用户名: 密码: 验证码:
美洲南瓜苯丙氨酸解氨酶(PAL)基因克隆、表达分析及品种抗灰霉病研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以有壳美洲南瓜和裸仁美洲南瓜为试材,进行了种皮PAL基因全长序列的克隆,生物信息学及表达分析,研究了植株不同发育时期不同组织部位PAL酶活和PAL基因的表达特性变化,明确了接种灰霉菌后裸仁美洲南瓜植株各个部位防御酶活性变化及其与PAL基因表达水平之间的关系。现取得以下结果:
     1.利用RT-PCR技术,克隆获得了有壳美洲南瓜(P3,P5)和裸仁美洲南瓜(P13,P15)种皮PAL基因的cDNA片段。分析结果表明P3、P13、P5、P15的PAL基因核苷酸和氨基酸序列与其他植物中已分离的PAL基因有很高的同源性,其氨基酸序列具有PAL-HAL功能域和酶活性中心特征序列(GTITASGDLVPLSYIA),同属于Lyase_I_Like超家族。有壳和裸仁美洲南瓜种皮PAL基因核苷酸序列及其推导的氨基酸序列比对结果显示P3和P13有25个核苷酸位点发生变异,15个位点氨基酸发生变化。P5和P15发生变异的核苷酸位点有20个,P15编码的氨基酸序列的中间部分与P5编码的氨基酸序列完全一致。
     2.利用RT-PCR,结合RACE技术克隆得到了有壳美洲南瓜(P3)种皮PAL基因的全长序列。将该基因命名为CP-PAL,序列长为1720bp,含有一个1359bp的ORF,可编码452个氨基酸,分子量为48.86KDa,等电点为6.55。通过BlastX比对表明P3种皮PAL基因序列及其氨基酸序列与黄瓜PAL基因及其氨基酸序列的相似性分别为85%和94%。CP-PAL包含PAL-HAL、PLN02457及phe_am_lyase三个结构域及酶活性中心序列(GTITASGDLVPLSYIA),属于Lyase_I_Like超家族。CP-PAL不具有导肽及信号肽,为非跨膜蛋白,可能定位于细胞质及内质网上,属可溶性蛋白。系统进化树分析表明P3种皮PAL基因和黄瓜PAL基因的亲缘关系最近。CP-PAL蛋白三级结构主要以α-螺旋为主要结构元件,β-转角和无规卷曲较少。
     3.克隆获得裸仁美洲南瓜(P13)种皮PAL基因的全长序列。将该基因命名为CPL-PAL,序列长为2340bp,含有一个2115bp的ORF,可编码704个氨基酸,分子量为77.38KDa,等电点为6.34。P13种皮PAL基因核苷酸序列及其推导的氨基酸序列同黄瓜PAL基因及其氨基酸序列相似性分别为80%和85%。CPL-PAL包含PAL-HAL、PLN02457及phe_am_lyase三个结构域,属于Lyase_I_Like超家族。CPL-PAL蛋白不具有导肽及信号肽,为非跨膜蛋白,可能定位于细胞质、内质网及叶绿体上,为亲水性蛋白。系统进化树表明P13种皮PAL基因和黄瓜PAL基因的亲缘关系最近。三级结构分析可知CPL-PAL蛋白以α-螺旋为主要结构元件,β-转角和无规卷曲较少。
     4.在整个种皮发育过程中,PAL基因在裸仁美洲南瓜(P13,P15)中的相对表达量均低于其在有壳美洲南瓜(P3,P5)中的相对表达量。PAL基因在P3和P13种皮发育中的呈现相反对应的变化趋势,P3中PAL基因在自交授粉后20d后表达量增加,P13中20d后表达量则下降。有壳和裸仁美洲南瓜PAL基因在叶、茎、根、花瓣中均有表达,其中在叶和花瓣中的相对表达量均较高。有壳美洲南瓜植株不同组织部位PAL酶活及PAL基因的相对表达量在整个生育期均高于裸仁美洲南瓜,叶、茎、根中PAL的酶活性与其对应组织部位的PAL基因的表达量存在协同增加的趋势,均在开花期达到峰值。
     5.裸仁美洲南瓜抗病和感病品种接种灰霉病菌后,随着发病时间的延长,病情指数增加,植株叶片、叶柄、茎中的叶绿素含量下降,POD、PPO、PAL酶活性上升。抗病品种叶片、叶柄、茎中叶绿素含量、PAL、POD、PPO酶活性均高于感病品种。裸仁美洲南瓜抗病品种叶片、叶柄、茎中PAL基因的相对表达量均显著高于感病品种,叶片和茎中PAL基因达到表达高峰的时间也早于感病品种。灰霉病菌诱导后裸仁美洲南瓜不同组织部位PAL基因的表达水平与PAL酶活性的变化趋势存在差异。
Taken the hulled and hull-less Cucurbita pepo as materials,cloned the full-length sequence ofPAL gene respectively from seed coat and analysed the bioinformatics and expression characteristics,studied the variations in PAL activities and PAL gene expression in different tissues of the plant duringthe different development, maked clear the changes of several defense enzyme activities in differentparts of the plant and the relationship with PAL gene expression level after inoculation of Botrytiscinerea. The experimental results are as follows:
     1. Using RT-PCR technique, the cDNA segment of PAL gene were cloned respectively from seedcoat in hulled (P3, P5) and hull-less (P13, P15) C. pepo. Homology analysis showed that the PALnucleotide sequences and deduced amino acids of P3, P5, P13, P15were highly homologous to otherPAL nucleotide sequences and amino acids from different plant species, the sequences of amino acidshad a PAL-HAL functional domain and PAL enzyme activity centre region (GTITASGDLVPLSYIA),and they were one member of Lyase_I_Like superfamily. Comparing the PAL sequences of hulled andhull-less C. pepo, the result indicated that25nucleotide sites and15amino acid sites of P3and P13were changed;25nucleotide sites of P5and P15were varied, the intermediate amino acid sequences inP15were in full accord with deduced amino acid sequences in P5.
