用户名: 密码: 验证码:
基于含N多功能配体的配合物分子的构筑、表征、性能及生物抑菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,基于金属-有机构筑模块的配位超分子化合物的晶体工程在化学、材料、医学及生物学等领域已迅速发展。这不仅因为这些化合物具有新颖、新奇、丰富多彩的结构,更重要的是它们在催化、电导、磁、主-客体化学、非线性光学、分子选择、气体吸附、生物活性等多个方面展现出潜在的、广泛的应用价值和前景。如今,运用晶体工程原理构建的配位聚合物、超分子化合物等高级新型有序结构分子聚集体己逐渐成为各个相关领域的研究热点之一。大量的研究事实表明,设计或选择合适的构筑单元,并运用理论预测与实验手段相结合的方法来构筑目标配合物,是获得具有预期结构和预期功能材料的首要任务,也是目前对研究者们最具挑战的一个环节。
     本论文在配位聚合物晶体工程组装原理的指导下,在分析了基于苯并咪唑类配体的配位化学及生物活性的领域研究状况的基础上,主要以配位超分子晶体学为基础,以含N多功能配体(含N二羧酸配体及设计合成的双苯并咪唑类配体)为配位基块,通过选择不同的过渡金属盐构筑具有特定功能的配位聚合物,并对其性质进行表征,特别是对其可能的生物活性进行了部分研究,以期获得具有结构新颖和功能特定的目标配合物。在一定的反应条件下,我们得到了九个具有新颖结构和特定功能的化合物,它们分别是:[pbb(Hpbb)_2]SO_4·8H_2O (1),[Zn(pbb)_2(H_2O)_4](NO_3)_2·2C_2H_5OH·4H_2O (2),[Zn_2(pbb)_2(μ-OH)(μ-OAc)](OAc)_2·7H_2O(3),[Cd(pbb)_2(H_2O)_4](NO_3)_2·2C_2H_5OH·4H_2O(4),[Cu(pbb)_2(H_2O)_4]Cl_2·2DMF-6H_2O (5),[Co(pbb)_2(H_2O)_4](NO_3)_2·H_2O (6),[Ni(pbb)_2(H_2O)_4](NO_3)_2(7),[Ag_2(bpp)_2(H_2O)]·pydc·7H_2O(8),Cd(pzdc)(μ_2-H_2O)(H_2O)(9)。
     首先,对所合成的化合物进行了X-射线单晶结构测试和分析,运用元素分析、红外光谱、X-射线粉末衍射、热分析、荧光光谱等技术进行了谱学表征和性能研究。结果表明,配体的几何构型及金属元素的差异对配合物的结构影响很大。不同的Zn~Ⅱ盐导致了不同的化合物1、2、3的产生。1中椅式构象(H_2O)_6环外对称地悬挂一对三聚水(H_2O)_3构成了独特的(H_2O)_(12)簇;借助强烈的π-π堆积作用形成的2的三维分子堆积结构中包含了一维开放隧道,阴离子恰包裹其间;双核结构3中,游离水、配位水及-OH通过氢键共同构筑了一个八元冠状环。在配合物4和5中,阴离子分别参与一维氢键梯状链的构筑。在5中,三种来源不同的氧构筑了十二元O-H…O氢键单元。6和7中有机配体呈规则排列,π-π堆积作用显著。在5和6中,金属原子排列有序,在空间分别呈(3,6)和(4,4)排列。8中(H_2O)_4环外对称地悬挂一对(H_2O)_3水簇及一对水单体构成了中心对称的(H_2O)_(12)簇。对于三维配合物9,四元环Cd_2O_2簇连接成1D环状链,而金属Cd构成了一维内消旋金属螺旋链结构。所有这些新颖有趣结构的出现都大大丰富了配位化学及超分子化学的内涵。
     其次,以这些在生命体系中具有潜在应用前景的苯并咪唑类功能配合物为研究对象,运用抑菌圈法及微量量热技术研究了这些配合物对所选菌种的无机生物化学效应。抑菌圈法研究结果表明,配体pbb及其配位化合物2-7对所测菌种是有抑制作用的且具有选择性。微量热法研究结果表明,37℃时pbb及其配位化合物2-7对所测菌种E.coli是有抑制作用的,且最为重要的是,和金属离子配位后pbb的抑菌活性得到了明显的改善。这些初步的研究工作,为pbb及其配合物在医药、生物、化学等领域的潜在应用提供了初步的重要的理论信息,具有一定的现实指导性意义。
The crystal engineering of supramolecular architectures based on metal and organic building blocks has been rapidly expanding in recent years in chemistry, materials, medicals and biology areas owing to not only their novel topologies and intriguing architectures but also their potential applications in catalysis, electrical conductivity, magnetism, host-guest chemistry, nonlinear optics, molecular recognition, gas adsorption and biological activity. Today, in the realm of supramolecular chemistry, great interest has been focused on the crystal engineering of coordination frameworks by use of the principles of self-assembly. It is demonstrated that considerate designing or selecting rational building block through appropriative assembly strategy should be the key in constructing target polymers and also a stubborn challenging work for scientists.
     In this research, with the aim of obtaining new materials with beautiful architecture and excellent physical properties, we selected multi-functional N-containing ligands (N-containing dicarboxylate ligands and benzimidazolic ligand) as building blocks to construct coordination polymers with selected transition metal ions guided by assembly principle of coordination polymers crystal engineering after the relative research background is considered. Under different reaction condition, nine coordination polymers have been synthesized. They are listed as follows: [pbb(Hpbb)_2]SO_4·8H_2O (1), [Zn(pbb)_2(H_2O)_4](NO_3)_2·2C_2H_5OH·4H_2O (2), [Zn_2(pbb)_2(μ-OH)(μ-OAc)](OAc)_2·7H_2O (3), [Cd(pbb)_2(H_2O)_4](NO_3)_2·2C_2H_5OH·4H_2O (4), [Cu(pbb)_2(H_2O)_4]Cl_2·2DMF·6H_2O (5), [Co(pbb)_2(H_2O)_4](NO_3)_2H_2O (6), [Ni(pbb)_2(H_2O)_4](NO_3)_2 (7), [Ag_2(bpp)_2(H_2O)]·pydc·7H_2O (8), Cd(pzdc)(μ_2-H_2O)(H_2O) (9).
     These polymers have been characterized by X-ray single crystal diffraction analysis, elemental analysis, IR spectra, XRPD analysis, thermal analysis and fluorescence spectroscopy to investigate the spectroscopy characters and properties. The results revealed that the conformation of the ligands play an important role in the structure of complexes. Different Zn~Ⅱsalts induced the creation of different compound complexes 1, 2 and 3. A unusual (H_2O)_(12) cluster constructed by a chair conformation (H_2O)_6 ring core with a pair of (H_2O)_3 is observed in 1; with the help of strong aromaticπ-πinteractions, 2 presents 3D supramolecular structures involving 1D open channels encapsulating NO_3~- ions; a eight-membered crown-like rings in 3 are formed via hydrogen bonds between coordinated water, free water molecules and -OH. In 4 and 5, anions participate in the formation of 1D latter-like chain via hydrogen bonds, respectively. Three kinds of oxygen atoms construct a twelve-membered unit by O-H…O hydrogen bonds in 5. The organic blocks are arranged regularly byπ-πstacking interactions in 6 and 7. A centre-symmetric (H_2O)_(12) cluster comprising one (H_2O)_4 ring core and two additional (H_2O)_3 and two dangling monmeric water in 8 is rather unusual. In 3D complex 9, 1D ring-like chain is formed by four-membered Cd_2O_2 units. All of the new and interesting structures contribute to the richness of coordination chemistry and supramolecular chemistry.
     Additionally, the antimicrobial activities of pbb and 2-7 were investigated by the inhibitory zone test method and microcalorimetry. The results from the inhibitory zone test method indicate that pbb and 2-7 have selective inhibition property for the testing strains. The results from microcalorimetry reveal that pbb and 2-7 can inhibit the growth of E. coli at 37℃. Importantly, the presence of metal ions has improved clearly antibacterial activity of ligand pbb. We believe that this work may contribute basic information to the further application of pbb and its complexes in chemistry, medicals and biology fields.
引文
[1] Werner A. Z. Anorg. Chem., 1893, 3, 267-330
    
    [2]中国化学会.无机化学命名原则[M].北京:科学出版社,1980
    
    [3] Inoue Y., HaKushi T., Liu Y. Molecular Design of Crown Ethers. Part12. ComplexationThermodynamics of 12- to 16-crown-4: Thermodynamic Origin of High Lithium Selectivityof 14-crown-4[J]. J.Org. Chem., 1993, 58(20): 5411-5413
    
    [4] Claessens C. G, Stoddart J. F. n-n Interactions in Self-assembly[J]. J. Phys. Org. Chem.,1997, 10: 254-272
    
    [5] Liu Y, Lu Y. M., Zhang L. Molecular Design of Crown Ethers. Part 11. ComplexationThermodynamics of Crown Ethers 12-Crown-4 to 36-crown-12: from Rigid to FlexibleLigand[J]. J. Chem. Soc .Perkin Trans., 1993,2(10): 1947-1950
    
    [6] Szejtli J. Cyclodextrin Technology[M]. Dordrechi: Kluwer-Academic, 1988
    
    [7] Breslow R. Biomimetic Chemistry and Artificial Enzymes: Catalysis by Design[J].Acc.Chem.Res., 1995,28(3): 146-153
    
    [8] Croft A. P., Bartscn R. A. Synthesis of Chemically Modified Cyclodextrins[J]. Trtrahedron,1983,39(9):1417-1474
    
    [9] Lindoy L. F. The Chemistry of Macrocyclic Ligand Complexes[M]. London: CombridgeUniversity Press, 1989
    
    [10] Gray G M. Metallacrown Ethers: Unique Organometallic Ligands[J]. Inorg. Chem.,1995,17(2):95-114
    
    [11] Orama M., Saarinen H., Korvenranta J., et al. Equilibrium and Structural Studies on??Metal Complexes of Oxide Ligands. Polynuclear Complex Formation of Copper(Ⅱ) with3-aminopropanamidoxime and Its N-alkyl Derivatives[J]. Acta.Chem.Scand., 1994, 48(2):127-133
    
    [12] Mingos D. M., Wsdes D. J. Introduction to Cluster Chemistry[M]. Wiley Sons Inc., 1992
    
    [13] Leininger S., Olenyuk B., Stang P. J. Self-Assembly of Discrete Cyclic NanostructuresMediated by Transition Metals[J]. Chem. Rev., 2000,100: 853-908
    
    [14] Reineke T. M., Eddaoudi M., Moler D., et al. Large Free Volume in MaximallyInterpenetrating Networks: The Role of Secondary Building Units Exemplified byTb_2(ADB)_3[(CH_3)_2SO]_4 · 16[(CH_3)_2SO] [J]. J. Am. Chem. Soc, 2000,122: 4843-4844
    
    [15] Lehn J. M. Supramolecular Chemistry. Concepts and Perspectives[M]. Weinheim: VCH,1995: 1
    
    [16] Lehn J. M. Comprehensive Supramolecular Chemistry[M]. Oxford: Pergamon Press,1996
    
    [17] Dodziuk H. Introduction to Supramolecular Chemistry[M]. Dordrecht/Boston/London:Kluwer Academic Publishers, 2002:1
    
