用户名: 密码: 验证码:
多式联运服务网络优化建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国处在多种交通方式快速发展时期,综合性交通网络正在得到快速发展和完善,货物运输的选择范围正在扩大。综合交通运输体系是未来我国交通发展的重点方向,是社会经济发展与居民生活水平提高的重要基础,更是物流活动的主要功能要素。如何依托综合性交通网络建立起结构布局合理、管理科学且运转高效的多式联运系统,为物流行业的良性健康发展提供有效保障,将是交通研究者和管理者的努力方向。
     我国物流业在总体规模快速增长、基础设施迅速扩大的同时,暴露出资源配置与运用不科学、运行过程设计不精细导致的多式联运系统运行效益较低、综合成本较高等亟待解决的问题,运行管理机制及建设理论与方法难以满足物流行业快速发展的需求。基于综合运输体系下的现代物流需以协调决策作为管理目标,在各种有关利益主体和运输方式约束下进行运营和决策。基于此,本文以多式联运系统为研究对象,从多式联运“网络优化”建模方法研究入手,在剖析轴辐式运输网络结构的基础上,重点解决多式联运网络基础设施配置和运输服务设计的集成化问题,从“网络优化”战略规划层面和“运输服务设计”战术规划层面提出强化多式联运系统统筹性、协调性,提高系统运行效率的优化理论与方法。论文的主要研究工作包括如下四个方面的内容:
     (1)多式联运枢纽与网络布局优化从“网络优化”的建模方法入手,研究建立多式联运多目标枢纽及网络布局优化模型。定义包含多个利益主体的多式联运物理网络和服务网络表述方法,并针对多个利益主体和多集装箱货物品类的特点,提出了多式联运模式下混合用户均衡模型,模型中用以反映用户路径选择的负效用函数包括了运价和网络拥挤因素,并同时考虑了多种运输方式之间的中转时间、费用以及拥挤的影响。鉴于多式联运枢纽与网络布局优化问题的NP-hard特点,设计了嵌入对角化算法的交叉熵求解算法,并采用算例网络对模型和算法进行了验证。分析表明,以增加成本为代价的综合网络运输风险的降低在一定条件下并不明显;此外,多式联运网络管理者对于网络运输风险越加重视,长距离货运量将越集中分布于铁路运输。
     (2)多式联运网络流量路径优化从“网络优化”的建模方法入手,结合多商品流模型,构建多式联运路径选择多目标非线性优化模型。模型充分考虑了运输区段能力约束和枢纽中转服务能力约束,并通过引入O-1决策变量,使其能够直观地从优化结果中反映出货流的最佳走行路径信息。通过对非线性约束条件进行等价变换,该模型可被转化为整数规划模型,并设计交叉熵算法进行求解。
     (3)干线运输服务设计与多式联运网络优化综合决策建立资源约束条件下轴辐式多式联运网络优化及干线运输服务设计的混合整数规划模型,分析网络基础设施配置与干线运输服务设计间的协调优化关系,对轴辐式多式联运网络的枢纽等级配置、干线运输服务设计、货物托运人和收货人对于中转枢纽的选择、货物托运人和收货人对干线运输服务的选择以及线路区段改造方案等决策进行综合优化。分析表明,公铁联运中转枢纽节点的能力制约着多式联运系统的服务能力,瓶颈区段的识别并改进以及合理的干线快慢运输服务组合能够大幅度降低网络运营成本。
     (4)支线运输服务设计与多式联运网络优化综合决策以一体化物流管理为目标,建立网络优化与支线运输服务设计二者综合优化的Ⅱ阶段决策模型。模型第Ⅰ阶段表达为枢纽布局、网络设计及货流分配的0-1整数规划问题,第Ⅱ阶段则在第Ⅰ阶段输出结果的基础上求解带时间窗约束的支线运输服务设计问题;针对模型的Ⅱ阶段结构特点,以两个阶段相互影响相互反馈为求解思路,设计交叉熵为主体的启发式算法。分析表明,模型及其求解算法的操作过程合理有效,模型的实用性得到了验证。最后,论文将该Ⅱ阶段决策模型适当扩展,应用于“单轴”轴辐式大规模算例网络,为运力配置决策提供依据。
China is experiencing the period of the rapid developments of its multiple transportation modes. The integrated transportation network in China is rapidly developed and improved, and the alternative freight transport modes are increased. Establishment and improvement of an efficient integrated transport system will be our effort direction for the development multi-mode transport in our country. It is also the important foundation of the sustainable development of the social economy and the improvement of the living standard of the people. Furthermore, it is one of the main functional elements of logistics activities. An integrated transportation network with rational layout, scientific management, and efficient operation is strategically important to promote the development of logistics industry in China.