     2. The PAL gene sequence from seed coat in hulled C. pepo (P3) were obtained by RT-PCR andRACE technique. The full-length sequence of PAL (designated as CP-PAL) was1720bp, andcontained a complete open reading frame (ORF) of1359bp, which encoded452amino acid residues,the molecular weight of this protein was48.86KDa, pI was6.55. Homology analysis showed that thePAL nucleotide sequences and deduced amino acids of P3were highly homologous to Cucumis sativusPAL nucleotide sequences and amino acids, the number were85%and94%respectively. The aminoacid sequences of CP-PAL contained three functional domains of PAL-HAL, PLN02457,phe_am_lyase and the region of PAL enzyme activity centre (GTITASGDLVPLSYIA), and it was onemember of Lyase_I_Like superfamily. The CP-PAL was most likely to be located in the cytoplasm andendoplasmic reticulum, without signal peptide and leader peptide. And it was non-transmembrane andsoluble protein. The neighbor-joining phylogenetic tree indicated that PAL gene in seed coat of P3hada very close relationship with PAL gene in C. sativus. The main structural element in CP-PAL proteintertiary structure was α-Helix, less in β-Turn and random coil.
     3. The PAL gene sequence from seed coat in hull-less C. pepo (P13) were obtained. The resultsshowed that CPL-PAL cDNA completed sequence contained2340bp and the ORF contained2115bpand coded704amino acids, the molecular weight and pI were predicted as77.38KDa,6.34separately. The PAL nucleotide sequences and deduced amino acids of P13showed the highest homology of80%and85%with C. sativus, respectively. The amino acid sequences of CPL-PAL contained threefunctional domains of PAL-HAL, PLN02457, phe_am_lyase, and was one member of Lyase_I_Likesuperfamily. The CPL-PAL was most likely to be located in the cytoplasm, endoplasmic reticulum andchloroplast, without signal peptide, leader peptide and transmembrane region. And the protein washydrophilic. The neighbor-joining phylogenetic tree indicated that PAL gene in seed coat of P13hadthe most of familiar genetic relationship with PAL gene in C. sativus. The main structural element inCPL-PAL protein tertiary structure was α-Helix, less in β-Turn and random coil.
     4. In the whole process of seed coat development, the relative expression of PAL gene in hull-lessC. pepo (P13, P15) was lower than the relative expression in hulled C. pepo (P3, P5). Real-time PCRanalysis revealed that PAL gene in seed coat of P13showed the opposite tendency to P3, the relativeexpression of PAL gene in seed coat of P3was increased, but the relative expression in P13wasdecreased after20d of self-pollination. The PAL gene in hulled and hull-less C. pepo were expressed inleaves, stems, roots, petals, the relative expression in the leaves and petals were higher. During thewhole growth period, the activity of PAL and PAL gene expression in different tissues of hulled C. pepowere higher than that of hull-less C. pepo. The PAL activity and PAL gene expression in the leaves,stems and roots had synergistic increase trend, and reached its peak during the flowering period.
     5. After inoculation of Botrytis cinerea, the disease index of resistant and susceptible varieties ofhull-less C. pepo were increased, the chlorophyll content of leaves, petioles and stems were decreasedand the activities of POD, PPO and PAL were increased with the extension of onset time. Thechlorophyll content, PAL, POD and PPO activity in leaves, petioles and stems of resistant variety werehigher than that of susceptible variety. Real-time PCR results displayed PAL gene expression in leaves,petioles and stems of resistant cultivar were significantly higher than that susceptible cultivar, and thepeak times of PAL gene expression in leaves and stems were earlier than that of susceptible cultivar.There were differences between PAL gene expression level and trend of PAL activity in different tissuesof hull-less C. pepo.
引文
[1].Teppner H.Cururbita pepo.(Cucurbitaceae) History, seed coat types, thin coated seeds and theirgenetics[J].Phyton (Horn),2000,40(1):1-42.
    [2].陈荣贤,吕生全,孙有鑫.天然无壳瓜籽的化学组成及其分析[J].甘肃农业科技,1988,3:32-33.
    [3].王萍,赵清岩,王若菁,等.籽用南瓜种子成熟过程中主要营养成分的变化[J].园艺学报,2001,28(1):47-51.
    [4].张松林,田侠,董庆士,等.沙漠绿洲多功能高分子植物生长调节剂籽瓜增产和品质改善研究[J].中国沙漠,2006,26(3):503-506.
    [5].何亚娟,潘学标.甘肃省民勤绿洲种植结构与水资源利用的研究[J].中国生态农业学报,2003,11(4):121-123.
    [6].于红茹,苏国辉.我国籽用南瓜现状及前景分析[J].北方园艺,2001,6:54.
    [7].车瑞香,徐华,何洪巨.不同南瓜品种的营养成分及营养评价[J].保定师范专科学校学报,2005,18(4):60-62.
    [8].贾芬芬,张梅娟,韩国锋,等.4个南瓜栽培种的光合特性比较研究[J].中国农学通报,2010,26(23):275-277.
    [9].冯东昕,李宝栋.主要瓜类作物抗白粉病育种研究进展[J].中国蔬菜,1996,1:55-59.
    [10].梁巧兰,魏列新,徐秉良.裸仁美洲南瓜白粉病菌对几种杀菌剂敏感性及抗药性诱导[J].农药,2012,51(11):480-483,489.
    [11].梁巧兰,魏列新,徐秉良.硅酸钠对裸仁美洲南瓜酚类物质含量的影响与抗白粉病的关系[J].植物营养与肥料学报,2012,18(6):1537-1544.
    [12].梁巧兰,徐秉良,杨克泽,等.裸仁美洲南瓜叶枯病病原菌鉴定及其寄主范围和侵染条件[J].植物保护学报,2010,37(2):128-132.
    [13].吴根土,师桂英,徐秉良,等.裸仁美洲南瓜ISSR-PCR反应体系的正交优化[J].西北农业学报,2010,19(4):155-159.
    [14].李智媛,屈淑平,崔崇士.美洲南瓜AFLP反应体系的优化与建立[J].中国瓜菜,2009,4:1-3.
    [15].李智媛,屈淑平,崔崇士.美洲南瓜裸仁基因的AFLP和SCAR分子标记分析[J].东北农业大学学报,2011,42(7):67-71.