    [18] Toma H. E., Araki K. Supramolecular Assemblies of Ruthenium Complexes andPorphyrins[J]. Coord. Chem. Rev., 2000, 196: 307-329
    
    [19] Winnischofer H., Englmann F. M., Toma H. E., et al. Acid-base and SpectroscopicProperties of a Novel Supramolecular Porphyrin Bonded to Four Pentacyanoferrate(Ⅱ)Groups[J]. Inorg. Chim. Acta, 2002,338: 27-35
    
    [20] Huang H., Yu S. Y., Liu H. B., et al. Neutral Coordination Frameworks with Host-guestProperties Constructed by Dicopper(Ⅱ) Units and 4,7-phenanthroline[J]. Polyhedron, 2004,23: 55-58
    
    [21] Felloni M., Blake A. J., Champness N. R., Supramolecular Interactions in 4,4'-bipyridineCobalt(Ⅱ) Nitrate Networks[J]. J. Supr. Chem., 2002,2:163-174
    
    [22] Lehn J. M. Supramolecular Chemistry - Scope and Perspectives Molecules,Supermolecules, and Molecular Devices (Nobel Lecture)[R]. Angew. Chem. Int. Ed. Engl.,1989,27:89-112
    
    [23]陆长元,姚思德,章道道,等.富勒烯C60、C70的超分子化学[J].化学通报, 1998,(1):1
    
    [24] Lehn J. M. Perspectives in Supramolecular Chemistry - From Molecular Recognition??towards Molecular Information Processing and Self-Organization[J]. Angew. Chem. Int. Ed.Engl., 1990,29:1304-1319
    
    [25] Holliday B. J., Mirkin C. A. Strategies for the Construction of SupramolecularCompounds through Coordination Chemistry [J]. Angew. Chem. Ind. Ed., 2001,40:2022-2043
    
    [26]Brammer L., Maraque Rivas J. C, Fang S. Y., et al. Combining Hydrogen Bonds withCoordination Chemistry or Organometallic π-arene Chemistry: Strategies for InorganicCrystal Engineering[J]. J. Chem. Soc, Dalton Trans., 2000, 3855-3867
    
    [27] Ye B. H., Tong M. L., Chen X. M. Metal-organic Molecular Architectures with2,2'-bipyridyl-like and Carboxylate Ligands[J]. Coord. Chem. Rev., 2005, 249: 545-565
    
    [28]Atwood J. L., Dsvies J. E. D., Macnicol D. D., et al. Comprehensive Supra-molecularChemistry [J]. 1996,6, 1
    
    [29] MacDonald J. C, Witesides G. M. Solid-State Structures of Hydrogen-Bonded TapesBased on Cyclic Secondary Diamides[J]. Chem. Rev., 1994,94(8):2383-1420
    
    [30]陈小明,蔡继文.单晶结构分析原理与实践[M].北京:科学出版社,2003
    
    [31] Christophe C. Are Glycosyl Triflates Intermediates in the Sulfoxide GlycosylationMethod? A Chemical and ~1H, ~(13)C, and ~(19)F NMR Spectroscopic Investigation[J]. J. Am. Chem.Soc,1996,118:11217-11223
    
    [32] Stumpf H. O., Ouahab L., Pei Y, et al. A Molecular-based Magnet with a FullyInterlocked Three-dimensional Structure[J]. Science, 1993,261: 447-449
    
    [33] Ohba M., Maruono N., Okawa H., et al. A New Bimetallic Ferromagnet,[Ni(en)_2]_3[Fe(CN)_6]_2 · cntdot · 2H_2O, with a Rare Rope-Ladder Chain Structure[J]. J. Am. Chem.Soc, 1994, 116: 11566-11567
    
    [34] Ohaba M., Fukita N., Okawa H. Magnetic Characteristics of Bimetallic Assemblies,[Ni(en)_2]_3[M(CN)_6]_2 · 2H_2O (en = H_2NCH_2CH_2NH_2 ; M = Fe, Mn, Cr or Co), with aOne-dimensional Rope-ladder Chain Structure[J]. J. Chem. Soc, Dalton Trans., 1997,1733-1738
    
    [35] Ohba M., Okawa H., Fukita N., et al. Bimetallic Magnetic Material[Ni(diamine)_2]_2[Fe(CN)_6]X with Two-Dimensional Network Extended by Fe(Ⅲ)-CN-Ni(Ⅱ)Linkages[J]. J. Am. Chem. Soc, 1997, 119: 1011-1019
    
    [36] Desiraju G R. Supramolekulare Synthone fur das Kristall-Engineering - eine neue Organische Synthese[J]. Angew. Chem. Int. Ed., 1995,107: 2541-2558
    
    [37] Cotton F. A., Hillard E. A., Murillo C. A. The First Dirhodium Tetracarboxylate Molecule without Axial Ligation: New Insight into the Electronic Structures of Molecules with Importance in Catalysis and Other Reactions[J]. J. Am. Chem. Soc, 2002, 124:5658-5660
    
    [38] Zaworotko M. J. Cooperative Bonding Affords a Holesome Story[J]. Nature, 1997, 386, 220-221
    
    [39] Li H., Eddaoudi M., O'Keeffe M., et al. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-organic Framework[J]. Nature, 1999,402: 276-279
    
    [40] Tong M. L., Kitagawa S., Chang H. C., et al. Temperature-controlled Hydrothermal Synthesis of a 2D Ferromagnetic Coordination Bilayered Polymer and a Novel 3D Network with Inorganic Co_3(OH)_2 Ferrimagnetic Chains[J]. Chem. Commun., 2004,418-419
    
    [41] Saied O., Maris T., James D. W., Deformation of Porous Molecular Networks Induced by the Exchange of Guests in Single Crystals[J]. J. Am. Chem. Soc, 2003,125:14956-14957
    
    [42] Tong M. L., Chen X. M., Batten S. R., et al. A New Self-Penetrating Uniform Net, (8,4) (or 8~6), Containing Planar Four-Coordinate Nodes[J]. J. Am. Chem. Soc, 2003, 125:16170-16171
    
    [43] Luo F., Zheng M. J., Batten S. R., et al. Unprecedented (3,4)-connected Metal-organic Frameworks (MOFs) with 3-fold Interpenetration and Considerable Solvent-accessible Void Space[J]. Chem. Commun., 2007, 3744-3746
    
    [44] Lin J. G., Zang S. Q., Tian Z. F., et al. Metal-organic Frameworks Constructed from Mixed-ligand 1,2,3,4-tetra-(4-pyridyl)-butane and Benzene-polycarboxylate Acids: Syntheses,Structures and Physical Properties[J]. CrystEngComm., 2007, 9: 915-921
    
    [45] Steel P. J. Ligand Design in Multimetallic Architectures: Six Lessons Learned[J]. Acc. Chem. Res., 2005, 38: 243-250
    
    [46] Tang Y. Z., Huang X. F., Song Y. M., et al. Homochiral 1D Zinc-Quitenine Coordination Polymer with a High Dielectric Constant[J]. Inorg. Chem., 2006,45: 4868-4870
    
    [47] Yi L., Yang X., Lu T. B., et al. Self-Assembly of Right-Handed Helical Infinite Chain, One- and Two-Dimensional Coordination Polymers Tuned via Anions[J]. Cryst. Growth Des.,2005,5: 1215-1219
    
    
    [48] Park H., Moureau D. M., Parise J. B., et al. Hydrothermal Synthesis and StructuralCharacterization of Novel Zn-Triazole-Benzenedicarboxylate Frameworks [J]. Chem. Mater.,2006, 18:525-531
    
    [49] Du M., Zhang Z. H., Zhao X. J., et al. Modulated Preparation and StructuralDiversification of Zn~Ⅱ and Cd~Ⅱ Metal-Organic Frameworks with a Versatile Building Block5-(4-Pyridyl)-1,3,4-oxadiazole-2-thiol[J]. Inorg. Chem., 2006,45: 5785-5792
    
    [50] Du M., Li C. P., Zhao X. J., et al. Interplay of Coordinative and SupramolecularInteractions in Engineering Unusual Crystalline Architectures of Low-dimensionalMetal-pamoate Complexes under Co-ligand Intervention[J]. CrystEngComm., 2007,9:1011-1028
    
    [51] Wen G. L., Wang Y. Y., Liu P., et al. A Series of 1-D to 3-D Metal-organic CoordinationArchitectures Assembled with V-shaped Bis(pyridyl)thiadiazole under Co-ligandIntervention[J]. Inorg. Chim. Acta(2008), doi:10.1016/j.ica.2008.08.028
    
    [52] Chen B., Ockwig N. W., Fronczek F. R., et al. Transformation of a Metal-OrganicFramework from the NbO to PtS Net[J]. Inorg. Chem., 2005, 44: 181-183
    
    [53]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,200l:128-165
    
    [54] Zhang X. M., Tong M. L., Chen X. M. Hydroxylation of N-heterocycle LigandsObserved in Two Unusual Mixed-valence CuⅠ/CuⅡ Complexes[J]. Angew. Chem. Int. Ed.,2002,41: 1029-1031
    
    [55] Hulliger J. Chemistry and Crystal Growth[J]. Angew. Chem., 1994, 102:151-171
    
    [56] Wells A. F. Three-Dimenstional Nets and Polyhedra[M]. New York: Wiley, 1977
    
    [57] Wells A. F., Structural Inorganic Chemistry[M]. Oxiford: Oxiford University Press, 1975
    
    [58] Hoskins B. F., Robson R. Infinite Polymeric Frameworks Consisting of ThreeDimensionally Linked Rod-like Segments[J]. J. Am. Chem. Soc, 1989,111: 5962-5964
    
    [59] Abrahams B. F., Hoskins B. F., Robson R., et al. A New Type of Infinite 3D PolymericNetwork Containing 4-connected, Peripherally-linked Metalloporphyrin Building Blocks[J]. J.Am. Chem. Soc, 1991,113(9):3606-3607
    
    [60] Gatteschi D. Molecular Magnetism. A Basis for New Materials[J]. Adv. Mater., 1994,6:635-645
    
    [61] Kinoshita M. Ferromagnetism of Organic Radical Crystals[J]. Jpn. J. Appl. Phys., 1994, 33:5718-5733
    
    [62] Xiao D. R., Li Y. G., Wang E. B., et al. Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid, 9-Fold Meso Helices, and 17-Fold Interwoven Helices[J]. Inorg. Chem., 2007,46(10), 4158-4166
    
    [63] Sang R. L., Xu L. A Series of Single, Double, and Triple Me_2biim-Bridged Dinuclear, Trinuclear, and Polymeric Complexes: Syntheses, Crystal Structures, and Luminescent Properties[J]. Inorg. Chem., 2005 (44): 3731-3737
    
    [64] Ma L. F., Wang Y. Y., Wang L. Y., et al. Two Novel Flexible Multidentate Ligands for Crystal Engineering: Syntheses, Structures, and Properties of Cu~Ⅱ, Mn~Ⅱ Complexes with N-[(3-Carboxyphenyl)-sulfonyl]glycine and N,N-(1,3-Phenylenedisulfonyl)bis(glycine) [J].Eur. J. Inorg. Chem., 2008,693-703
    
    [65] Li X. P., Pan M., Zheng S. R., et al. Dimension Increase via Hydrogen Bonding and Weak Coordination Interactions from Simple Complexes of 2-(Pyridyl)benzimidazole Ligands[J]. Cryst. Growth Des., 2007, 7 (12): 2481-2490
    
    [66] Li D. S., Wang Y. Y, Luan X. J., et al. 1-D Open-channeled 3-D Supramolecular Self-assembled Frameworks Encapsulating Unprecedented Cyclic (H_2O)_8 Clusters or Solvent Molecules[J]. Eur. J. Inorg. Chem., 2005, 2678-2684.
    