     The scale of logistics activities is rapidly developing and the level of infrastructure is improving. Meanwhile, it is accompanied by a series of problems, such as low efficiency and high cost of intermodal transportation system. The problems such as unreasonable resources allocation and plain operation design must be solved. The operation management method and construction mechanism does not fit the requirements of rapid development of logistics activities. Coordinate optimization is the management goal of the modern logistics activities based on integrated transport system. Considering the goals and requirements of intermodal transportation system, the study focuses on network optimization and transportation service design. A comprehensive optimization method is proposed from the perspective of strategic planning and tactical planning. The contents of the study are organized as follows.
     (1) Intermodal transportation hub location and network design The study is proceeding from the perspective of strategic planning. The paper proposes a bi-objective programming formulation for the intermodal transportation network design with multiple stakeholders (network manager, carriers, hub operators and intermodal users). The study represents a given intermodal network as the physical and operational networks. The model incorporates a parametric variational inequality (Ⅵ) that formulates the mixed equilibrium (UE&SO) behavior of intermodal users in route choice for any given network design decision. The disutility of a carrier link or transfer perceived by an intermodal user is composed of two portions:the actual rate charged by the carrier on the carrier link or hub operator providing the transfer service and the monetary value of transportation or transfer time that equals the actual handling time multiplied with value of time(VOT). In reality, the second portion reflects the impact of congestion on the intermodal operator's route choice. A Cross-Entropy (CE) method embedded with diagonalization algorithm is employed to solve the model. Finally, the developed model is applied to a case study to demonstrate its applicability and gain managerial insights to some extent.
     (2) Intermodal transportation routing optimization The paper studies the intermodal route choice model and algorithm. The study proposes a multimodal hazmat model that simultaneously optimizes the locations of transfer yards and transportation routes. The capacities of links and transfer yards are embedded into the model. A0-1decision variable is defined which could make the optimization results reflect flow routing. However, it is nonlinear and also contains an absolute term, which makes it very difficult to solve. Several new constraints are introduced to replace the nonlinear and the absolute terms. A Cross-Entropy (CE) method is employed to solve the model.
     (3) Comprehensive optimization between intermodal transportation network optimization and main line transport service design The study presents an optimization framework for planning intermodal shipments based on hub-and-spoke network. The aim of the research is to minimize the total transport cost from the perspective of network optimization and main line transport service design. The decisions are including hub capacity planning, main line transport services designing, the access to alternate intermodal terminals and main line transport service for shippers and receivers and segments reconstruction. A Cross-Entropy based solution methodology is developed. The optimization framework is applied to problem instances to gain managerial insights. Our analysis indicates main line transport services accounts for a significant portion of transport cost.
     (4) Comprehensive optimization between intermodal transportation network optimization and feeder line transport service design A two-phase programming formulation is proposed for the simultaneous decision of network optimization and feeder line transport service. The hub location and spoke allocation problem for phase I and the feeder line transport service design problem for phase II. The problem in phase I is formulated as a0-1integer programming model. The problem in phase II is formulated as a vehicle routing problem with time window. A Cross-Entropy based solution method is proposed to solve it. Numerical experiment based on a simple network is carried out to be able to provide detailed model and algorithm outputs to better illustrate how the developed model and algorithm work. In the end, the model is applied to desing hub-and-spoke transpoation network with liner shipping for large-scale example.