    [16].Lai Z B, Vinod K.M., Zheng Z Y, et al.Roles of Arabidopsis WRKY3and WRKY4transcription factors in plantresponse to pathogens[J]. BMC Plant Biology,2008,8:68.
    [17].徐岭贤,赵福宽,孙清鹏,等.美洲南瓜WRKY4基因克隆与序列分析[J].分子植物育种,2012,10(6):701-706.
    [18].Loy J B.Seed development in Cucurbita pepo: An overview with emphasis on hull-less seeded genotypes ofpumpkin[J].Cucurbita Genetics Coop Report,2000,23:89-95.
    [19].Loy J B.Morpho-physiological aspects of productivity and quality in squash and pumpkins (Cucurbitaspp.)[J].Critical Reviews in Plant Sciences,2004,23:337-363.
    [20].薛应钰,师桂英,徐秉良,等.美洲南瓜(Cucurbita pepo)种皮发育形态观察及其相关酶活性测定[J].草业学报,2011,20(2):23-30.
    [21].薛应钰,师桂英,徐秉良,等.裸仁美洲南瓜种皮性状遗传规律研究[J].草业学报,2011,20(3):205-210.
    [22].Humphreys J M, Chapple C.Rewriting the lignin roadmap[J].Current Opinion in PlantBiology,2002,5(3):224-229.
    [23].欧阳光察,薛应龙.植物苯丙烷代谢的生理意义及调控[J].植物生理学通讯,1988,24(3):9-16.
    [24].江昌俊,余有本.苯丙氨酸解氨酶的研究进展(综述)[J].安徽农业大学学报,2001,28(4):425-430.
    [25].欧阳光察,应初衍,沃绍根,等.植物苯丙氨酸解氨酶的研究.Ⅵ.水稻、小麦PAL的纯化及基本特性[J].植物生理学报,1985,11(2):204-214.
    [26].Subramaniam R, Reinold S, Molitor E K, et al.Structure, inheritance, and expression of hybrid poplar (Populustrichocarpa×Populus deltoides) phenylalanine ammonia-lyase genes[J].Plant Phsiology,1993,102(1):71-83.
    [27].Ouyang G C, Ying C Y, Wo S G, et al.Study on plant phenylalanine ammonia-lyase, VI. purification and someproperties of PAL from etiolated seedlings of rice (Oryza sativa) and wheat (Triticum aestivum)[J].Journal ofPlant Physiology,1985,11(2):204-214.
    [28].Jones D H.Review article number3: phenylalanine ammonia-lyase Regulation of its induction and its role inplant development[J].Phytochemisty,1984,23(7):1349-1359.
    [29].Hanson K R, Havir E A.Phenylalanine ammonia-lyase [A]. In: Secondary Plant Products [C]. Edited by ConnE E.[Vol.7of the Biochemistry of Plant: a Comprehensive Treatise (Stumpf P K and Conn E E eds in Chief)] NewYork:Acadamic Press,1981,577-625.
    [30].Nakashima J, Tatsuya A, Keiji T, et al.Immunocytochemical localization of phenylalanine ammonia-lyase andcinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mesophyllcells[J].Plant Cell Physiology,1997,38(2):113-123.
    [31].Santiago L J M, Louro R P, Oliveira D D.Compartmentation of phenolic compounds and phenylalanineammonia-lyase in leaves of Phyllanthus tenellus Roxb. and their induction by copper sulphate[J].Annals ofBotany,2000,86(5):1023-1032.
    [32].Whetten R W, Sederoff R R.Phenylalanine ammonial-lyase from Loblolly pine: Purification of the enzyme andisolation of complementary DNA clones[J].Plant Physiology,1992,98(1):380-386.
    [33].Cunha A.Purification, characterization and induction of L-Phenylalanine ammonial-lyase in Phaseolusrulgaris[J].European Journal of Biochemistry,1988,178(1):243-248.
    [34].张宽朝,金青,蔡永萍,等.苯丙氨酸解氨酶与其在重要次生代谢产物调控中的作用研究进展[J].中国农学通报,2008,24(12):59-62.
    [35].程水源,陈昆松,刘卫红,等.植物苯丙氨酸解氨酶基因的表达调控与研究展望[J].果树学报,2003,20(5):351-357.
    [36].徐晓梅,杨署光.苯丙氨酸解氨酶研究进展[J].安徽农业科学,2009,37(31):15115-15119,15122.
    [37].崔建东,贾士儒,谭之磊.苯丙氨酸解氨酶重组大肠杆菌的培养[J].现代食品科技,2007,23(9):32-35.
    [38].Rosler J, Krekel F, Amrhein N, et al.Maize Phenylalanine annonia-lyase has tyrosine ammonia-lyaseactivity[J].Plant physiology,1997,113(1):175-179.
    [39].MacDonald M J, D'Cunha G B.A modern view of phenylalanine ammonia lyase[J].Biochemistry and CellBiology,2007,85(3):273-282.
    [40].赵宗方,赵勇,吴桂法.果实花青素含量与PAL活性关系的研究[J].园艺学报,1994,21(2):199-200.
    [41].吴立军.天然药物化学[M].北京:人民卫生出版社,2000:6.
    [42].刘金福,李晓雁,孟蕊.苦荞发芽过程中促进黄酮合成的因素初探[J].食品工业科技,2006,27(10):106-108.
    [43].房建军,阙国宁,韩一凡.银杏细胞培养中影响黄酮积累量的几个因素[J].林业科学研究,2006,19(1):51-53.
    [44].张淑珍,徐鹏飞,吴俊江,等.大豆疫霉根腐病菌毒素处理抗感不同大豆品种后苯丙氨酸解氨酶活性的变化[J].作物杂志,2008,1:47-49.
    [45].叶明志,柯玉琴,夏怡厚,等.水稻幼苗感染白叶病后若干同工酶的变化[J].福建农林大学学报(自然科学版),1991,20(3):351-356.
    [46].Lawtin M A, Dixon R A, Lamb C J.Elicitor modulation of the turnover of L-phenylalanine ammonia-lyse inFrench bean cell suspension cultures[J].Biochimica et Biophysica Acta,1980,633(2):162-175.