    [67] Chen C. L., Su C. Y., Cai Y. P., et al.Multidimensional Frameworks Assembled from Silver(Ⅰ) Coordination Polymers Containing Flexible Bis(thioquinolyl) Ligands: Role of the Intra- and Intermolecular Aromatic Stacking Interactions[J]. Inorg. Chem., 2003, 42:3738-3750
    
    [68] Lu X. Q., Jiang J. J., Loye H. C. Z., et al. A Noninterpenetrated ID Molecular Ladder and 2D Butterfly Network: Effect of Positional Isomerism of Semirigid Bis(pyridylmethyl)pyromellitic Diimide Ligands on the Architecture of Their Metal(Ⅱ) Complexes[J]. Inorg. Chem., 2005,44: 1810-1817
    
    [69] Carlucci L., Ciani G. D., Prosrpio M., et al. A New Type of Supramolecular Entanglement in the Silver(Ⅰ) Coordination Polymer [Ag_2(bpethy)_5](BF_4)_2 [bpethy = l,2-bis(4-pyridyl)ethyne] [J]. Chem. Commun., 1999,499-450
    
    [70] Losier P., Zaworotko M. J. A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities[J]. Angew. Chem. Int. Ed. .Engl., 1996, 35(23-24): 2779-2782
    [71] Zhang J. P., Chen X. M. Crystal Engineering of Binary Metal Imidazolate and Triazolzte Frameworks [J].Chem.Commun., 2006, 1689-1699
    
    [72] Liu F. C., Zeng Y. F., Zhao J. P., et al. An Unusual 1D Manganese Azido Complex with Novel EO/EO/EO/EE Coordination Mode: Synthesis, Structure, and Magnetic Properties [J]. Inorg. Chem., 2007, 46: 1520-1522
    
    [73] Zhao B., Yi L., Dai Y., et al. Systematic Investigation of the Hydrothermal Syntheses of Pr(Ⅲ)-PDA (PDA = Pyridine-2,6-dicarboxylate Anion) Metal-Organic Frameworks[J].Inorg. Chem., 2005, 44: 911-920
    
    [74] Liu X., Guo G. C., Liu B., et al. A Novel 2-D Honeycomb-like Lithium Coordination Polymer Containing 42-Membered Rings[J]. Cryst. Growth Des., 2005, 5: 841-843
    
    [75] Carlucci L., Ciani G., Proserpio D. M., et al. Self-assembly of Novel Co-ordination Polymers Containing Polycatenated Molecular Ladders and Intertwined Two-dimensional Tilings[J]. J. Am. Chem. Soc, Dalton Trans., 1999, 1799-1804
    
    [76] Choi H. J., Suh M. P. Self-Assembly of Molecular Brick Wall and Molecular Honeycomb from Nickel(Ⅱ) Macrocycle and 1,3,5-Benzenetricarboxylate: Guest-Dependent Host Structures[J]. J. Am. Chem. Soc, 1998, 120: 10622-10628
    
    [77] Dong Y. B., Layland R. C., Pschirer N. G New Crystalline Frameworks Formed from 1,2-Bis(4-pyridyl)ethyne and Co(NO_3)_2: Interpenetrating Molecular Ladders and an Unexpected Molecular Parquet Pattern from T-Shaped Building Blocks[J]. Chem. Mater.,1999,11:1413-1415
    
    [78] Long D. L., Blake A. J., Champness N. R., et al. Constructing Terbium Co-ordination Polymers of 4,4'-bipyridine-N,N'-dioxide by Means of Diffusion Solvent Mixtures[J]. Chem. Eur. J., 2002, 8: 2026-2033
    
    [79] Ni W. X., Li M., Zhou X. P., et al. pH-Induced Formation of Metalloligand: Increasing Structure Dimensionality by Tuning Number of Ligand Functional Sites[J]. Chem. Commun.,2007,3479-3481
    
    [80] Zhou L. J., Wang Y. Y., Zhou C. H., et al. From Hydrogen-Bonded Net-to-Net Framework to Twofold Interpenetrated (4,6) Net: Effect of Ligand Topology on the Supramolecular Structural Diversity[J]. Cryst. Growth Des., 2007, 7: 300-306
    
    [81] Liao S., Su C. Y., Yeung C. H., et al. A Novel Polymeric Silver(Ⅰ) Complex with a 2D Brick Structure[J]. Inorg. Chem. Comm., 2000, 3: 405-407
    
    [82] Luan X. J., Chu Y. C., Wang Y. Y., et al. Formation of Two-Dimensional Supramolecular Water Layer Containing (H_2O)_(18) Morphology via Dianion Templating[J]. Cryst. Growth Des., 2006, 6(4): 812-814
    
    [83] Lu X. Q. , Chen C. L., Tan H. Y., et al. Nanosized Silver(Ⅰ) Coordination Networks of Mixed Bix-Diphosphine (Bix -1,4-Bis(imidazol-1-ylmethyl)benzene)[J]. Cryst. Growth Des., 2005, 5(1): 283-287
    
    [84] Xue D. X., Lin Y. Y., Cheng X. N., et al. A Tetracarboxylate-Bridged Dicopper(Ⅱ) Paddle-Wheel-Based 2-D Porous Coordination Polymer with Gas Sorption Properties[J].Cryst. Growth Des., 2007, 7 (7): 1332-1336
    
    [85] Yaghi O. M., Li H. Mutually Interpenetrating Sheets and Cchannels in the Extended Structure of [Cu(4,4'-bpy)Cl] [J]. Angew. Chem. Int. Ed. Engl., 1995, 34: 207-209
    
    [86] Yaghi O. M., Li H. T-Shaped Molecular Building Units in the Porous Structure of Ag(4,4'-bpy)·NO_3 [J]. J. Am. Chem. Soc., 1996,118: 295-296
    
    [87] Subramanian S., Zaworotko M. J. Porous Solids by Design: [Zn(4,4'-bpy)_2(SiF_6)]_n·xDMF,a Single Framework Octahedral Coordination Polymer with Large Square Channels[J].Angew. Chem. Int. Ed. Engl., 1995, 34: 2127-2129
    
    [88] Rujiwatra A., Kepert C. J., Rosseisky M. J. The Organo-pillared Porous Magnetic Framework Co_4(SO_4XOH)_6(H_2NC_2H_4NH_2)_(0.5)·3H_2O[J]. Chem.Commun., 1999, 2307-2308
    
    [89] Zaworotko M. J. Crystal Engineering of Diamondoid Networks[J]. Chem. Soc .Rev.,1994, 283-288
    
    [90] Carlucci L., Ciani G., Proserpio D. M., et al. A New Type of Entanglement Involving One-dimensional Ribbons of Rings Catenated to a Three-dimensional Network in the Nanoporous Structure of [Co(bix)_2(H_2O)_2](SO_4)·7H_2O [bix=1,4-bis(imidazol-1-ylmethyl)benzene] [J]. Chem.Commun., 2004, 380-381
    
    [91] Zou R. Q., Zhong R. Q., Du M., et al. Highly-thermostable Metal-organic Frameworks (MOFs) of Zinc and Cadmium 4,4'-(hexafluoroisopropylidene)diphthalates with a Unique Fluorite Topology[J]. Chem. Commun., 2007, 2467-2469
    
    [92] Zhang H. X., Zhang J., Zheng S. T., et al. (C_4N_3H_(15))[(BO_2)_2(GeO_2)_4]: The First Organically Templated 3D Borogermanate Showing 1D 12-Rings, Large Channels, and a Novel Zeolite-type Framework Topology Constructed from Ge_8O_(24) and B_2O_7 Cluster Units[J]. Inorg. Chem., 2005, 44:1166-1168
    
    [93] Lu W. G., Jiang L., Feng X. L., et al. Four 3D Porous Metal-Organic Frameworks with Various Layered and Pillared Motifs[J]. Cryst. Growth Des., 2008, 8: 986-994
    
    [94] Li Y. G., Dai L. M., Wang Y. H., et al. A New Molybdenum-oxide-based Organic-inorganic Hybrid Framework Templated by Double-Keggin Anions[J]. Chem. Commun., 2007, 2593-2595
    
    [95] Chen Q. Y., Li Y., Zheng F. K., et al. A 3D-diamond-like Tetrazole-based Zn(Ⅱ) Coordination Polymer: Crystal Structure, Nonlinear Optical Effect and Luminescent Property[J]. Inorg. Chem. Comm., 2008, 11: 969-971
    
    [96] Fang Q. R., Zhu G. S., Jin Z., et al. Mesoporous Metal-organic Framework with Rare Etb Topology for Hydrogen Storage and Dye Assembly[J]. Angew. Chem. Int. Ed., 2007, 46,6638-6642
    
    [97] Han L., Zhou Y., Zhao W. N., et al. Assembly of Metal-Organic Frameworks with Helical Layer: From 2D Parallel Interpenetrated Layer to 3D Self-Penetrating Network[J].Cryst. Growth Des., 2009, 9 (2): 660-662
    
    [98] Burke N. J., Burrows A. D., Mahon M. F., et al. Isomerism and Interpenetration in Hydrogen-bonded Network Structures[J]. CrystEngComm., 2008, 10, 15-18
    
    [99] Luo J. H., Hong M. C., Wang R. H., et al. Synthesis, Crystal Structure and Fluorescence of Two Novel Mixed-ligand Cadmium Coordination Polymers with Different Structural Motifs[J]. Eur. J. Inorg. Chem., 2003,2705-2710
    
    [100] Lee H. Y., Park J., Lah M. S., et al. One-Dimensional Double Helical Structure and 4-Fold Type [2 + 2] Interpenetration of Diamondoid Networks with Helical Fashion[J]. Cryst.Growth Des., 2008, 8: 587-591
    
    [101] Maji T. K., Ohba M., Kitagawa S., et al. Transformation from a 2D Stacked Layer to 3D Interpenetrated Framework by Changing the Spacer Functionality: Synthesis, Structure,Adsorption, and Magnetic Properties[J]. Inorg. Chem., 2005,44: 9225-9231
    
    [102] Wang H. Y., Gao S., Huo L. H., et al. Three Interpenetrated Frameworks Assembly from a Long Multicarboxylate Ligand and Transition Metal[J]. Cryst. Growth Des., 2008, 8:665-670
    [103] Buchecker C. O. D., Sauvage J. P., Kern J. M. Templated Synthesis of Interlocked Macrocyclic Ligands: the Catenands[J]. J. Am. Chem. Soc., 1984,106:3043-3045
    
    [104] Sauvage J. P., Weiss J. Synthesis of Biscopper(Ⅰ) [3]-catenates: Multiring Interlocked Coordinating Systems[J]. J. Am. Chem. Soc, 1985,107: 6108-6110
    
