cidlowski JA. Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas- and UV-induced cell death. J Biol Chem,2001,276:37602-37611
    [248]Remillard CV, Yuan J X-J. Activation of K+channels:an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol,2004,286:L49-67
    [249]Yu SP, Yen C-H, Sensi SL, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science,1997,278:114-117
    [250]Yu SP, Yeh C-H, Gottron F, et al. Role of the outwardly delayed rectifier K current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J Neurochem,1999,73:933-941
    [251]Krick S, Platoshyn O, Sweeney M, et al. Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol,2001,280:C970-979
    [252]Thompson GJ, Langlais C, Cain K, et al. Elevated extracellular [K+] inhibits death-receptor- and chemical-mediated apoptosis prior to caspase activation and cytochrome c release. J Biochem,2001,357:137-145
    [253]Fernandez-Segura E, Canizares FJ, Cubero MA, et al. Changes in elemental content during apoptotic cell death studied by electron probe X-ray microanalysis. Exp Cell Res,1999, 253:454-462
    [254]Bortner CD, Cidlowski JA. Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J Biol Chem,2003,278: 39176-39184
    [255]Arrebola F, Zabiti S, Canizares FJ, et al. Changes in intracellular sodium, chlorine and potassium concentrations in staurosporine- induced apoptosis. J Cell Physiol,2005, 204:500-507
    [256]Panayiotidis MI, Bortner CD, Cidlowski JA. On the mechanism of ionic regulation of apoptosis:would the Na+/K+-ATPase please stand up? Acta Physiol.2006;187:205-215
    [257]Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium,2003,34(4-5):325-337
    [258]Bootman MD, Collins TJ, Peppiatt CM, et al. Calcium signaling-an overview. Semin Cell Dev Biol,2001,12(1):3-10
    [259]Doering CJ, Zamponi GW. Molecular Pharmacology of High Voltage-Activated Calcium Channels. J Bioenerg Biomembr,2003,35(6):491-505
    [260]Marambaud P, Dreses-Werringloer U, Vingtdeux V. Calcium signaling in neurodegeneration. Mol Neurodegener,2009.4:20
    [261]Mattson MP. Calcium and neurodegeneration. Aging Cell,2007,6(3):337-350
    [262]Mattson MP. Pathways towards and away from Alzheimer's disease. Nature,2004, 430(7000):631-639
    [263]Green KN, LaFerla FM. Linking calcium to Abeta and Alzheimer's disease. Neuron,2008, 59(2):190-194
    [264]Surmeier DJ. Calcium, ageing, and neuronal vulnerability in Parkinson's disease. Lancet Neurol,2007,6(10):933-938
    [265]Bezprozvanny 1. Inositol 1,4,5-tripshosphate receptor, calcium signalling and Huntington's disease. Subcell Biochem,2007,45:323-335
    [266]Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med,2001,344(22): 1688-1700
    [267]Turski L, Bressler K, Rettig KJ, et al. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature,1991,349(6308):414-418
    [268]Weiss JH, Hartley DM, Koh J, et al. The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science,1990,247(4949 Pt 1):1474-1477
    [269]Tymianski M, Wallace MC, Spigelman 1, et al. Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron,1993,11(2): 221-235
    [270]Mattson MP. Excitotoxic and excitoprotective mechanisms:abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med,2003,3(2): 65-94.