    [47].冯洁,陈其焕.棉株体内几种生化物质与抗枯萎之间关系的初步研究[J].植物病理学报,1991,21(4):291-297.
    [48].尚庆茂,张志刚.亚精胺对黄瓜幼苗灰霉病的诱抗作用[J].应用生态学报,2008,19(4):825-830.
    [49].李默怡,余龙江,陈超,等.黑曲霉及其多糖组分诱导红豆杉叶子产生抗病反应之比较[J].植物研究,2003,23(1):72-76.
    [50].吴龙火,李庆,杨群芳,等.禾谷缢管蚜取食5种山羊草的诱导抗性[J].中国农业科学,2008,41(1):102-107.
    [51].Yeo Y S, Lee S W, Kim Y H, et al.Restriction mapping of phenylalanine emmonia-lyase gene family in tomato(Lycopersicon esculentum)[J].RDA Journal of Agricultureal Science,1994,36(2):187-192.
    [52].Fukazawa-Akada T, Kung S, Watson J C.Phenylalanine ammonia-lyase gene structure, expression, and evolutionin Nicotiana[J].Plant Molecular Biology,1996,30(4):711-722.
    [53].Cramer C L, Edwards K, Dron M, et al.Phenylalanine ammonia-lyase gene organization and structure[J].PlantMolecular Biology,1989,12(4):367-383.
    [54].Joos H J, Hahlbrock K.Phenylalanine ammonia-lyase in potato (Solanum tuberosum L.): genomic complexity,structural comparison of two selected genes and modes of expression[J].European Journal ofBiochemistry,1992,204(2):621-629.
    [55].Minami E, Ozeki Y, Matsuoka M, et al.Structure and some characterization of the gene for phenylalanineammonia-lyase from rice plant[J].European Journal of Biochemistry,1989,185(1):19-25.
    [56].Liang X W, Dron M, Cramer C L, et al.Differential regulation of phenylalanine ammonia-lyase genes duringplant development and by environmental cues[J].Journal of Biological Chemistry,1989,264(24):14486-14492.
    [57].应初衍.胚乳对幼苗中苯丙氨酸解氨酶活性的影响[J].植物生理学报,1987,13(2):122-128.
    [58].Marandad M, Dixon R.Modulation of plant defense gene transcripts by trans-cinnamic acid[J].PlantPhysiolgy,1989,89(4):66.
    [59].Bolwell G P, Mavandad M, Millar D J, et al.Inhibition of mRNA levels and activities by trans-cinnamic acid inelicitor-induced bean cells[J].Phytochemistry,1988,27(7):2109-2117.
    [60].Leyva A, Jarillo A J, Salinas J, et al.Low temperature induces the accumulation of Phenylalanine ammonia lyaseand chalcone synthase mRNA of Arabidopsis thaliana in alight dependent manner[J].PlantPhysiology,1995,108(1):39-46.
    [61].谢灵玲,赵武玲,沈黎明.光照对大豆叶片苯丙氨酸裂解酶(PAL)基因表及异黄酮合成的调节[J].植物学通报,2000,17(5):443-449.
    [62].刘卫红,程水源.光照及机械损伤对银杏叶苯丙氨酸解氨酶活性的影响[J].湖北农业科学,2003,3:73-74.
    [63].Reinold S, Hahlbrock K.Biphasic temporal and spatial induction patterns of defense related mRNA and protein infungus infected parsley leaves[J].Plant Physiology,1996,112(1):131-140.
    [64].Diallinas G, Kanellis A K.A phenylalanine ammonialyase gene from melon fruit: cDNA cloning, sequence andexpression in response to development and wounding[J].Plant Molecular Biology,1994,26(1):473-479.
    [65].Rickey T M, Belknap W R.Comparison of the expression of several stress responsive genes in potatotubes[J].Plant Molecular Biology,1991,16(6):1009-1018.
    [66].Lois R, Dietrich A, Hahlbrock K, et al.A phenylalanine ammonia-lyase gene from parsley: structure, regulationand identification of elicitor and light responsive cis-acting elements[J].EMBO Journa,1989,8(6):1641-1648.
    [67].程水源,杜何为,许锋,等.银杏苯丙氨酸解氨酶基因的克隆和序列分析[J].林业科学研究,2005,18(5):573-577.
    [68].王猛,曹福祥,王仕利,等.马尾松苯丙氨酸解氨酶基因的克隆与序列分析[J].中南林业科技大学学报,2010,30(1):79-83.
    [69].王燕,许锋,杜何为,等.夹竹桃苯丙氨酸解氨酶的基因克隆与序列分析[J].华北农学报,2007,22(4):19-24.
    [70].李成磊,蒙华,张晓伟,等.甜荞苯丙氨酸解氨酶基因PAL的克隆及序列分析[J].食品科学,2011,32(7):255-257.
    [71].田晓明,谭晓风,胡孝义,等.油茶苯丙氨酸解氨酶基因的cDNA克隆与序列分析[J].南京林业大学学报(自然科学版),2009,33(4):24-28.
    [72].周生茂,王玲平,韦本辉,等.山药PAL基因全长cDNA序列的克隆、表达与分析[J].核农学报2008,22(6):781-788.
    [73].李潞滨,刘蕾,张淑萍,等.4种竹子木质素合成酶PAL的基因克隆和序列分析[J].科技导报,2009,27(22):19-25.
    [74].高志民,彭镇华,李雪平,等.毛竹苯丙氨酸解氨酶基因的克隆及组织特异性表达分析[J].林业科学研究2009,22(3):449-453.
    [75].Osakabe Y, Osakabe K, Chiang V L.Characterization of the tissue-specific expression of phenylalanineammonia-lyase gene promoter from loblolly pine (Pinus taeda) in Nicotiana tabacum[J].Plant CellReports,2009,28(9):1309-1317.
    [76].Sullivan M L.Phenylalanine ammonia lyase genes in red clover: expression in whole plants and in response toyeast fungal elicitor[J].Biologia plantarum,2009,53(2):301-306.