    [105] Liu J. Q., Wang Y. Y., Ma L. F., et al. Generation of a 4-crossing [2]-catenane Motif by the 2D→2D Parallel Interpenetration of Pairs of (4,4) Sheets[J]. CrystEngComm., 2008, 10: 1123-1125
    
    [106] Liu Y., Zhao Y. L., Zhang H. Y., et al. Polymeric Rotaxane Constructed from the Inclusion Complex of β-cyclodextrin and 4,4'-dipyridine by Coordination with Nickel(Ⅱ) Ions[J]. Angew. Chem. Int. Ed., 2003, 42: 3260-3263
    
    [107] Whang D., Kim K. Polycatenated Two-Dimensional Polyrotaxane Net[J]. J. Am. Chem. Soc, 1997, 119:451-452
    
    [108] Hoskins B.F., Robson R., Slizys D. A., et al. An Infinite 2D Polyrotaxane Network in Ag_2(bix)_3(NO_3)_2 (bix = 1,4-Bis(imidazol-1-ylmethyl)benzene) [J]. J. Am. Chem. Soc., 1997,119:2952-2953
    
    [109] Cantrill S. J., Chichak K. S., Peters A. J., et al. Nanoscale Borromean Rings[J]. Acc. Chem. Res., 2005, 38: 1-9
    
    [110] Piguet C., Bernardinelli G., Hopfgartner G. Helicates as Versatile Supramolecular Complexes[J]. Chem. Rev., 1997, 97: 2005-2062
    
    [111] Zang S. Q., Su Y., Li Y. Z., et al. Interweaving of Triple-Helical and Extended Metal-O-Metal Single-Helical Chains with the Same Helix Axis in a 3D Metal-Organic Framework[J]. Inorg. Chem., 2006,45: 3855-3857
    
    [112] Chen X. M., Liu G. F. Double-stranded Helices and Molecular Zippers Assembled from Single-stranded Coordination Polymers Directed by Supramolecular Interactions[J]. Chem.Eur.J., 2002, 8: 4811-4817
    
    [113] Wang Z. W., Ji C. C., Li J., et al. Synthesis, X-ray Structures, and Fluorescent Properties of Coordination Networks Constructed from 2-(2-Pyridinyl-benzimidazolyl) Acetic Anion[J]. Cryst. Growth Des., 2009, 9(1): 475-482
    
    [114] Cui Y., Ngo H. L., Lin W. B., et al. A Homochiral Triple Helix Constructed from an Axially Chiral Bipyridine[J]. Chem. Commun., 2003, 1388-1389
    
    [115] Deluca M. R., Kerwin S. M. The Para-toluenesulfonic Acid-promoted Synthesis of2-substituted Benzoxazoles and Benzimidazoles from Diacylated Precursors[J]. Tetrahedron,1997,53(2): 457-464
    
    [116] Addison A. W., Rao T. N. Synthesis of Some Benzimidazole- and Benzothiazole-derivedLigand Systems and Their Precursory Diacids[J]. J. Heterocyclic Chem., 1983, 20(6):1481-1484
    
    [117] Pool W. O., Harwood H. J., Ralston A. W. 2-Alkylbenzimidazoles as Derivatives for theIdentification of Aliphatic Acids[J]. J.Am.Chem.Soc, 1937,59:178-179
    
    [118] Hein D. W., Alheim R. J., Leavitt J. J. The Use of Polyphosphoric Acid in the Synthesisof 2-Aryl- and 2-Alkyl-substituted Benzimidazoles, Benzoxazoles and Benzothiazoles[J].J.Am.Chem.Soc, 1957,79:427-429
    
    [119] Bourgrin K., Loupy A., Soufiaoui M. Trois Nouvelles Voies de Synthese Des Derives1,3-azoliques Sous Micro-ondes [J].Tetrahedron, 1998,54(28):8055-8064
    
    [120] Alloum A. B., Bakkas S., Soufiaoui M. Synthese Chimioselective des BenzimidazolesSur Silice Traitee par le Chlorure du Thionyle[J].Tetrahedron Lett., 2003,44(31):5935-5937
    
    [121] Lombardy R. L., Tanious F. A., Ramachandran K., et al. Synthesis and DNAInteractions of Benzimidazole Dications Which Have Activity Against OpportunisticInfections[J]. J. Med. Chem., 1996, 39:1452-1462
    
    [122] Beaulieu P. L., Hache B., Von Moos E. A Practical Oxone~(?)-Mediated,High-Throughput, Solution-Phase Synthesis of Benzimidazoles from 1,2-Phenylenediaminesand Aldehydes and Its Application to Preparative Scale Synthesis[J]. Synthesis, 2003,1683-1692
    
    [123]李莹莹,周永花,郭玉芳,等.苯并咪唑衍生物的合成改进[J].有机化学,2006,26 (8):1097-1099
    
    [124]宋林青,徐贤伦,谭干祖.微流辐射下双(2-苯并咪唑基)苯的合成[J].精细化工,2000,17(5):256-257
    
    [125]王陆瑶,韩洁,李晓娟,等.双(2-苯并咪唑基)烷烃的简便合成方法[J].化学试剂,2005,27(5):317-318
    
    [126] Osdene T. S. Topics in Medicinal Chemistry[M]. New York: Interscience Publishers, 1967: 137-176
    [127] Hollinshead A. C., Smith P. K. Effects of Certain Purines and Related Compounds on Virus Propagation[J]. J. Pharmacol. Exp. Then, 1958, (123):54-62
    
    [128] Eggers H. J., Tamm I. Antiviral Chemotherapy [J]. Annu. Rev. Pharmacol, 1966, (6): 231-250
    
    [129] O'Sullivan D. G., Wallis A. K. New Benzimidazole Derivatives with Powerful Protective Action on Tissue-culture Cells Infected with Types 1, 2, and 3 Polio Virus[J]. Nature (London), 1963, (198): 1270-1273
    
    [130] Roderick W. R., Nordeen C. W., Von Esch A. M., et al. Bisbenzimidazoles: Potent Inhibitors of Rhinoviruses[J]. J. Med. Chem., 1972, (15): 655-658
    
    [131] Stibrany R. T., Lobanov M. V., Schugar H. J., et al. A Geometrically Constraining Bis(benzimidazole) Ligand and Its Nearly Tetrahedral Complexes with Fe(Ⅱ) and Mn(Ⅱ)[J]. Inorg.Chem., 2004,43(4): 1472-1480
    
    [132] Yeung K. S., Meanwell N. A., Qiu Z., et al. Structure-activity Relationship Studies of a Bisbenzimidazole-based, Zn~(2+)-dependent Inhibitor of HCV NS3 Serine Protease[J]. Bioorg. Med. Chem. Lett., 2001, (11): 2355-2359
    
    [133] Liu S. G., Zuo J. L., Li Y. Z., et al. Syntheses, Crystal Structures of Blue Luminescent Complexes Based on 2,6-bis(benzimidazolyl)pyridine[J]. J. Mol. Struct., 2004, (705): 153-157
    
    [134] Gayathri V., Leelamani E. G., Gowda N. M. N., et al. Cyclometallation of Bis-benzimidazole Derivatives with Rhodium(Ⅲ) Halides[J]. Polyhedron, 1999, (18):2351-2360
    
    [135] Tong L. Viral Proteases[J]. Chem. Rev., 2002, (102): 4609-4626
    
    [136] Lootiens F. G., Regenfuss P., Zechel A., et al. Binding Characteristics of Hoechst 33258 with Calf Thymus DNA, Poly[d(A-T)], and d(CCGGAATTCCGG): Multiple Stoichiometries and Determination of Tight Binding with a Wide Spectrum of Site Affmities[J]. Biochemistry, 1990, 29 (38): 9029-9039
    
    [137] Geratz J. D., Tidwell R. R., Lombardy R. J., et al. Streptococcal Cell Wall-induced Systemic Disease: Beneficial Effects of Trans-bis(5-amidino-2-benzimidazolyl)ethene, a Novel, Macrophage-directed Anti-inflammatory Agent[J]. Am. J. Pathol., 1991 (139):921-931
    
    
    [138] Tebbe M. J., Spitzer W. A., Victor F. Antirhino/Enteroviral VinylacetyleneBenzimidazoles: A Study of Their Activity and Oral Plasma Levels in Mice[J]. J. Med. Chem.,1997, (40): 3937-3946
    
    [139] Matthews C. J., Clegg W., Heath S. L., et al. Coordination of Zn(Ⅱ), Cd(Ⅱ), Hg(Ⅱ),and Ag(Ⅰ) by Bis(benzimidazole) Ligands[J]. Inorg. Chem., 1998,37: 199-207
    
    [140] Gayathri V., Leelamani E. G, Gowda N. M. N., et al. Cyclometallation ofBis-benzimidazole Derivatives with Rhodium(Ⅲ) Halides[J]. Polyhedron, 1999, 18:2351-2360
    
    [141] Lewis E. A., Smith J. R. L., Walton P. H., et al. Tuning the Metal-based RedoxPotentials of Manganese cis,cis-1,3,5-triaminocyclohexane Complexes[J]. J. Chem. Soc,Dalton Trans., 2001, 1159-1161
    
    [142] Singh M. P., Sasmal S., Lu W., et al. Synthetic Utility of Catalytic Fe(Ⅲ)/Fe(Ⅲ) RedoxCycling Towards Fused Heterocycles: a Facile Access to Substituted Benzimidazole,Bis-benzimidazole and Imidazopyridine Derivatives[J]. Synthesis, 2000, 10:1380-1390
    
    [143] Evans T. M., Gardiner J. M., Mahmood N., et al. Structure-activity Relationships ofAnti-HIV-1 N-alkoxy- and N-allyloxy-benzimidazoles[J]. Bioorg. Med. Chem. Lett., 1997,7(4): 409-412
    
    [144] Gudmundsson K. S., Tidwell J., Lippa N., et al. Synthesis and Antiviral Evaluation ofHalogenated -D- and -L-Erythrofuranosylbenzimidazoles[J]. J. Med. Chem., 2000, 43(12):2464-3472
    
    [145] Bai X. Flotation Reagent[M]. Beijing: Metallurgy Industry Publishing House, 1981
    
    [146]仉文升,李安良.药物化学[M].北京:高等教育出版社,1999
    
    [147]李德兴.苯并咪唑类抗蠕虫药物[J].国外医学:寄生虫病分册,1991,18(5):204
    
    [148]武华.苯并咪唑类抗蠕虫剂(二)[J].中国兽药杂志,1992,26(2),42
    
    [149]石佑恩.血吸虫病疫苗的研究现状与展望[J].2005,24(4):265-266
    
    [150]应慧卿,戴行锋.抗血吸虫病药物研究:苯骈咪唑丙烯酸衍生物的合成[J].药学学报,1993,28(7),553
    
    [151]章涛.苯并咪唑对线虫的作用及线虫抗药性机制的研究进展[J].国外医学:寄生虫病分册,1996,23(2):49-53
    
    [152]张浩吉.线虫的抗药性[J].中国兽医科技,1992,22(6):17-18
    
    [153]王庆河,程卯生.泮托拉唑钠的合成研究[J].中国药学杂志,1999,34(8):564-565
    
    [154]黄筱玲,董新荣.5-含氟苯并咪唑衍生物的合成[J].武汉大学学报(自然版),1993,(4):123
    
    [155] Deluca M. R., Kerwin S. M. The para-Toluenesulfonic Acid-Promoted Synthesis of 2-Substituted Benzoxazoles and Benzimidazoles from Diacylated Precursors [J]. Tetrahedron, 1997, 53(2):457-464
    