    [271]Campbell LW, Hao SY, Thibault O, et al. Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons. J Neurosci,1996,16:6286-6295
    [272]Jen J. Calcium channelopathies in the central nervous system. Curr Opin Neurobiol,1999, 9(3):274-280
    [273]Green KN and Peers C. Divergent pathways account for two distinct effects of amyloid P peptides on exocytosis and Ca2+ currents involvement of ROS and NF-κB. J Neurochem, 2002,81(5):1043-1051
    [274]Furukawa K, Wang Y, Yao PJ, et al. Alteration in calcium channel properties is responsible for the neurotoxic action of a familial frontotemporal dementia tau mutation. J Neurochem. 2003,87(2):427-436
    [275]Bouron A, Boisseau S, De Waard M, et al. Differential down-regulation of voltage-gated calcium channel currents by glutamate and BDNF in embryonic cortical neurons. Eur J Neurosci,2006,24(3):699-708
    [276]Beckman KB, Ames BN. The Free Radical Theory of Aging Matures. Physiol Rev,1998, 78(2):547-581
    [277]Mattson MP. Calcium and Free Radicals:Mediators of neurotrophic factor and excitatory transmitter-regulated developmental plasticity and cell death. Perspect Dev Neurobiol, 1996,3(2):79-91
    [278]Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol,1998,275(1 Pt 1), C1-24
    [279]Ohkuma S, Katsura M, Higo A, et al. Peroxynitrite affects Ca2+ influx through voltage-dependent calcium channels. J Neurochem,2001,76(2):341-350
    [280]Green KN and Peers C. Divergent pathways account for two distinct effects of amyloid β peptides on exocytosis and Ca2+ currents involvement of ROS and NF-κB. J Neurochem, 2002,81(5):1043-1051
    [281]Green KN, Boyle JP, Peers C. Hypoxia potentiates exocytosis and Ca2+ channels in PC12 cells via increased amyloid beta peptide formation and reactive oxygen species generation. J Physiol,2002,541(Pt3):1013-1023
    [282]Peers C, Scragg JL, Boyle JP, et al. A central role for ROS in the functional remodelling of L-type Ca2+ channels by hypoxia. Philos Trans R Soc Lond B Biol Sci,2005,360(1464): 2247-2254
    [283]Gordeeva AV, Zvyagilskaya RA, Labas YA. Cross-talk between reactive oxygen species and calcium in living cells. Biochemistry (Moscow),2003,68(10):1077-1080
    [284]Feissner RF, Skalska J, Gaum WE, et al. Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci,2009,14:1197-1218
    [285]Tan S, Sagara Y, Liu Y, et al. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol,1998,141 (6):1423-1432
    [286]Erecinska M, Silver IA. ATP and brain function. J Cereb Blood Flow Metab.1989;9:2-19
    [287]Yu SP. Na+, K+-ATPase:The new face of and old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol,2003,66:1601-1609
    [288]Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci USA,1985,82(17):6010-6013
    [289]Arrebola F, Zabiti S, Canizares FJ, et al. Changes in intracellular sodium, chlorine and potassium concentrations in staurosporine- induced apoptosis. J Cell Physiol,2005, 204(2):500-507
    [290]Takeda A. Zinc homeostasis and functions of zinc in the brain. Biometals,2001,14(3-4): 343-351
    [291]Mathie A, Sutton GL, Clarke CE, et al. Zinc and copper:Pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther,2006,111(3):567-583
    [292]Harrison NL, Radke HK, Talukder G, ffrench-Mullen JMH. Zinc modulates transient outward current gating in hippocampal neurons. Receptors and Channels,1993, 1(2):153-163
    [293]Kuo CC, Chen FP. Zn2+ modulation of neuronal transient K+ current:fast and selective binding to the deactivated channels. Biophys J,1999,77(5):2552-2562
    [294]Buesselberg D, Platt B, Michael D, et al. Mammalian voltage-activated calcium channel currents are blocked by Pb2+, Zn2+, and Al3+. J Neurophysiol,1994,71(4):1491-1497.
    [295]Magistretti J, Castelli L, Taglietti V, et al. Dual effect of Zn2+ on multiple types of voltage-dependent Ca2+ currents in rat palaeocortical neurons. Neuroscience,2003, 117(2):249-264
    [296]Sun HS, Hui K,Lee DW, Feng ZP. Zn2+ sensitivity of high- and low-voltage activated calcium channels. Biophys J,2007,93(4):1175-1183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700