    [77].朱捷,杨成君,王军.荧光定量PCR技术及其在科研中的应用[J].生物技术通报,2009,2:73-76.
    [78].Higuchi R, Dollinger G, Walsh P S, et al.Simultaneous amplification and detection of specific DNAsequences[J].Nature Biotechnology,1992,10:413-417.
    [79].Higuchi R, Fockler C, Dollinger G, et al.Kinetic PCR analysis: real-time monitoring of DNA amplificationreactions[J]. Nature Biotechnology,1993,11:1026-1030.
    [80].雷学忠,陈守春.定量PCR技术研究进展[J].四川医学,2002,21(11):991.
    [81].朱海生,李永平,花秀凤,等.草莓9-顺式-环氧类胡萝卜素双加氧酶基因FaNCED的克隆及表达分析[J].园艺学报,2012,39(1):40-48.
    [82].梁美霞,祝军,戴洪义.柱型苹果MdGAI基因的克隆及表达分析[J].园艺学报,2011,38(10):1969-1975.
    [83].Kieber J J, Rothenberg M, Roman G, et al.CTR1, a negative regulator of the ethylene response pathway inArabidopsis, encodes a member of the Raf family of protein kinases[J].Cell,1993,72(3):427-441.
    [84].姚远,高峰,郝金凤,等.甜瓜乙烯信号转导途径关键因子基因CTR1的克隆及表达特性分析[J].生物技术通报,2011,11:83-87.
    [85].董玉梅,密其鹏,焦自高,等.马铃薯GLDH基因的克隆及序列分析[J].园艺学报,2011,38(6):1111-1120.
    [86].朱丹,柏锡,朱延明,等.野生大豆盐碱胁迫相关GsTIFY11b的克隆与功能分析[J].遗传,2012,34(2):230-239.
    [87].任晓平,张喜春,张楠,等.低温胁迫对番茄幼苗叶片中脯氨酸降解酶的活性及其基因表达量的影响[J].中国农学通报,2012,28(10):132-135.
    [88].赵彩萍,张绍铃,徐国华.世界与中国的梨生产、贸易及流通现状[J].柑桔与亚热带果树信息,2005,21(2):5-7.
    [89].李晓,韩彦肖,王景涛,等.优质中晚熟梨新品种“冀玉”[J].园艺学报,2010,37(9):1533-1534.
    [90].张树军,张绍铃,吴俊,等.与梨黑星病抗性基因连锁的AFLP标记筛选及SCAR标记转化[J].园艺学报,2010,37(7):1147-1154.
    [91].付镇芳,姚春潮,张朝红,等.早酥梨抗黑星病相关基因PbzsREMORIN的克隆及功能分析[J].园艺学报,2012,39(1):13-22.
    [92].Eulgem T, Rushton P J, Robatzek S, et al.The WRKY superfamily of Plant transcription factors[J].Trends PlantScience,2000,5(5):199-206.
    [93].郑井元,茆振川,邹学校,等.辣椒CaRKNIF2基因的诱导表达特征及RNAi效应分析[J].植物保护,2012,38(2):18-22.
    [94].Bové J M.Huanglongbing: A destructive, newly-emerging, century-old disease of citrus[J].Journal of PlantPathology,2006,88(1):7-37.
    [95].胡修峰,殷幼平,石小刚,等.黄龙病菌侵染过程中柑橘CsMYB基因克隆及表达分析[J].植物研究,2011,31(5):543-549.
    [96].Nair N G, Hill G K.Bunch rot of grapes caused by Botrytis.cinerea[J].In: Kumar J, Chaube H S, Singh. PlantDiseases of International Importance,US and Mukhopadhyay,1992:147-169.
    [97].张中义,何永宏.我国灰葡萄孢的新寄主植物[J].云南农业大学学报,2002,17(4):418-420.
    [98].李爱芝,闫西柱,田俊梅,等.保护地西葫芦主要病害症状与综合防治技术[J].北京农业,2007,33:25-27.
    [99].Egashira H.Sereening of wild aceessions resistant of grey mold (Botrytis cinema Pers.) in Lyeopersieon[J].ActaPhysiologiae plantarum,2000,22(3):324-326.
    [100].任国兰,张松山,喻璋等.郁金香灰霉病的研究初报[J].河南农业大学学报,1998,32(l):43-47.
    [101].Hilber U W, Baroffio C, Siegfried W.Anriresistance strategy for anilino-Pyrimidines used to control Botryotiniafuckeliana in Switzerland[J].In: Lyr H, Russell P, Dehne H W, et al. Modemrn Fungicides and AntifungalcompoundsⅡIntercept,Andover,UK,1999:291-295.
    [102].Leroux P.Effect of PH amino acids and various organic compounds on the fungitoxicity of pyrimethanil,glufosinate, captafol, cymoxanil and fenpiclonil in Botrytis cinerea[J].Agronomie,1994,14:541-554.
    [103].童蕴慧,陈夕军,徐敬友,等.江苏省蔬菜灰葡萄孢生物学性状及致病力研究初报[J].中国蔬菜,2003,l:33-34.
    [104].徐志刚.普通植物病理学(第四版)[M].北京:高等教育出版社,2009:132.
    [105].陈宇飞,文景芝,李立军.葡萄灰霉病研究进展[J].东北农业大学学报,2006,37(5):693-699.
    [106].周成刚,颜琴,刘伟中,等.黄瓜灰霉病的发生危害与防治[J].吉林农业,2011,10:71.
    [107].董金皋.农业植物病理学(第二版)[M].北京:中国农业出版社,2007:442.
    [108].吴红芝,和凤美,张敬丽,等.非洲菊灰霉病抗性鉴定技术的研究[J].云南农业大学学报,2011,26(3):334-339.
    [109].崔美香,孙素卿.灰霉病菌对黄瓜番茄及其它植物的致病性初探[J].邯郸农业高等专科学校学报,2003,20(4):6.
    [110].周毓君,朱宝成,黄冬丽,等.草莓灰霉菌毒素的分离及硅胶薄层层析[J].植物病理学报,1995,25(4):373-377.