    [156]刁幼林,于建华.苯并咪唑类质子泵抑制剂的药理学研究进展[J].实用医药杂志,2003,20(12):952-953
    
    [157]赵士贵,张长铠.2-(甲氧基氨基甲酰)苯并咪唑等对青霉和凤尾菇发酵的影响[J].山东食品发酵,1998,1,27-29
    
    [158]黄筱玲,尹传奇,董新荣,等.植物病毒病化学防治剂的探寻1,5--奔氟(硝基)苯并咪唑基苯氧乙酸衍生物的合成及抗植物病毒活性[J].武汉大学学报(自科版),1995,41(2):142-148
    
    [159]梁诚.杂环化合物系列报道之六:咪唑及其同系物开发与应用[J].化工文摘,2003,10:31-32
    
    [160]Jose L.,李宝年.橡胶参考资料,1993,23(10),11
    
    [161]王睦铿.Celanese PBI聚合物的进展[J].材料导报,1992,6,47
    
    [162]俞马金,陈中峻.相转移催化合成苯并咪唑炔丙基硫醚[J].化学工程师,1997,6,2-3
    
    [163] Wright J. B. The Chemistry of the Benzimidazoles[J]. Chem. Rev., 1951,48:397-541
    
    [164] Ueda M., Sato M, Mochizuki A. Poly(benzimidazole) Synthesis by Direct Reaction of Diacids and Diamines[J]. Macromolecules, 1985,18: 2723-2726
    
    [165]阎熙丰,曲淑艳.超氧化物歧化酶,维生素A对顺铂所致的肾及骨髓损伤的保护作用[J].肿瘤,1994,14(6):323-325
    
    [166] Fridovich I. Superoxide Dismutases[J]. Annu. Rev. Biochem., 1975,44: 147-159
    
    [167]王志均.细胞保护概念的由来及其发展[J].基础医学与临床,1994,14(2):1-5
    
    [168]刘小兰,程庆彦,周卫红,等.二(2-苯并咪唑亚甲基)胺合Zn(Ⅱ)配合物晶体和电子结构研究及生物活性测定[J].化学学报,2001,59(7):1045-1053
    
    [169]赵茹,尚永春,王东海,等.单双核铜锌模拟超氧化物歧化酶配合物的合成,表征与活性研究[J].天津师范大学学报(自然科学版),2006,26(3):11-14
    
    [170]朱莉,廖展如,龙云飞,等.含苯并咪唑锌配合物的合成、表征及晶体结构[J].无机化学??学报,2004,20(4),399-402
    
    [171]刘小兰,苗志伟.二(二苯并咪唑亚甲基)胺配合物的合成,晶体结构,活性和量子化学研究[J].化学学报,1999,57:1185-1192
    
    [172]覃事栋,冯思思,张红梅,等.配合物[Ni(EDTB)]·2Cl·CH3OH·C2H5OH的合成,晶体结构及SOD模拟活性的研究[J].化学学报,2005,63(13):1155-1160
    
    [173]吴辉禄,高忆慈.超氧化物歧化酶模型化合物的合成,表征及其SOD活性研究[J].化学通报,2003,(11):770-774
    
    [174]林小驹,李一志,王天维,等.化合物[2,6-bis(benzo[1,2-d:4,5-d']diimidazole-2'-yl)pyridine]的合成、晶体结构和光物理性质[J].无机化学学报,2004,20(11):1315-1319
    
    [175]王艳丽,陈柳青,许慧侠,等.2,6-双(2-苯并咪唑)吡啶-乙酸锌的合成和光谱性能[J].发光学报,2008,29(1):46-50
    
    [176]沈红芹,张有来,陈伟利,等.新型荧光探针化合物的合成与光谱性质研究[J].天津理工大学学报,2008,24(1):1-4
    
    [177] Liu X. L., Zhao R., Liu X. H., et al. Synthesis and Structure of a Novel Copper (Ⅱ)Dinuclear Complex with 4, 4'-Dipyridyl as the Bridge [J]. Chin. J. Chem., 2003, 21(8):1047-1053
    
    [178] Carina R. F., Williams A. F. Molecular Tricorns: Self-Assembly TrinuclearPalladium(Ⅱ) Complexes[J]. Inorg. Chem., 2001,40(8): 1826-1832
    
    [179] Zhou L. J., Wang Y. Y., Zhou C. H., et al. From Hydrogen-Bonded Net-to-NetFramework to Twofold Interpenetrated (4,6) Net: Effect of Ligand Topology on theSupramolecular Structural Diversity[J]. Cryst. Growth Des., 2007, 7 (2):300-306
    
    [180]王尧宇,时茜,史启祯,等.铜(Ⅱ)与α-甲基丙烯酸根和苯并咪唑配合物的合成、晶体结构及形成机理[J].中国科学(B辑),1999,29(5):441-449
    
    [181] Wei Y. Q., Yu Y. F., Wu K. C. Highly Stable Five-Coordinated Mn(Ⅱ) Polymer [Mn(Hbidc)]_n (Hbidc = 1H-Benzimidazole-5,6-dicarboxylate): Crystal Structure, Antiferromegnetic Property, and Strong Long-Lived Luminescence[J]. Cryst. Growth Des., 2008, 8 (7): 2087-2089
    
    [182]李曦.硒化合物与细胞和线粒体代谢作用的热化学研究[D].武汉:武汉大学,2001
    
    [183]郑文清.多羟基小分子生化物质水相溶液热力学研究[M].聊城:聊城大学,2007
    
    [184]黄宏.锶、钡硼酸盐的合成、表征及其热化学研究[M].西安:陕西师范大学,2007
    
    [185]马国正.喹诺酮药物与生物大分子相互作用的计算化学研究[D].杭州:浙江大学,2005
    
    [186]谢修银.热动力学研究酶促反应的激活与抑制[D].武汉:武汉大学,2004
    
    [187]王志勇.酶促反应热动力学研究[D].武汉:武汉大学,2000
    
    [188]易平贵,俞庆森.水-乙醇混合溶剂中过氧化氢酶活性与构象的研究[J].化学学报,2000,58(6):652-655
    
    [189] Fontana A. J., Hansen L. D., Breidenbach R. W., et al. Microcalorimetric Measurementof Aerobic Cell Metabolism in Unstirred Cell Cultures[J]. Thermochim. Acta, 1990,172:105-113
    
    [190] Forrest W. W. Methods in Microbiology[M]. New York: Academic Press, 1972
    
    [191] Boling E. A., Blanchar G. C, Russed W. J. Bacterial Identification byMicrocalorimetry[J]. Nature (London), 1973, 24(1):472-473
    
    [192] Monk P., WadsO I. Flow Microcalorimetry as an Analytical Tool in Biochemistry andRelated Areas[J]. Acta Chim. Scand., 1969,23:29-36
    
    [193] Monk P., WadsO I. The Use of Microcalorimetry for Bacterial Classigication[J]. J.Appl. Bacterial., 1975, 38(1):71-74
    
    [194]谢昌礼,汤厚宽,宋昭华,等.微量量热法测定细菌生长的热谱[J].物理化学学报,1986,2(6):481-483
    
    [195]谢昌礼,汤厚宽,宋昭华,等.细菌生长的热谱图测定[J].微生物学报,1989,29(2):149-151
    
    [196]汤厚宽,谢昌礼,宋昭华,等.生物热动力学研究-大肠杆菌生长速率和激活能[J].物理化学学报1987,3(2):113-115
    
    [197] Nan Z. D., Zeng X. C, Zhang H. L., et al. Microcalorimetric Investigation of Effects of Temperature on pH of Petroleum Bacterial Optimum Growth[J]. Thermochim. Acta, 2000, 351:39-45
    
    [198]张洪林,刘永军,南照东,等.药物对福氏志贺氏菌代谢抑制的量热法研究[J].物理化学学报,1995,11(1):79-82
    
    [199] Zhang H. L., Liu Y. J., Sun H. T. Determination of Thermograms of Bacterial Growthand Study of Optimum Growth Temperature [J]. Thermochim. Acta, 1993,216:19-23
    
    [200] Nan Z. D., Xiang Y., Wang Z. Y., et al. Microcalorimetric Investigation of Growth??Conditions of Petroleum Bacteria[J]. Thermochim. Acta, 1999,338: 1-6
    
    [201] Zhang H. L., Yu X. F., Li X. X., et al. A Study of Promotive and Fungistatic Action ofSteroidal Saponin by Microcalorimetric Method[J]. Thermochim. Acta, 2004,416:71-74
    
    [202] Zhang H. L., Nan Z. D., Sun H. T. et al. A Study of the Optimum Fungistatic Action ofa Synthetic Medicine Using a Microcalorimetric Method[J]. Thermochim. Acta, 1993, 223:23-27
    
    [203]孙海涛,梁东云,南照东,等.用微量量热法研究细菌的生长规律[J].中华微生物学和免疫学杂志,1996,16(2):147-148
    
    [204]程远征,李金花,张洪林.微量量热法研究细菌对头孢曲松钠和钩藤碱的耐药性[J].曲阜师范大学学报,2005,31(2):81-84
    
    [205]王莉衡.基因工程菌E.coli的热动力学研究[D].西安:西北大学,2007
    
    [206]赵儒铭.稀土离子对微生物生长代谢影响的微量热研究[D].武汉:武汉大学,2002
    
    [207]刘楠.苏云金芽孢杆菌酪氨酸酶纯化、性质研究及其mel基因的克隆和表达[D].武汉:武汉大学,2004
    
    [208]阮丽芳.Mel基因在苏云金杆菌中的克隆、表达及高温诱导产黑色素的研究[D].武汉:武汉大学,2002
    
    [209] Yamamure M., Hauatsu H., Miyamae T., et al. Beijing: International Conferience on Chemical Thermodynamics and Calorimetry, 1989, 22
    
    [210]汤厚宽,刘义,何估,等.细菌变异株生长热谱研究[J].物理化学学报,1999,15(12):1112-1114
    
    [211]史启祯,赵凤起,胡荣祖,等.热分析动力学与热动力学[M].西安:陕西科学技术出版社,2001
    
    [1] Sang R. L., Xu L. A. Series of Single, Double, and Triple Me2biim-Bridged Dinuclear,Trinuclear, and Polymeric Complexes: Syntheses, Crystal Structures, and LuminescentProperties[J]. Inorg. Chem., 2005, 44(10): 3731-3737
    
    [2] Wu Y. P., Wang C. J., Wang Y. Y., et al. Three Copper(Ⅱ) Complexes Constructed from aNew 1,3,5-triazine Derivative Ligand[J]. Polyhedron, 2006,25: 3533-3542
    
    [3] Wang X. L., Bi Y. F., Liu G C, et al. Zn(Ⅱ) Coordination Architectures with MixedLigands of Dipyrido[3,2-d:2',3'-f]quinoxaline/2,3-di-2-pyridylquinoxaline andBenzenedicarboxylate: Syntheses, Crystal Structures, and Photoluminescence Properties[J].CrystEngComm., 2008, 10 (3): 349-356
    