引文
[1]B. Mao, Q. Sun, S. Chen. Structural analysis on 2008 intercity transport system of China[J]. Journal of Transportation Systems Engineering and Information Technology,2009,9(1): 10-18.
    [2]B. Mao, H. Peng, S. Jia. Trend analysis of 2009 integrated transport systems of China[J]. Journal of Transportation Systems Engineering and Information Technology,2010,10(2):17-22.
    [3]Adler N., Pels E., Nash C. High-speed rail and air transport competition:Game engineering as tool for cost-benefit analysis[J]. Transportation Research Part B:Methodological, 2010:44(7),812-833.
    [4]T. Crainic. Long-haul freight transportation. In R. Hall (Ed.), Handbook of transportation science[J]. International series in operations research and management science,2003,56:451-516.
    [5]王保华,何世伟,宋瑞.综合运输体系下快捷货运网络流量分配优化模型及算法[J].铁道学报,2009,31(2):12-16.
    [6]贺竹磬,孙林岩.联合运输研究综述[J].长安大学学报(社会科学版),2006,8(4):32-36,41.
    [7]J. Woxenius. Generic framework for transport network designs:Applications and treatment in intermodal freight transport literature[J].Transport Reviews,2007,27:733-749.
    [8]M. SteadieSeifi, N.P. Dellaert, W. Nuijten, T. Van Woensel, R. Raoufi. Multimodal freight transportation planning:A literature review[J]. European Journal of Operational Research,2014,233: 1-15.
    [9]T. Meyer, A. Ernst, M. Krishnamoorthy. A 2-phase algorithm for solving the single allocation p-hub center problem [J]. Computers and Operations Research,2009,36:3143-3151.
    [10]A. A. Sibel, Y. K. Bahar, E. K. Oya. Multimodal hub location and hub network design[J]. The International of Management Science,2012:927-939.
    [11]陈大伟,徐中,李旭宏.区域综合货运枢纽布局优化模型[J].华南理工大学学报(自然科学版)[J].2009,37(11):31-36.
    [12]Y.C. Xie, W. Lu, W. Wang, L. Quadrifoglio. A multimodal location and routing model for hazardous materials transportation[J]. Journal of Hazardous Materials,2012,227-228:135-141.
    [13]纪丽君,林柏梁,乔国会.基于多商品流模型的铁路网车流分配和径路优化模型[J].中国铁道科学,2011,32(3):107-110.
    [14]刘强,陆化普,王庆云.区域综合交通枢纽布局双层规划模型[J].东南大学学报(自然科学版),2010,40(6):1358-1363.
    [15]J. Current, S. Rarick. A model to assess risk, equity and efficiency in facility location and transportation of hazardous materials[J]. Location Science,1995,3:187-201.
    [16]M. E. Helander, E. Melachrinoudis. Facility location and reliable route planning in hazardous materials transportation[J]. Transportaion Science,1997,31:216-226.
    [17]I. Giannikos. A multiobjective programming model for locating treatment sites and routing hazardous wastes[J]. European Journal of Operational Research,1998,104:333-342.
    [18]S. Alumur, B. Kara. Network hub location problems:The state of the art[J]. European Journal of Operational Research,2008,190:1-21.
    [19]J.F. Campbell, A.T. Ernst, M. Krishnamoorthy. Hub Location Problems. In:Drezner Z, Hamacher H, editors. Facility location:applications and theory[J]. Berlin:Springer-Verlag:2002.
    [20]崔小燕,李旭宏,毛海军.无容量约束单分配轴-辐式物流网络设计[J].交通运输系统工程与信息,2010,10(5):175-181.
    [21]Q. Meng, S. Wang. Intermodal hub-and-spoke network design:Incorporating multiple stakeholders and multi-type containers[J]. Transportation Research Part B,2011,45:724-742.
    [22]S. Elhedhli, F. Hu. A lagrangean heuristic for hub-and-spoke system design with capacity selection and congestion[J]. INFORMS Journal on Computing,2010,22:282-296.