    [111].Comménil P, Belingheri L, Dehorter B.Antilipase antibodies prevent infection of tomato leaves by Botrytiscinerea[J].Physiological and Molecular Plant Pathology,1998,52(1):1-14.
    [112].Comménil P., Belingheri L., Bauw G.,et al.Molecular characterization of a lipase induced in Botrytis cinerea bycomponents of grapeberry cuticle[J].Physiological and Molecular Plant Pathology,1999,55(1):37-43.
    [113].夏绍嫘,杨红玉,吴嘉.灰霉菌与其分泌毒素对拟南芥致病性比较[J].安徽农业科学,2011,39(26):16008,16155.
    [114].李保聚.番茄灰霉病在果实上的侵染部位及防治新技术[J].植物病理学报,1999,29(1):63-67.
    [115].杨红玉,李湘,张一凡,等.灰霉菌培养及其对拟南芥的侵染[J].西南农业学报,2005,18(4):431-434.
    [116].李盾,王振中,林孔勋.锈菌侵染后花生体内主要生化指标的变化及其与抗性的关系[J].华南农业大学学报,1995,16(1):68-75.
    [117].周博如,李永镐,刘太国,等.不同抗性的大豆品种接种大豆细菌性疫病菌后可溶性蛋白、总糖含量变化的研究[J].大豆科学,2000,19(2):111-114.
    [118].秦丽萍,金明安,骆慧生,等.条锈菌侵染对小麦慢锈品种叶绿素含量的影响[J].甘肃农业科技,2004,5:50-51.
    [119].顾振芳,王卫青,朱爱萍,等.黄瓜对霜霉病的抗性与叶绿素含量、气孔密度的相关性[J].上海交通大学学报(农业科学版),2004,22(4):381-384.
    [120].朱丽梅,罗凤霞.百合叶片中可溶性蛋白、叶绿素、可溶性糖含量与灰霉病抗性的关系[J].江苏农业科学,2011,39(5):134-136.
    [121].Jones J D G, Dangl J L.The plant immune system[J].Nature,2006,444(16):323-329.
    [122].Klessig D F, Malamy J.The salicylic acid signal in plants[J].Plant Molecular Biology,1994,26(5):1439-1458.
    [123].María J P, Van Loon L C, Pieterse C M J.Jasmonates-signals in plant-microbe interactions[J].Journal of PlantGrowth Regulation,2005,23(3):211-222.
    [124].Van Loon L C, Geraats B P, Linthorst H J.Ethylene as a modulator of disease resistance in plants[J].Trends inPlant Science,2006,11(4):184-191.
    [125].Griebel T, Zeier J.Light regulation and daytime dependency of inducible plant defenses in Arabidopsis:Phytochrome signaling controls systemic acquired resistance rather than local defense[J].PlantPhysioloy,2008,147(2):790-801.
    [126].Van Loon L C, Van Strien E A.The families of pathogenesis-related proteins, their activities, and comparativeanalysis of PR-1type proteins[J].Physiological and Molecular Plant Pathology,1999,55:85-97.
    [127].张淑红,高宝嘉,温秀军.枣疯病过氧化物酶及苯丙氨酸解氨酶的研究[J].植物保护,1995,30(5):59-62.
    [128].代丽,宫长荣,史霖,等.植物多酚氧化酶研究综述[J].植物生理科学,2007,23(6):312-316.
    [129].蒲金墓,刘晓妹,曾会才,等.2种激发子对西瓜枯萎病的诱抗作用[J].热带作物学报,2003,24(3):47-50.
    [130].庄敬华,高增贵,杨长城,等.绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响[J].植物病理学报,2005,35(2):179-183.
    [131].Liu H X, Jiang W B, Bi Y, et al.Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv.Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defensemechanisms[J].Postharvest Biology and Technology,2005,35(3):263-269.
    [132].王媛,杨红玉,程在全.SA诱导拟南芥对灰霉病的抗性与木质素含量的关系[J].植物保护,2008,33(4):50-54.
    [133].Martin T J.Metablism and function of polyamines in plants: Recent development (new approaches)[J].PlantGrowth Regulation,2001,34(1):135-148.
    [134].Walden R, Cordeiro A, Tiburcio A F.Polyamines: Small molecules triggering pathways in plantgrowth anddevelopment[J].Plant Physiology,1997,113(4):1009-1013.
    [135].Kaur-Sawhney R, Tiburcio A F, Galston A W.Spermidie and flowerbud differentiation in thin layer tobaccotissue culture[J].Planta,1993,173(2):282-284.
    [136].Dodd A N, Kudla J, Sanders D.The language of calcium signaling[J].Annu.Rev.Plant Biol.,2010,61:593-620.
    [137].Du L Q, Ali G S, Simons K A, et al.Ca2+/calmodulin regulates salicylic-acid-mediated plantimmunity[J].Nature,2009,457(26):1154-1158.
    [138].周莹,寿森炎,贾承国,等.水杨酸信号转导及其在植物抵御生物胁迫中的作用[J].自然科学进展,2007,17(3):305-312.
    [139].Zhang H K, Zhang X, Li Q, et al.Alpha-picolinic acid activates diverse defense responses of salicylic acid,jasmonic acid/ethylene-and Ca2+-dependent pathways in Arabidopsis and rice suspension cells[J].Acta BotanicaSinica,2004,46(10):1200-1205.
    [140].Lecourieux D, Mazars C, Pauly N, et al.Analysis and effects of cytosolic free calcium increases in response toelicitors in Nicotiana Plumbaginifolia cells[J].The Plant Cell,2002,14(10):2627-2641.
    [141].孙艳秋,李宝聚,陈捷,等.葡聚六糖诱导后对黄瓜细胞内钙信使的影响[J].河北农业大学学报,2008,31(5):29-33.
    [142].李琳琳,李天来,余朝阁,等.钙素对SA诱导番茄幼苗抗灰霉病的调控作用[J].园艺学报,2012,39(2):273-280.
    [143].邱德文.微生物蛋白农药研究进展[J].中国生物防治,2004,20(2):91-94.
    [144].邱德文.植物用多功能真菌蛋白制品及其制备方法[P].中国专利.ZL01128666.0.2004-3-17.