    [4] Du M., Zhang Z. H., Zhao X. J., et al. Synthons Competition/Prediction inCocrystallization of Flexible Dicarboxylic Acids with Bent Dipyridines[J]. Cryst. GrowthDes., 2006, 6(1): 114-121
    
    [5] Che G B., Liu C. B., Liu B., et al. Syntheses, Structures and Photoluminescence of aSeries of Metal-organic Complexes with 1,3,5-benzenetricarboxylate andPyrazino[2,3-f][1,10]-phenanthroline Ligands[J]. CrysEngComm., 2008, 10 (2): 184-191
    
    [6] Zhou X. P., Ni W. X., Zhan S. Z., et al. From Encapsulation toPolypseudorotaxane: Unusual Anion Networks Driven by Predesigned Metal Bis(terpyridine)Complex Cations[J]. Inorg. Chem., 2007, 46 (7): 2345-2347
    
    [7] Hogerheide M. P., Boersma J., Koten G. V. Intramolecular Coordinationn in Group 3 andLanthanide Chemistry[J]. Coord. Chem. Rev., 1996, (155): 87-126
    
    [8] Shavaleev N. M., Moorcraft L. P., Pope S. J. A., et al. Sensitised Near-infrared Emissionfrom Lanthanides Using a Covalently-attached Pt(Ⅱ) Fragment as an Antenna Group[J].Chem. Commun., 2003, 1134-1135
    
    [9] Wu C. D., Hu A., Zhang L., et al. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis[J]. J. Am. Chem. Soc., 2005, (127): 8940-8941
    
    [10] Zeng M. H., Feng X. L., Chen X. M., et al. Crystal-to-crystal Transformations of a Microporous Metal-organic Laminated Framework Triggered by Guest Exchange,Dehydration and Readsorption[J]. J. Chem. Soc. Dalton Trans., 2004,2217-2223
    
    [11] Yaghi O. M., Li H. T-Shaped Molecular Building Units in the Porous Structure of Ag(4,4-bpy)_2NO_3[J]. J. Am. Chem. Soc, 1996, (118): 295-296
    
    [12] Zhang J., Bu X. H. Temperature Dependent Charge Distribution in Three-dimensional Homochiral Cadmium Camphorates[J]. Chem. Commun., 2008,444-446
    
    [13] Zhao B., Gao H. L., Chen X. Y., et al. Synthesis, Structure and Luminescent Property of Two New 2D Metal-organic Frameworks Containing Lanthanide Ions[J]. Chem. Eur. J.,2006(12): 149-158
    
    [14] Liu C. S., Shi X. S., Li J. R., et al. Syntheses, Structures, Photoluminescence, and Magnetic Properties of Phenanthrene-Based Carboxylic Acid Coordination Polymers[J].Cryst. Growth Des., 2006(6): 656-663
    
    [15] Yue Q., Yang J., Li G. H., et al. Three-Dimensional 3d-4f Heterometallic Coordination Polymers: Synthesis, Structures, and Magnetic Properties[J]. Inorg. Chem., 2005, 44 (15):5241-5246
    
    [16] Zou R. Q., Sakurai H., Xu Q. Preparation, Adsorption Properties, and Catalytic Activity of 3D Porous Metal-Organic Frameworks Composed of Cubic Building Blocks and Alkali-Metal Ions[J]. Angew. Chem. Int. Ed, 2006(45): 2542-2546
    
    [17] Seo J. S., Whang D., Lee H., et al. A Homochiral Metal[ndash]organic Porous Material for Enantioselective Separation and Catalysis[J]. Nature, 2000(404): 982-986
    
    [18]Holliday B. J., Mirkin C. A. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry[J]. Angew. Chem. Int. Ed., 2001(40):2022-2043
    
    [19]Leininger S., Olenyuk B., Stang P. J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals[J]. Chem. Rev., 2000,100(3): 853-908
    
    [20]Batten S. R., Robson R. Bioorganometallic Chemistry-Transition Metal Complexes with a-Amino Acids and Peptides[J]. Angew.Chem. Int. Ed., 1998,37(12): 1634-1654
    [21]Caronna T., Liantonio R., Logothetis T. A., et al. Halogen Bonding and π-π Stacking Control Reactivity in the Solid State[J]. J. Am. Chem. Soc., 2004,126(14): 4500-4501
    
    [22]Moulton B., Zaworoko M. J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem. Rev., 2001,101(6): 1629-1658
    
    [23]Sun D. F., Cao R., Sun Y. Q., et al. Novel Silver-Containing Supramolecular Frameworks Constructed by Combination of Coordination Bonds and Supramolecular Interactions[J].Inorg. Chem,. 2003,42(23): 7512-7518
    
    [24] Hollinshead A. C., Smith R K. Effects of Ceatain Furines and Related Compounds on Virus Propagation[J]. J. Pharmacol. Exp. Ther., 1958(123): 54-62
    
    [25] Eggers H. J., Tamm I. Antiviral Chemotherapy [J]. Annu. Rev. Pharmacol., 1966, (6):231-250
    
    [26] O'Sullivan D. G., Wallis A. K. New Benzimidazole Derivatives with Powerful Protective Action on Tissue-Culture Cells Infected with Types 1, 2, and 3 Poliovirus[J]. Nature (London), 1963(198): 1270-1273
    
    [27] Roderick W. R., Nordeen C. W., Von Esch A. M., et al. Bisbenzimidazoles: Potent Inhibitors of Rhinoviruses[J]. J. Med. Chem., 1972,15(6): 655-658
    
    [28] Yeung K. S., Meanwell N. A., Qiu Z., et al. Structure-activity Relationship Studies of a Bisbenzimidazole-based, Zn~(2+)-dependent Inhibitor of HCV NS3 Serine Protease[J]. Bioorg.Med. Chem. Lett., 2001(11): 2355-2359
    
    [29] Stibrany R. T., Lobanov M. V., Schugar H. J., et al. A Geometrically Constraining Bis(benzimidazole) Ligand and Its Nearly Tetrahedral Complexes with Fe(Ⅱ) and Mn(Ⅱ)[J].Inorg.Chem., 2004,43(4):1472-1480
    
    [30] Liu S. G., Zuo J. L., Li Y. Z., et al. Syntheses, Crystal Structures of Blue Luminescent Complexes Based on 2,6-bis(benzimidazolyl) Pyridine[J]. J. Mol. Struct., 2004,(705):153-157
    
    [31] Gayathri V., Leelamani E. G., Gowda N. M. N., et al. Cyclometallation of Bis-benzimidazole Derivatives with Rhodium(Ⅲ) Halides[J]. Polyhedron, 1999(18):2351-2360
    
    [32] Tong L. Viral Proteases[J]. Chem. Rev., 2002(102): 4609-4626
    
    [33] Lootiens F. G., Regenfuss P., Zechel A., et al. Binding Characteristics of Hoechst 33258 with Calf Thymus DNA, Poly[d(A-T)] and d(CCGGAATTCCGG): Multiple Stoichiometries and Determination of Tight Binding with a Wide Spectrum of Site Affinities[J]. Biochemistry, 1990, 29(38): 9029-9039
    
    [34] Tebbe M. J., Spitzer W. A., F Victor., et al. Antirhino/Enteroviral Vinylacetylene Benzimidazoles: A Study of Their Activity and Oral Plasma Levels in Mice[J]. J. Med. Chem., 1997,40(24): 3937-3946
    
    [35] Du M., Li C. P., Zhao X. J., et al. Interplay of Coordinative and Supramolecular Interactions in Engineering Unusual Crystalline Architectures of Low-dimensional Metal-pamoate Complexes under Co-ligand Intervention[J]. CrystEngComm., 2007, (9):1011-1028
    
    [36] Fu R., Xiang S., Hu S., et al. Assembled Bright Green Fluorescent Zinc Coordination Polymer[J]. Chem. Commun., 2005, 5292-5294
    
    [37] Munakata M., Wu L. P., Kuroda-Sowa T., et al. Construction and Conductivity of W-Type Sandwich Silver(Ⅰ) Polymers with Pyrene and Perylene[J]. Inorg. Chem., 1997,36(21): 4903-4905
    
    [38] Addison A. W., Burke P. J. Synthesis of Some Imidazole and Pyrazole- Derived Chelating Agents [J]. J. Heterocyclic Chem., 1981, 18, 803-805
    
    [39] Sheldrick, G. M., SHELXL-97, Program for Crystal Structure Determination[M].Germany: University of Gottingen, 1997
    
    [40] Sheldrick, G. M., SHELXL-97, Program for Crystal Structure Refinement[M]. Germany: University of Gottingen, 1997
    
    [41] Mukhopadhyay U., Bernal I. Self-Assembled Hexameric Water Clusters Stabilized by a Cyano-Bridged Trimetallic Complex[J]. Cryst. Growth Des., 2005(5): 1687-1689
    
    [42] Doedens R. J., Yohannes E., Ishaque Khan M. Novel Water Clusters in the Crystalline State: Structures of a Symmetrical, Cyclic Hexamer and an 'opened-cube' Octamer[J]. Chem.Commun., 2002,(1): 62-63
    
    [43] Ye B. H., Ding B. B., Weng Y. Q., et al. Formation of One-Dimensional Metal-Water Chain Containing Cyclic Water Hexamers[J]. Inorg. Chem., 2004,43 (22): 6866-6868
    
    [44] Speedy R. J., Madura J. D., Jorgensen W. L. Network Topology in Simulated Water[J]. J. Phys. Chem., 1987(91): 909-913
    [45] Narten A. H., Thiessen W. E., Blum L. Atom Pair Distribution Functions of Liquid Water at 25℃ from Neutron Diffraction[J]. Science, 1982(217): 1033-1034
    
    [46] Eisenberg D., Kauzmann W. The Structure and Properties of Water[M]. Oxford: Oxford University Press, 1969
    
    [47] Ma L. F., Wang Y. Y., Wang L. Y., et al. Two Novel Flexible Multidentate Ligands for Crystal Engineering: Syntheses, Structures, and Properties of Cu~Ⅱ, Mn~Ⅱ Complexes with N-[(3-Carboxyphenyl)sulfonyl]glycine and N,N'-(1,3-Phenylenedisulfonyl)bis(glycine)[J].Eur. J. Inorg. Chem., 2008, 693-703
    
    [48] Wang H., Liu J. Q., Zhang Y. N., et al. A Novel 3D Supramolecular Inorganic-metal-organic Architecture with Honeycomb-like Motifs Directed by the Water Tetramer and Sulfate Anion[J]. Inorg. Chem. Commun., 2008(11): 129-133
    
    [49] Ravikumar I., Lakshminarayanan P. S., Suresh E., et al. Recognition of Water-acetonitrile-water Cluster in a Tetraprotonated Picrate Salt of Octaaminocryptand[J].Cryst. Growth Des., 2006,(6): 2630-2633
    
    [50] Neogi S., Savitha G., Bharadwaj P. K. Structure of Discrete (H_2O)_(12) Clusters Present in the Cavity of Polymeric Interlinked Metallocycles of Nd(Ⅲ) or Gd(Ⅲ) and a Podand Ligand[J]. Inorg. Chem., 2004, 43 (13): 3771-3773
    