    [23]S. Alumur, B. Kara, O. Karasan. Multimodal hub location and hub network design[J]. Omega,2012,40:927-939.
    [24]T. Lei, R. Church. Locating short-termempty-container storage facilities to support port operations:A user optimal approach[J]. Transportation Research Part E,2011,47:738-754.
    [25]H. Yaman. Allocation strategies in hub networks[J]. European Journal of Operational Research,2011,211:442-451.
    [26]倪玲霖,史峰.多分配快递轴辐网络的枢纽选址与分配优化方法[J].系统工程理论与实践,2012,32(2):441-448.
    [27]H. Yaman. The hierarchical hub median problem with single assignment[J]. Transportation Research Part B,2009,43:643-658.
    [28]S. Alumur, H. Yaman, B. Kara. Hierarchical multimodal hub location problem with time-definite deliveries[J]. Transportation Research Part E,2012,48:1107-1120.
    [29]M.E. O'Kelly. A quadratic integer program for the location of interacting hub facilities[J]. European Journal of Operational Research,1987,32:393-404.
    [30]J.F. Campbell. Integer programming formulations of discrete hub location problems[J]. European Journal of Operational Research,1994,72 (2):387-405.
    [31]翁克瑞.带固定轴线成本的轴辐式网络设计问题[J].运筹学学报,2012,16(1),88-96.
    [32]王庆云.关于综合交通网规划的几个问题[J].综合运输,2005(5):4-6.
    [33]L. Martine, Y. Hande, G. Eric. A branch and cut algorithm for hub location problems with single assignment[J]. Mathematical Programming,2005,102(2):371-405.
    [34]刘强,陆化普,邹博.我国综合运输网络布局规划研究[J].武汉理工大学学报(交通科学与工程版),2009,33(2):203-206.
    [35]刘晓佳,李友好,施其洲.运输通道结构配置中的客流量分配模型及算法[J].同济大学学报(自然科学版),2007,35(7):924-928.
    [36]李瑶,钟雁,李冠成.关于快速货物运输产品策略的探讨[J].铁路货运,1998,5:4-6.
    [37]吴守荣.山东省公路货物运输系统管理研究[J].系统工程理论与实践,1999,11:135-141.
    [38]钟雁,乔颖丽.确定铁路快速货物运输目标市场[J].北京交通大学学报,2000,24(4):118-121.
    [39]申月,苏顺虎,胡思继.城际间快捷货物运输系统的探索[J].北京交通大学学报,2001,25(2):62-64.
    [40]李夏苗,朱晓立,胡思继.货物运输快捷性、准时性的经济分析[J].交通运输工程学报,2001,1(4):101-105.
    [41]孙强,王庆云,高咏玲.不确定需求条件下多阶段区域综合交通网络设计的双层规划模型[J].交通运输系统工程与信息,2011,11(6):111-116.
    [42]曾明华,李夏苗.多层次多模式综合交通网络设计研究[J].交通运输系统工程与信息,2010,10(2):23-29.
    [43]C.S. Revelle, J. R. Current, J.L. Cohon. The hierarchical network design problem[J]. European Journal of Operational Research,1986,27(1):57-66.
    [44]G. Laporte, T. Crainic. Planning models for freight transportation[J]. European Journal of Operation research,1997,97(3):409-438.
    [45]S.H. Chen, C.C. Lin. The hierarchical network design problem for time-definite express common carriers[J]. Transportation Research Part B,2003,38(3):271-283.
    [46]A. Cohn. Composite-variable modelling for large-scale problems in transportation and logistics[D]. Ph.D. Dissertation. Cambridge:Massachusetts Institute of Technology,2002.
    [47]C. Bamhart, A. Armacost, K. Ware. Composite variable formulations for express shipment service network design[J]. Transportation Science,2002,36(1):1-20.
    [48]赵航,何世伟,宋瑞.区域运输通道网络设计研究[J].土木工程学报,2007,40(5):74-78.
    [49]赵莉,袁振洲,李之红.综合客运通道设计的双层规划模型及算法[J].北京交通大学学报,2009,33(6):36-41.