    [145].邱德文,肖友伦,姚庆,等.植物激活蛋白对黄瓜促生诱抗相关酶的影响[J].中国生物防治,2005,21(1):41-44.
    [146].李丽,邱德文,刘峥,等.植物激活蛋白对番茄抗病性的诱导作用[J].中国生物防治,2005,21(4):265-268.
    [147].李世贵,吕天晓,顾金刚,等.施用木霉菌诱导黄瓜抗病性及对土壤酶活性的影响[J].中国土壤与肥料,2010,2:75-78.
    [148].Chen F,Wang M, Zheng Y, et al.Quantitative changes of plant defense enzymes and phytohormone inbiocontrol of cucumber Fusarium wilt by Bacillus subtilis B579[J].World Journal of Microbiology andBiotechnology,2010,26(4):675-684.
    [149].闫艳华,王海宽,肖瑞峰,等.一株乳酸菌对番茄灰霉病的防效及对几种防御酶活性的影响[J].微生物学通报,2011,38(12):1801-1806.
    [150].Sanchez-Ballesta M T, Lafuente M T, Zacarias L, et al.Involvement of phenylalanine ammonia-lyase in theresponse of Fortune mandarin fruits to cold temperature[J].PhysiolPlant,2000,108(4):382-389.
    [151].Vogt T, Ibdah M, Schmidt J, et al.Light-induced betacyanin and flavonol accumulation in bladder cells ofMesembryanthemum crystallinum[J].Phytochemistry,1999,52(4):583-592.
    [152].张乐伟,窦宏伟,王洪利,等.桑树苯丙氨酸解氨酶基因克隆与序列分析[J].蚕业科学,2009,35(4):842-846.
    [153].薛应钰,师桂英,徐秉良,等.美洲南瓜种皮RNA提取方法的比较[J].贵州农业科学,2011,39(3):18-20.
    [154].Bezold T N, Mathews D, Loy J B, et al.Molecular analysis of the hull-less seed trait in pumpkin: expressionprofiles of genes related to seed coat development[J].Seed Science Research,2005,15(3):205-217.
    [155].韩婧.RACE技术及其研究进展[J].沧州师范专科学校学报,2005,21(2):91,99.
    [156].沈元月.RACE技术研究进展与展望[J].生物技术通报,2008,增刊:131-134.
    [157].张庆华,茅矛,陈竺.基因组研究中全长cDNA克隆的策略[J].生物工程进展,2000,20(4):3-5.
    [158].郑阳霞,李焕秀,严泽生.RACE技术及其在植物基因研究中的应用[J].安徽农业科学,2008,36(7):2674-2676.
    [159].Frohman M A, Dush M K, Martin G R.Rapid production of full-length cDNAs fromrare transcripts:amplification using a single gene-specific oligonucleotide primer[J].Proc Natl Acad SciUSA,1988,85(23):8998-9002.
    [160].Xu F, Deng G, Cheng S Y, et al.Molecular Cloning, Characterization and Expression of the PhenylalanineAmmonia-Lyase Gene from Juglans regia[J].Molecules,2012,17(7):7810-7823.
    [161].宋福南,邢磊,陈肃,等.白桦苯丙氨酸解氨酶(PAL)基因的分离及其表达[J].东北林业大学学报,2009,37(12):14-17.
    [162].Gao Z M, Wang X C, Peng Z H, et al.Characterization and primary functional analysis of phenylalanineammonia-lyase gene from Phyllostachys edulis[J].Plant Cell Reports,2012,31(7):1345-1356.
    [163].Gao J H, Zhang S W, Cai F et al.Characterization and expression profile of a phenylalanine ammonia lyase genefrom Jatropha curcas L.[J]. Molecular Biology Reports,2012,39(4):3443-3452.
    [164].Shang Q M, Li L, Dong C J.Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumissativus L.[J].Planta,2012,236(4):1093-1105.
    [165].张鲁斌,朱世江,刘建双,等.菜心苯丙氨酸解氨酶基因克隆与序列分析[J].西北植物学报[J].2010,30(12):2379-2384.
    [166].Li C L, Bai Y C, Chen H et al.Cloning, Characterization and Functional Analysis of a PhenylalanineAmmonia-lyase Gene (FtPAL) from Fagopyrum tataricum Gaertn.[J].Plant Mol Biol Rep,2012,30(5):1172-1182.
    [167].龚文芳,喻树迅,宋美珍,等.棉花抗细胞凋亡基因GhDAD1的克隆、定位及表达分析[J].中国农业科学,2010,43(18):3713-3723.
    [168].姜铮,王芳,何湘,等.蛋白质磷酸化修饰的研究进展[J].生物技术通讯,2009,20(2):233-237.
    [169].史铁伟,李勇,韩冰,等.扁穗冰草PLD基因cDNA序列克隆及生物信息学分析[J].浙江大学学报(理学版),2010,37(6):691-699.
    [170].Biocarta.Charting pathways of life [EB/OL]. http://www.biocarta.com/gene/Cell Signaling. asp,2003-12-012.
    [171].Schlessinger A, Schaefer C, Vicedo E, et al.Protein disorder--a breakthrough invention of evolution?[J].CurrentOpinionin Structural Biology,2011,21(3):412-418.
    [172].马月萍,戴思兰,马艳蓉.荧光定量PCR技术在植物研究中的应用[J].生物技术通报,2011,7:37-45.
    [173].李惠华,赖钟雄,苏明华,等.龙眼胚性愈伤组织ACC合成酶基因(DL-ACS1)的克隆及表达分析[J].热带作物学报,2011,2(5):854-860.
    [174].许传俊,孙叙卓,李玲,等.蝴蝶兰抗坏血酸过氧化物酶基因克隆及其表达研究[J].园艺学报,2012,39(4):769-776.
    [175].田谷,徐秉良,梁巧兰,等.几种化学物质诱导彩色马蹄莲对软腐病抗性的研究[J].植物保护,2010,36(6):53-57.
    [176].庄霞,马强,刘晓燕.青霉素处理苹果树腐烂病SOD、 POD、 PAL、 PPO的变化[J].内蒙古农业科技,2008,4:54-56.