    [51]Pallepohu R., Sabbani S., Samar K. D. Sulfate Anion Helices Formed by the Assistance of a Flip-flop Water Chain[J]. Chem. Commum., 2006, 2762-2764
    
    [52] Liu B., Zhang X. C., Chen Y. H. The Syntheses, Structures and Fluorescent Properties of Two Monomeric Zn(Ⅱ) and Mn(Ⅱ) Assemblies Containing Bitriazole Ligand[J]. Inorg. Chem.Commun., 2007(10): 498-501
    
    [53] Ma L. F., Wang L. Y., Huo X. K., et al. Chain, Pillar, Layer, and Different Pores: A N-[(3-Carboxyphenyl)-sulfonyl]glycine Ligand as a Versatile Building Block for the Construction of Coordination Polymers[J]. Cryst. Growth Des., 2008,(8): 620-628
    
    [54] Chen X. L., Gou L., Hu H. M., et al. New Examples of Metal Coordination Architectures of 4,4'-Sulfonyldibenzoic Acid: Syntheses, Crystal Structure and Luminescence[J]. Eur. J.Inorg. Chem., 2008, (2): 239-250
    
    [55] Du M., Jiang X. J., Zhao X. J. Molecular Tectonics of Mixed Ligand Metal-Organic Frameworks[J]. Inorg. Chem., 2007,46 (10): 3984-3995
    
    [56] Liu Y. Y., Ma J. F., Yang J., et al. Syntheses and Characterization of Six Coordination Polymers of Zinc(Ⅱ) and Cobalt(Ⅱ) with 1,3,5-Benzenetricarboxylate Anion and Bis(imidazole) Ligands[J]. Inorg. Chem., 2007,46 (8): 3027-3037
    
    [57] Zhang L. Y., Liu G. F., Zheng S. L., et al. Helical Ribbons of Cadmium(Ⅱ) and Zinc(Ⅱ) Dicarboxylates with Bipyridyl-Like Chelates-Syntheses[J]. Eur. J. Inorg. Chem., 2003(16):2965-2971
    
    [58] Bunz U. H. F. Poly(aryleneethynylene)s: Syntheses, Properties, Structures, and Applications[J]. Chem. Rev., 2000(100): 1605-1644
    
    [59] Wu S. Z., Zeng F., Zhu H. P., et al. Energy and Electron Transfers in Photosensitive Chitosan[J]. J. Am. Chem. Soc., 2005,127(7): 2048-2049
    
    
    [1] Ghoshal D., Maji T. K., Mostafa G, et al. A Three-Dimensional Honeycomb-Like Network Constructed with Novel "Sinusoidal" One-Dimensional Chains via Hydrogen Bonding and π-π Interactions[J]. Cryst. Growth Des., 2003, 3(1): 9-11
    [2] Fang Q. R., Zhu G. S., Xue M., et al. Structure, Luminescence, and Adsorption Properties of Two Chiral Microporous Metal-Organic Frameworks[J]. Inorg. Chem., 2006, 45(9),3582-3587
    
    [3] Du M., Li C. P., Zhao X. J., et al. Interplay of Coordinative and Supramolecular Interactions in Engineering Unusual Crystalline Architectures of Low-dimensional Metal-pamoate Complexes under Co-ligand Intervention[J]. CyrstEngComm., 2007, 9,1011-1028
    
    [4] Chen X. D., Wu H. F., Du M. Controllable Preparation of Zn~Ⅱ Coordination Polymers: Unusual Solvothermal Formation of a LiGe-type Framework Directed by in situ S-S Coupling of 5-(4-pyridyl)-lH-1,2,4-triazole-3-thiol [J]. Chem. Commun., 2008, 1296-1298
    
    [5] Wang Y. L., Yuan D. Q., Bi W. H., et al. Syntheses and Characterizations of Two 3D Cobalt-Organic Frameworks from 2D Honeycomb Building Blocks[J]. Cryst. Growth Des.,2005, 5(5): 1849-1855
    
    [6] Chen B. L., Fronczek F. R., Maverick A. W. Porous Cu-Cd Mixed Metal-Organic Frameworks Constructed from Cu(Pyac)_2 {Bis[3-(4-pyridyl)pentane-2,4-dionato]copper(Ⅱ)} [J]. Inorg. Chem., 2004,43(26): 8209-8211
    
    [7] Guo X. D., Zhu G. S., Sun F. X., et al. Synthesis, Structure, and Luminescent Properties of Microporous Lanthanide Metal-Organic Frameworks with Inorganic Rod-Shaped Building Units[J]. Inorg. Chem., 2006, 45, 2581-2587
    
    [8] Lu W. G., Su C. Y., Lu T. B., et al. Two Stable 3D Metal-Organic Frameworks Constructed by Nanoscale Cages via Sharing the Single-Layer Walls[J]. J. Am. Chem. Soc.,2006, 128, 34-35
    
    [9] Lu W. G., Jiang L., Feng X. L., et al. Four 3D Porous Metal-Organic Frameworks with Various Layered and Pillared Motifs[J]. Cryst. Growth Des., 2008, 8, 986-994
    
    [10] He X., Lu C. Z., Yuan D. Q. Two 3D Porous Cadmium Tetrazolate Frameworks with Hexagonal Tunnels[J]. Inorg. Chem., 2006, 45(15): 5760-5766
    
    [11] Volkringer C., Marrot J., Ferey G., et al. Hydrothermal Crystallization of Three Calcium-Based Hybrid Solids with 2,6-Naphthalene- or 4,4'-Biphenyl-Dicarboxylates[J].Cryst. Growth Des., 2008, 8(2): 685-689
    
    [12] Pucci D., Barberio G., Bellusci A., et al. Silver Coordination Complexes as Room-Temperature Multifunctional Materials [J]. Chem. Eur. J., 2006, 12(26): 6738-6747
    
    [13] Li X., Cao R., Sun Y. Q., et al. Syntheses and Characterizations of Coordination Polymers Constructed from 4-Pyridylacetic Acid [J]. Cryst. Growth Des., 2004,4, 255-261
    
    [14] Tynan E., Jensen P., Lees A. C, et al. The Role of Acid in the Formation of Hydrogen-bonded Networks Featuring 4,4'-dicarboxy-2,2'-bipyridine (H_2dcbp): Synthesis, Structural and Magnetic Characterisation of {[Cu(H_2dcbp)Cl_2]·H)2O}_2 and [Cu(H_2dcbp)(NO_3)_2(H_2O)] [J]. CrystEngComm., 2005, 7, 90-95
    
    [15] Du M., Li C. P., Zhao X. J. Metal-Controlled Assembly of Coordination Polymers with the Flexible Building Block 4-Pyridylacetic Acid (Hpya)[J]. Cryst. Growth Des., 2006, 3,335-341
    
    [16] Tynan, E., Jensen, P., Kelly, N. R., et al. The Ligand, the Metal and the 'Holey'-host: Synthesis, Structural and Magnetic Characterisation of Co(Ⅱ), Ni(Ⅱ) and Mn(Ⅱ) Metal-organic Frameworks Incorporating 4,4'-dicarboxy-2,2'-bipyridine[J]. Dalton Trans.,2004,21,3440-3447
    
    [17] Chen X. D., Wu H. F., Zhao X. H., et al. Metal-Organic Coordination Architectures with Thiazole-Spaced Pyridinecarboxylates: Conformational Polymorphism, Structural Adjustment, and Ligand Flexibility [J]. Cryst. Growth Des., 2007, 7, 124-131
    
    [18]Lu Y. L., Wu J. Y., Chan M. C., et al. Influence of Water Content on the Self-Assembly of Metal-Organic Frameworks Based on Pyridine-3,5-dicarboxylate[J]. Inorg. Chem., 2006,45(6): 2430-2437
    
    [19]Zhang X. M., Zheng Y. Z., Li C. R., et al. Unprecedented (3,9)-Connected (4~2.6)_3(4~6.6~(21).8~9) Net Constructed by Trinuclear Mixed-Valence Cobalt Clusters [J]. Cryst. Growth Des., 2007, 7(5): 980-983
    
    [20]Min D. W., Yoon S. S. Lee J. H., et al. A Three-dimensional Cobalt(Ⅱ)-coordination Polymer Based on 3,5-pyridinedicarboxylate [J]. Inorg. Chem. Commun., 2001,4, 297-300
    
    [22] Hafizovi J., Krivokapi A., Szeto K. C., et al. Tailoring the Dimensionality of Metal-Organic Frameworks Incorporating Pt and Pd. from Molecular Complexes to 3D Networks [J]. Cryst. Growth Des., 2007, 7(11):2302-2304
    
    [23]Zhao Y. H., Su Z. M., Fu Y. M., et al. Syntheses and Characterizations of Four Metal Coordination Polymers Constructed by the Pyridine-3,5-dicarboxylate Ligand [J]. Polyhedron, 2008, 27(2):583-592
    
    [24]Cowan J. A., Howard J. A. K., Mclntyre G. J., et al. Variable-temperature Neutron Diffraction Studies of the Short, Strong Hydrogen Bonds in the Crustal Structure of Pyridine-3,5-dicarboxylic Acid[J]. Acta Cryst., 2005, B61: 724-730
    
    [25] Xia J., Zhao B., Wang H. S., et al. Two- and Three-Dimensional Lanthanide Complexes: Synthesis, Crystal Structures, and Properties[J]. Inorg. Chem., 2007,46(9): 3451-3458
    
    [26] Qin C., Wang X. L., Wang E. B., et al. A Series of Three-Dimensional Lanthanide Coordination Polymers with Rutile and Unprecedented Rutile-Related Topologies[J]. Inorg.Chem., 2005,44: 7122-7129
    
    [27] King P., Clérac R., Anson C. E., et al. Antiferromagnetic Three-Dimensional Order Induced by Carboxylate Bridges in a Two-Dimensional Network of [Cu_3(dcp)_2(H_2O)_4] Trimers [J]. Inorg. Chem., 2003,42(11): 3492-3500
    
    [28] Pan L., Huang X. Y., Li J., et al. Assembly of New Coordination Frameworks in a pH-Controlled Medium: Syntheses, Structures, and Properties of ~3_∞[Cd(Hpdc)(H_2O)] and ~3_∞[Cd_3(pdc)_2(H_2O)_2] [J]. J. Solid State Chem., 2000, 152: 236-246
    
    [29] Driessen W. L., Chang L., Finazzo C., et al., Two Pyrazolato-bridged, Linear Trinuclear Cu(Ⅱ) Complexes: Crystal Structures and Magnetic Properties[J]. Inorg. Chim. Acta., 2003,350:25-31
    
    [30] Peica N., Kostova I., Kiefer W., et al. Theoretical and Experimental Studies on Binding Mode of 3,5-pyrazoledicarboxylic Acid in Its New La(Ⅲ) Complex[J]. Chemical Physics,2006,325:411-421
    
    [31] Sheldrick G. M. SHELXL-97, Program for Crystal Structure Determination[M].Germany: University of Gottingen, 1997
    
    [32] Sheldrick G. M. SHELXL-97, Program for Crystal Structure Refinement[M]. Germany: University of Gottingen, 1997
    