    [50]I. Vis, R. de Koster. Transshipment of containers at a container terminal:An overview[J]. European Journal of Operational Research,2003,147:1-16.
    [51]R. Ishfaq, C. Sox. Intermodal logistics:The interplay of financial, operational and service issues[J]. Transportation Research Part E,2010,46:926-949.
    [52]R. Ishfaq, C. Sox. Design of intermodal logistics networks with hub delays[J]. European Journal of Operational Research,2012,220:629-641.
    [53]胡卉,程菱,宣登殿.容量限制与运输模式联合选择的综合客运枢纽布局模型[J].交通运输工程学报,2012,12(4):59-66.
    [54]孙杨,宋瑞,何世伟等.基于免疫克隆算法的多枢纽选址与混合网络设计综合优化研究[J].公路交通科技,2009,26(12):101-106.
    [55]魏航,李军,刘凝子.一种求解时变网络下多式联运最短路的算法[J].中国管理科学,2006,14(4):56-63.
    [56]魏航,李军,蒲云.时变网络下多式联运的最短路径问题研究[J].系统工程学报,2007,22(2):205-209.
    [57]H. Ayed, C. Galvez-Fernandez, Z. Habbas. Solving time-dependent multimodal transport problems using a transfer graph model[J]. Computers & Industrial Engineering,2011,61(2): 391-401.
    [58]贾顺平,尹相勇.基于VRPTW模型与合理化判断的货物配送流程研究[J].物流技术,2007,26(3):36-39.
    [59]刘杰,何世伟,宋瑞,黎浩东.基于运输方式备选集的多式联运动态路径优化研究[J].铁道学报,2011,33(10):1001-8360.
    [60]王涛,王刚.一种多式联运网络运输方式的组合优化模式[J].中国工程科学,2005,7(10):46-50.
    [61]T. S. Chang. Best routes selection in international intermodal networks[J]. Computers & Operations Research,2008,35:287-2891.
    [62]张建勇,郭耀煌.一种多式联运网络的最优分配模式研究[J].铁道学报,2002,24(4):114-116.
    [63]田亚明,林柏梁,纪丽君.基于多商品流和虚拟弧的铁路车流分配点-弧、弧-路模型研究[J].铁道学报,2011,33(4):7-12.
    [64]贺竹磬,孙林岩,宫俊涛.联合运输利益分配策略[J].交通运输工程学报,2005,5(3):122-126.
    [65]孙华灿,李旭宏,陈大伟.综合运输网络中合理路径优化模型[J].东南大学学报(自然科学版),2008,38(5):873-877.
    [66]陈绍宽,彭宏勤,刘爽.综合运输网络多方式分层分配模型研究[J].交通运输系统工程与信息,2009,9(6):130-135.
    [67]熊桂武,王勇.带时间窗的多式联运作业整合优化算法[J].系统工程学报,2011,26(3):379-386.
    [68]O.Martinez, J.Jarvis. A sensitivity analysis of multicommodity network flows[J]. Transportation Science,1977,11(4):299-306.
    [69]T.G Graninic, J. GuElat, M. Florian. A multimode multiproduct network assignment model for strategic planning offreight flows[J]. Transportation Science,1990,24(1):25-39.
    [70]C. Stephen, J. Brich, J. Michael. A methodology for statewide intermodal freight transportation planning[M]. Virginia:Virginia Transportation Research Council:1998.
    [71]M. Verma, V. Verter, N. Zufferey. A bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materials [J]. Transportation Research Part E,2012, 48:132-149.
    [72]陈亚云,韩文涛,崔鹤平.灰色关联度在危险品运输路径选择中的应用[J].中国安全生产科学技术,2013,9(2):121-125.
    [73]姬利娟,帅斌,种鹏云.级联失效特性下的危险品运输路径选择研究[J].中国安全科学学报,2012,22(7):77-81.
    [74]刘慧怡.危险品的多目标运输路径优化研究[J].武汉理工大学学报(交通科学与工程版),2013,37(3):585-588.