    [177].Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the2-△△Ctmethod[J].Methods,2001,25(4):402-408.
    [178].Bate N J, Orr J, Ni W, et al.Quantitative relationship between phenylalanine ammonia-lyase levels andphenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural productsynthesis[J].Proc Natl Acad Sci USA,1994,91(16):7608-7612.
    [179].Sewalt V J H, Ni W, Blount J W, et al.Reduced lignin content and altered lignin composition in transgenictobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate4-hydroxylase[J].PlantPhysiol,1997,115(1):41-50.
    [180].Osakabe Y, Ohtsubo Y, Kawai S, et al.Structure and tissue-specific expression of genes for phenylalanineammonia-lyase from a hybrid aspen, Populus kitakamiensis[J].Plant Science,1995,105(2):217-226.
    [181].陈晓光,石玉华,王成雨,等.氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系[J].中国农业科学,2011,44(17):3529-3536.
    [182].许锋,曹腾,宁迎晶,等.夏枯草苯丙氨酸解氨酶基因的克隆与表达分析[J].华北农学报,2012,27(1):39-44.
    [183].王艳,武林,孙梦阳,等.不同生育时期大豆异黄酮合成相关酶基因表达的分析[J].大豆科学,2012,31(6):887-892.
    [184].张大勇,李文滨,李冬梅,等.大豆叶片异黄酮含量与PAL基因相对表达量的关系[J].大豆科学,2009,28(4):670-673.
    [185].吕淑萍,李波,李晓东,等.海岛棉与陆地棉不同纤维发育时期苯丙烷代谢相关基因表达差异比较[J].新疆农业科学,2012,49(5):785-790.
    [186].赵伟涛,李艳军,张新宇,等.绿色棉苯丙氨酸解氨酶基因GhPAL1的克隆和实时定量表达分析[J].分子植物育种,2012,10(3):311-316.
    [187].郑洁红,邱栋梁.龙眼叶片PAL基因的克隆与表达研究[J].热带作物学报,2012,33(91):79-83.
    [188].赵统敏,余文贵,赵丽萍,等.番茄抗灰霉病育种研究进展[J].江苏农业学报,2011,27(5):1141-1147.
    [189].Kumar A, Ellis B E.The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, andevolution[J].Plant Physiology,2001,127(1):230-239.
    [190].Kostenyuk I A, Zoń J, Burns J K.Phenylanine ammonia lyase gene expression during abscission incitrus[J].Physiology Plant,2002,116():106-112.
    [191].Lafuente M T, Zacarias L, Martinea-tellez M A, et al.Phenylalanine ammonia-lyase and ethylene in relation tochilling injury as affected by fruit age in citrus[J].Postharvest Biology and Technology,2003,29(3):309-318.
    [192].Campos R, Nonogaki H, Suslow T, et al.Isolation and characterization of a wound inducible pheylalanineammonia-lyase gene (LsPAL1) from Romaine lettuce leaves[J].Physiologia Plantarum,2004,121:429-438.
    [193].孙梓健,汤青林,宋明,等.红叶芥低温胁迫下苯丙氨酸解氨酶活性及其基因的克隆表达[J].西南大学学报(自然科学版),2010,32(2):90-94.
    [194].陈雅平,陈云凤,陈启助,等.大蕉苯丙氨酸解氨酶基因的克隆、鉴定和表达分析[J].热带亚热带植物学报,2007,15(5):421-427.
    [195].张伟.温室西葫芦灰霉病综合防治技术[J].中国植保导刊,2006,26(12):21-22.
    [196].陈变红.西葫芦灰霉病的发生与防治[J].西北园艺,2009,11:39.
    [197].张路生,刘俊展,刘庆年,等.保护地西葫芦灰霉病病株空间分布格局及其抽样技术[J].石河子大学学报(自然科学版),2009,27(2):202-205.
    [198].李屹,田晓丽.几种杀菌剂对西葫芦灰霉病菌的室内毒力测定[J].江苏农业科学,2012,40(8):122-123.
    [199].窦瑞木.3株植物内生细菌对番茄灰霉病的防治效果[J].河南农业科学,2010,4:77-78,97.
    [200].邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000,72-74.
    [201].张梅,刘瑶,丛慧芳,等.草莓抗白粉病生理生化指标研究[J].中国农学通报,2011,27(28):249-253.
    [202].Joos H J, Mauch-Mani B, Slusarenko A J.Production of salicylic acid precursors is a major function ofphenylalanine ammonia-lyase in the resistance of arabidopsis to Peronospora parasitica[J].PlantCell,1996,92(2):203-212.
    [203].许宁,陈雪芬,陈华才.茶树品种抗茶橙瘿螨的形态与生化特征[J].茶叶科学,1996,16(2):125-130.
    [204].李进步,方丽平,张亚楠,等.棉花抗蚜性与苯丙氨酸解氨酶活性的关系[J].昆虫知识,2008,45(3):422-425.
    [205].周丹丹,刘长仲,姜生林,等.烟粉虱刺吸胁迫对棉花叶片生理的影响[J].甘肃农业大学学报,2009,44(1):107-114.
    [206].赵英,付海天,田维敏,等.接种后柱花草防御酶活性变化及PAL基因表达分析[J].草地学报,2008,16(6):585-589.
    [207].毛红,陈瀚,刘小侠,等.绿盲蝽取食与机械损伤对棉花叶片内防御性酶活性的影响[J].应用昆虫学报,2011,48(5):1431-1436.
    [208].江汉民,王楠,赵换,等.花椰菜苯丙氨酸解氨酶基因的克隆及黑腐病菌胁迫下的表达分析[J].南开大学学报(自然科学版),2012,45(4):87-92,98.
    [209].李万昌,余娇娇,段灿星,等.灰飞虱胁迫下水稻防卫相关基因的表达[J].作物学报,2012,38(9):1625-1630.
    [210].Bolwell G P, Bell J N, Cramer C R, et al.L-phenylalanine ammonia-lyase from Phaseolus vulgaris:characterization and induction of multiple forms form elicitor-treated cell suspension cultures[J].EuropeanJournal of Biochemistry,1985,149(2):411-419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700