    [33] Cordes D. B., Hanton L. R. Structural Invariance in Silver(Ⅰ) Coordination Networks Formed Using Flexible Four-Armed Thiopyridine Ligands [J]. Inorg. Chem., 2007, 46(5):1634-1644
    
    [34] Zheng S. L., Tong M. L., Yu X. L., et al. Syntheses and Structures of Six Chain-, Ladder-and Grid-like Co-ordination Polymers Constructed from μ-hexamethylenetetramine and Silver Salts[J]. J. Chem. Soc. Dalton Trans., 2001, 586-592
    
    [35] Li F. F., Ma J. F., Song S. Y., et al. Influence of Neutral Ligands on the Structures of Silver(Ⅰ) Sulfonates[J]. Inorg. Chem., 2005,44(25): 9374-9383
    
    [36] Brandys M. C., Puddephatt R. J. Ring, Polymer and Network Structures in Silver(Ⅰ) Complexes with Dipyridyl and Diphosphine Ligands[J]. Chem. Commun., 2001,1508-1509
    
    [37] Neogi S., Savitha G., Bharadwaj P. K. Structure of Discrete (H_2O)_(12) Clusters Present in the Cavity of Polymeric Interlinked Metallocycles of Nd(Ⅲ) or Gd(Ⅲ) and a Podand Ligand [J]. Inorg. Chem., 2004,43(13): 3771-3773
    
    [38] Baten S. R., Hoskins B. F., Robson R. Two Interpenetrating 3D Networks Which Generate Spacious Sealed-off Compartments Enclosing of the Order of 20 Solvent Molecules in the Structures of Zn(CN)(NO_3)(tpt)_(2/3).cntdot.solv (tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine,solv = .apprx.3/4C_2H2Cl_4.cntdot.3/4CH_3OH or .apprx.3/2CHCl_3.cntdot.l/3CH_3OH) [J]. J. Am.Chem. Soc., 1995, 117(19): 5385-5386
    
    [39] Wang, X. L., Qin, C., Wang, E. B., et al. Metal Nuclearity Modulated Four-, Six-, and Eight-Connected Entangled Frameworks Based on Mono-, Bi-, and Trimetallic Cores as Nodes [J]. Chem. Eur. J., 2005,12(10): 2680-2691
    
    [40]Chen X. L., Wang J. J., Hu H. M., et al. Hydrothermal Syntheses, Crystal Structures and Luminescence of Two Novel Metal-organic Frameworks[J]. Z. Anorg. Allg. Chem., 2007,633(11-12): 2053-2058
    
    [41]Song Y. S., Yan B., Chen, Z. X., et al. Hydrothermal Synthesis, Crystal Structure and Luminescence of Four Novel Metal-organic Frameworks[J]. J. Solid State Chem., 2006,179(12): 4037-4046
    
    [42] Lei C, Mao J. G., Sun Y. Q., et al. Novel Inorganic-organic Hybrids Based on Oxo-bridged M_6(M) Centered Octahedral Cage[J]. Polyhedron, 2005, 24: 295-303
    
    [43] Wang C. J., Ma H. R., Wang Y. Y., et al. Subtle Structural Changes in Coordination Chains: Influence of the Flexibility of the Precursor Ligands and of the Solvent[J]. Cryst.Growth Des., 2007, 7(9): 1811-1817
    
    [44] Luan X. J., Wang Y. Y., Li D. S., et al. Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions [J]. Angew. Chem., Int. Ed., 2005, 44: 3864-3867
    [45] Liu Y. Y., Ma J. F., Yang J., et al. Syntheses and Characterization of Six Coordination Polymers of Zinc(Ⅱ) and Cobalt(Ⅱ) with 1,3,5-Benzenetricarboxylate Anion and Bis(imidazole) Ligands [J]. Inorg. Chem., 2007, 46(8): 3027-3037
    
    [46] Zhang L. Y, Liu G F., Zheng S. L., et al. Helical Rabbons of Cadmium(Ⅱ) and Zinc(Ⅱ) Dicarboxylates with Bipyridyl-like Chelates. Synthese, Crystal Structures and Photoluminescence[J]. Eur. J. Inorg. Chem., 2003, 2965-2971
    
    [47] Bunz, U. H. F. Poly(aryleneethynylene)s: Syntheses, Properties, Structures, and Applications [J]. Chem. Rev., 2000, 100(4): 1605-1644
    
    [48] Wu S. Z., Zeng F., Zhu H. P., et al. Energy and Electron Transfers in Photosensitive Chitosan[J]. J. Am. Chem. Soc., 2005, 127(7): 2048-2049
    
    
    [1] Horton D. A., Bourne G. T., Smythe M. L. Fluorous Synthesis of Sclerotigenin-type Benzodiazepine-quinazolinones[J]. Chem. Rev., 2003,103(3): 893-903
    
    [2] Aminabhavi T. M., Biradar N. S., Patil S. B., et al. Structural and Biological Studies on Benzimidazolyl Amino Acid Complexes of Dimethyldichlorosilane[J]. Inorg. Chim. Acta, 1986, 125 (3):125-128
    
    [3]苗志伟,周卫红,刘小兰,等.超氧化物歧化酶模型化合物的合成,表征和活性测定[J].有机化学,1999,19(5):537-541
    
    [4]卑凤利,陈海群,杨绪杰,等.苯并咪唑衍生物的合成、晶体结构及量子化学计算[J].有机化学,2004,24(3):300-305
    
    [5] Rajan R., Rajaram R., Nair B. U., et al. Synthesis, Characterisation and SuperoxideDismutase Activity of a Manganese(Ⅱ) Complex[J]. J. Chem. Soc, Dalton Trans., 1996, (9):2019-2021
    
    [6] Garc1'a-Lozano J., Server-Carrio'J., Coret E., et al. Crystal and Molecular Structure andElectronic Properties of [Cu(bbimpy)(H_2O)_2(ONO_2)](NO_3) · H_2O (bbimpy =2,6-bis(2-benzimidazolyl)pyridine) [J]. Inorg. Chim. Acta, 1996, 245 (1): 75-79
    
    [7]刘长令,翟煜翥,张晓运,等.防治灰霉病用杀菌剂的开发[J].农药,2000,39(3):1-6
    
    [8]周国明,叶钟音,杭建胜,等.对多菌灵具有抗性的草莓灰霉病菌菌株形成与分布研究[J].南京农业大学学报,1990,13(3):57-60
    
    [9]魏太保,师海雄,张治仁,等.微波促进下2-芳氧甲基苯并咪唑-1-乙酸衍生物的合成及生物活性研究[J].有机化学,2007,27(9):1116-1120
    
    [10]王陆瑶,高勇,杨秉勤,等.硝基苯并咪唑衍生物的合成、表征及抑茵活性的测定[J].高等学校化学学报,2005,26(12):2241-2246
    
    [11]Raso A. G., Fiol J. J., Adrover B., et al. Reactivity of Copper(Ⅱ) Peptide Complexes with Bioligands (Benzimidazole and Creatinine) [J]. Polyhedron, 2003, 22: 3255-3264
    
    [12]林明丽,刘醒民,崔秀兰,等.稀土与苯并咪唑甲基酮缩二乙三胺Schiff碱配合物的合成、表征及生物活性[J].稀土,2004,25(6):38-41
    
    [13]杨日芳,恽榴红,丁振凯,等.新型苯胺类苯并咪唑衍生物的合成及其生物活性[J].中国药物化学杂志,2003,13(1):1-7
    
    [14] Feng Y., Liu Y., Xie C.L., et al. Kinetics of Action of Schiff bases on Aerobacter aerogenes as Studied by Microcalorimetry[J]. Thermochim. Acta, 1996, 285: 181-189
    
    [15]吴洪,李志新,李铀,等.分子连接性方法及对抗病毒分子的结构与活性定量关系的研究[J].黑龙江医药科学,2004,27(5):7-8
    
    [16]Fioika M. J., Ptaszyn'ska A. A. Czarniawski W. Antibacterial and AntifungalLysozyme-type Activity in Cameraria Ohridella Pupae[J]. J. Invertebr. Pathol., 2005,90,1-9
    
    [17] Charnock C, Brudeli B., Klaveness J. Evaluation of the Antibacterial Efficacy ofDiesters of Azelaic Acid[J]. European Journal of Pharmaceutical Sciences, 2004,21,589-596
    
    [18] Adamopoulos L., Montegna J., Hampikian G., et al. A Simple Method to Tune the GrossAntibacterial Activity of Cellulosic Biomaterials[J]. Carbohydrate Polymers, 2007, (69):805-810
    
    [19] Lin Y. G., Yang Z. R., Cheng J. Prepamtion, Chaiactelization and Antibacterial Propertyof Cerium Substituted Hydmxyapatite Nanopatticles[J]. Journal of Rear Earths, 2007, (25):452-456
    
    [20] Lebreton S., Newcombe N., Bradley M., Antibacterial Single-bead Screening[J].Tetrahedron, 2003, (59): 10213-10222
    
    [21] Fontana A. J., Hansen L. D., Breidenbach R. W., et al. Microcalorimetric Measurementof Aerobic Cell Metabolism in Unstirred Cell Cultures[J]. Thermochim. Acta, 1990, 172:105-113
    
    [22] Nan Z. D., Zeng X. C, Zhang, H. L. Microcalorimetric Investigation of Effects ofTemperature on pH of Petroleum Bacterial Optimum Growth[J]. Thermochim. Acta, 2000,351:39-45
    
    [23]王建涛,孔哲,闫咏梅,等.微量量热法研究异喹啉类生物碱的抑菌活性[J].化学世界,2007,(8):460-463
    
    [24]沈雪松,刘义,周传佩.氟喹诺酮类药物对大肠杆菌抑制作用量效关系的热化学研究[J].化学学报,2000,58(11):1463-1465
    
    [25] Xie C. L., Tang H. K., Song Z. H., et al. Microcalorimetric Study of Bacterial Growth [J]. Thermochim. Acta, 1988, 123: 33-41
    
    [26]汤厚宽,谢昌礼,宋昭华,等.生物热动力学研究—大肠杆菌生长速率和激活能[J].物理化学学报,1987,3(2):113-115
    
    [27] Zhang H. L., Yu X. F., Li X. X., et al. A Study of Promotive and Fungistatic Actions of Steroidal Saponin by Microcalorimetric Method[J]. Thermochim. Acta, 2004,416: 71-74
    
    [28] Zhang H. L., Liu Y. J., Sun H. T. Determination of Thermograms of Bacterial Growth and Study of Optimum Growth Temperature[J]. Thermochim. Acta, 1993,216: 19-23
    
    [29] Nan Z. D., Xiang Y., Wang Z. Y., et al. Microcalorimetric Investigation of Growth Conditions of Petroleum Bacteria[J]. Thermochim. Acta, 1999, 338: 1-6
    
    [30]李晓霞,潘晓茹,吴莉莉,等.麦冬对大肠杆菌代谢作用的微量量热法研究[J].山东中医药大学学报,2001,25(4):307-309
    
    [31] Yu L., Hu X. G., Zhang H. L., et al. The Effects of Environmental Conditions on the Growth of Petroleum Microbes by Microcalorimetry[J]. Thermochim. Acta, 2000, 359: 95-101
    
    [32]王莉衡.基因工程菌E.coli的热动力学研究[D].西安:西北大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700