    [75]陈飞飞,刘斌.有时间窗的危险品道路运输路径选择研究[J].兰州交通大学学报,2013,32(3):109-111.
    [76]H.D. Sherali, L.D. Brizendine, T.S. Glickman, S. Subramanian. Low probability-high consequence considerations in routing hazardous material shipments[J]. Transportation Science, 1997,31:237-251.
    [77]M. Verma. A cost and expected consequence approach to planning and managing railroad transportation of hazardous materials[J]. Transportaion Research Part D,2009,14:300-308.
    [78]L. Cooper. The Transportation-Location Problerrlis [J]. Operations Research,1972,20: 94-108.
    [79]L. Cooper. An efficient heuristic algorithm for the transportation-location problem[J]. Journal of Regional Science,1976,16(3):309-315.
    [80]汪寿阳,赵秋红,夏国平.集成物流管理系统中的定位运输线路安排问题的研究[J].管理科学学报,2000,3(2):69-75.
    [81]G. Nagy, S. Salshi. Location-Routing:Issues, models and methods[J]. European Journal of Operational Research,2007,177:649-672.
    [82]曾庆成,杨忠振,蒋永雷.配送中心选址于车辆路径一体化优化模型与算法[J].武汉理工大学学报(交通科学与工程版),2009,4(2):267-270.
    [83]M.E. Helander, E. Melachrinoudis. Facility location and reliable route planning in hazardous materials transportation[J]. Transportation Science,1997,31:216-226.
    [84]K.G. Zografos, S. Samara. Combined location-routing model for hazardous waste transportation and disposal[J]. Transportation Research Record,1989,1245:52-59.
    [85]C. Revelle, J. Cohon, D. Shobrys. Simultaneous siting and routing in the disposal of hazardous wastes[J]. Transportation Science,1991,25:138-145.
    [86]G List, P. Mirchandani. An integrated network/planar multiobjective model for routing and siting for hazardous materials and wastes[J]. Transportaion Science,1991,25:146-156.
    [87]乔联宝,朱华桂.危险品配送中心选址及路线选择问题研究[J].物流科技,2013,36(4):37-42.
    [88]蔡文学,宋尚江.考虑最大弧段覆盖连续衰退的危险品运输应急选址问题[J].物流技术,2010,29(4):68-70.
    [89]钟慧玲,庄楠,张冠湘.α-鲁棒的危险品道路运输应急设施选址问题[J].系统工程理论与实践,2013,33(5):1262-1268.
    [90]G. Z. Konstantinos, N. Z. Konstantinos. A decision support system for integrated hazardous materials routing and emergency response decisions[J]. Transportation Research Part C, 2008,16(6):684-703.
    [91]S. G Chen. Fuzzy-scorecard based logistics management in robust SCM[J]. Computers & Industrial Engineering,2011,62(3):740-745.
    [92]刘春启,郎茂祥.改进京沪间双层集装箱班列运输组织的建议[J],物流科技,2007,7(9):85-86.
    [93]刘苏庆,曹成铉,郑文辉.集装箱多式联运中运货排程问题的建模研究[J].科学技术与工程,2010,10(9):2247-2250.
    [94]Z. H. Hu. A container multimodal transportation scheduling approach based on immune affinity model for emergency relief[J]. Expert Systems With Applications,2011,38(3):2632-2639.
    [95]L.Y. Song, T. Cherrett. An Optimization Approach for Security Operations in a Container Seaport [C]. The 2nd International Conference on Electronics, Communications and Control (ICECC), IEEE,2011:4159-4162.
    [96]贾传峻,孙全欣.铁路危险货物专用集装箱发展对策研究[J].铁道货运,2010,(2):39-41.
    [97]王伶俐,张星臣,马静一.铁路危险货物办理站布局优化双层规划模型与算法[J].中国铁道科学,2012,33(2):115-120.
    [98]H.J. Sun and Z.Y. Gao. An Optimization Model for Two-echelon Distribution Network Design in Supply Chain Based on Bi-level Programming[C]. Proceedings of 2002 International Conference on Management Science & Engineering,2002:20-23.
    [99]H.J. Sun and Z.Y. Gao. Cooperation Model of Buyer and Seller with Quantity Discounts in Supply Chain[C]. Proceedings of 2003 International Conference on Management Science & Engineering,2003:961-964.
    [100]孙会君,高自友.基于空间价格均衡的物流中心选址双层规划模型研究[J].土木工程学报,2003,36(7):39-42.
    [101]孙会君,高自友.物流中心扩建规模设计的双层规划模型研究[J].管理工程学报,2003,17(4):69-72.
    [102]孙会君,高自友.基于差分的数量折扣条件下订货策略优化模型[J].管理科学学报,17(2):18-21.
    [103]H.J. Sun and Z.Y. Gao. A Bi-level Model for Logistics Network Design Problem Based on SPE[C]. Proceedings of 2004 International Conference on Traffic & Transportation Studies, 2004.
    [104]H.J. Sun and J.J. Wu. Scale-Free Characteristics of Supply Chain Distribution Networks[J]. Modern Physics Letters B,2005,19(17):841-848.
    [105]H.J. Sun, Z.Y. Gao and J.J. Wu. A bi-level programming model and solution algorithm for the location of logistics distribution centers[J]. Applied Mathematical Modelling,2008, 32(4):610-616.
    [106]朱晓宁.集装箱运输与多式联运[M].北京:北京交通大学出版社,2012.
    [107]金凤君,王成金.轴-辐侍服理念下的中国航空网络模式构筑[J].地理研究,2005,24(5):774-784.
    [108]S. H. Hsieh, F. R. Chang. Applications of the hub and spoke network model in muting liner Ships[J]. Transportation Planning Journal,2001,30(4).
    [109]R W Hall. Configuration of an overnight Package air network [J]. Transportation Research Part A,1989,23:139-149.
    [110]邓亚娟.枢纽辐射式交通网络分析与设计理论研究[D].上海:同济大学博士学位论文,2007.
    [111]M.R Hernjmdez. Economies of Density, Network Size and Spatial Scope in the European Airline Industry[J]. FEDEA-DT:2006-13.
    [112]L. J. Basso, S. R. Jara-Diaz. Calculation of economies of spatial scope from transport cost functions with aggregate output with an application to the airline industry [J]. Journal of Transport Economics and Policy,2005:25-52.
    [113]赵桂红.分析航线网络的经济原理[J].民航经济与技术,2000,218:37-40.
    [114]张军,都业富.发展中枢辐射式航线网络的战略思考[J].中国民航学院学报,2004,22:183-186.
    [115]J. K. Brueckner. Fare Determination in Airline Hub-and-Spoke Networks[J]. The RAND Journal of Economies,1992,23(3):309-333.
    [116]C. Macharis, Y.M. Bontekoning. Opportunities for OR in intermodal freight transport research:a review[J]. European Journal of Operational Research,2004,153 (2):400-416.
    [117]Bureau of Transportation Statistics and U.S. Census Bureau[R].2007 Commodity Flow Survey,2010.
    [118]G.F. List, P.B. Mirchandani, M.A. Turnquist, K.G. Zografos. Modeling and analysis for hazardous materials transportation:risk analysis, routing/scheduling, and facility location[J]. Transportaion Science,1991,25:100-114.
    [119]S. Bonvicini, P. Leonelli, G. Spadoni. Risk analysis of hazardous materials transportation:evaluating uncertainty by means of fuzzy logic[J]. Journal of Hazardous Materials, 1998,62:59-74.
    [120]P. Leonelli, S. Bonvicini, G. Spadoni. New detailed numerical procedures for calculating risk measures in hazardous materials transportation[J]. Product Industry,1999,12: 507-515.
    [121]L. Bianco, M. Caramia, S. Giordani. A bi-level flow model for HAZMAT transportation network design[J]. Transportation Research Part C,2009,17:175-196.
    [122]J.E. Fernadez, J. De Cea, A. Soto. A multi-model supply-demand equilibrium model for predicting intercity freight flows[J]. Transportation Research Part B,2003,37 (7):615-640.
    [123]T. Yamada, B.F. Russ, J. Castro, E. Taniguchi. Designing multimodal freight transportation networks:a heuristic approach and applications[J]. Transportation Science,2009,43 (2):129-143.
    [124]D.S. Johnson, J.K. Lenstra, A.H.G. Rinnoy Kan. The complexity of the network design problem[J]. Networks,1978,8(4):279-285.
    [125]R.Y. Rubinstein. The cross-entropy method for combinatorial and continuous optimization methodology and computing in applied probability [J].1999:127-190.
    [126]K.T. Chepuri, H. D. Mello. Solving the vehicle routing problem with stochastic demands using the cross-entropy method[J]. Annals of Operations Research,2005,134:153-181.
    [127]R.Y. Rubinstein. The cross-entropy method and rare-events for maximal cut and bipartition problems[J]. ACM Transactions on Modeling and Computer Simulation,2002,12(1): 27-53.
    [128]周勇,刘三阳,杨曙光.基于交叉熵的通讯网的优化算法[J].系统工程与电子技术,2004,26(10):1471-1475.
    [129]K.P. Hui. Network reliability estimation[M]. Australia:The University of Adelaide, 2005.
    [130]S. Nariai, K.P. Hui, D.P. Kroese. Designing an optimal network using the cross-entropy method[J]. IDEAL,2005, LNCS 3578:228-233.
    [131]Y. Jiang, X.C. Zhang. An Intermodal Hub-and-Spoke Network Design Problem for Hazardous Materials Incorporating Multiple Stakeholders[J]. Disaster Advances,2013,6(S4): 164-176.
    [132]X. Wang, Q. Meng, L. Miao, T.F. Fwa. Impact of Land Bridge on Port Market Area: model development and Scenario Analysis[J]. Transportation Research Record,2009,2097:78-87.
    [133]蒋洋,张星臣,王永亮.多式联运运输方案选择的交叉熵方法[J].交通运输系统工程与信息,2012,12(5):20-25.
    [134]AAR. Rail Intermodal Keeps America Moving[R]. Association of American Railroads-Policy and Economics Department,2010.
    [135]G.B. Danting, J.H. Ramser. The truck dispatching problem[J]. Management Science, 1959,6(1):80-91.
    [136]S. Gelareh. D. Pisinger. Fleet deployment, network design and hub location of liner shipping companies[J]. Transportation Research Part E,2011,47:947-964.
    [137]S. Gelareh, N. Maculan, P. Mahey, R. N. Monemi. Hub-and-spoke network design and fleet deployment for string planning of liner shipping[J]. Applied Mathematical Modelling,2013, 37:3307-3321.
    [138]C.E.M. Plum, D. Pisinger, M. M. Sigurd. A service flow model for the liner shipping network design problem[J]. European Journal of Operational Research,2014,235:378-386.
    [139]M.G, Karlaftis, K. Kepaptsoglou, E. Sambracos. Containership routing with time deadlines and simultaneous deliveries and pick-ups[J]. Transportation Research Part E,2009,45(1): 210-221.
    [140]C.I. Hsu, Y.P. Hsieh. Routing, ship size, and sailing frequency decision-making for a maritime hub-and-spoke container network[J]. Mathematical and Computer Modelling,2007,45: 899-916.
    [141]B. Lofstedt, J.F. Alvarez, C.E.M. Plum, D. Pisinger, M.M. Sigurd. An integer programming model and benchmark suite for liner shipping network design[J]. Technical report of DTU Management Engineering, Technical University of Denmark,2010.
    [142]关伟,王万平,于绪利.遗传算法在货物配送问题中的应用[J].交通运输系统工程与信息,2002,2(2):19-23.
    [143]郎茂祥.多配送中心车辆调度问题的模型与算法研究[J].交通运输系统工程与信息,2006,6(5):65-69.
    [144]谢秉磊,李军,郭耀煌.有时间窗的非满载车辆调度问题的遗传算法[J].系统工程学报,2000,15(3):290-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700