用户名: 密码: 验证码:
节节麦—黑麦杂种和双二倍体的分子和细胞遗传学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用幼胚培养和秋水仙素处理产生了节节麦(Aegilops tauschii,2n=2x=14, DD)和黑麦(Secale cereale,2n=2x=14, RR)间的杂种和双二倍体。节节麦和黑麦正反交结实率和种子发育程度有较大差异,以节节麦作父本,杂交结实率为8.5%,成胚率为3.8%,培养授粉14天后的3个幼胚不能萌发,未能产生杂种植株;以节节麦作母本,杂交结实率为70.1%,成胚率为48.0%,选择授粉后14天、16天的幼胚进行胚培养,成苗率分别为36.0%(9/25)和72.2%(26/36)。
     利用细胞学和SSR分子标记对杂种植株进行鉴定,表明节节麦-黑麦杂种含有双亲的全套染色体。节节麦-黑麦杂种F1的花粉母细胞(PMCs)在减数分裂MI染色体平均构型为10.84Ⅰ+1.57Ⅱ+0.01Ⅲ。利用原位杂交技术,对杂种花粉母细胞中期Ⅰ染色体进行分析,三价体中R-D-R和D-R-D联会分别占66.7%、33.3%。二价体中D-D、D-R和R-R类型联会的频率分别是8.6%,83.3%和8.2%。杂种中出现D-D、R-R、D-R-D和R-D-R联会方式表明存在染色体组内非同源染色体之间的配对或不同染色体组的非同源染色体间的配对,这可能与节节麦、黑麦基因组内或基因组间非同源染色体存在重复基因和重复序列有关或进化易位有关。
     利用杂种幼胚愈伤组织诱导和再生技术产生了节节麦-黑麦杂种幼胚无性系,继代培养420天的再生杂种植株表现形态学变异和PMCs减数分裂MI染色体配对频率的提高,其PMCs减数分裂MI染色体构型为7.59Ⅰ+3.10Ⅱ+0.05Ⅲ+0.01Ⅳ。利用原位杂交技术分析表明其染色体结构和数量没有改变。提示体细胞无性系变异可能是增加部分同源染色体配对,增加属间物种间基因交流的一个新途径。
     节节麦-黑麦杂种秋水仙素加倍的研究结果表明越冬前分孽期进行处理比越冬后的返清期处理有较好的成活率、加倍率和植株结实率。越冬前分孽期对杂种幼苗利用秋水仙素处理16小时(15℃)效果最好。对节节麦-黑麦双二倍体C1到C4代的细胞学和育性研究表明,其体细胞染色体数2n=28的植株的比例从C1的57.1%提高到C4的92.5%,PMC减数分裂MI二价体数目从11.70提高到12.25,平均结实率从24.5%提高到51.3%,表明该双二倍体逐代趋向稳定。来自不同结实率的C0双二倍体各代的结实率有一定的差异。不同结实率的C0单株,其后代的结实率和最初C0的结实率有关,C0的结实率越高,后代的平均结实率和单株最高结实率也高。利用染色体C-带和基因组原位杂交鉴定了节节麦-黑麦双二倍体的真实性。节节麦-黑麦双二倍体有较好的育性,是结合D和R基因组一体的小麦族中的新物种,开展小麦遗传进化研究和育种利用的四倍体新种质。
     利用两套分别扩增重复序列和单拷贝序列的酶切组合EcoRⅠ-MseⅠ、PstⅠ-MseⅠ引物对杂种F1和双二倍体的扩增结果发现,基因组的序列变异主要发生于杂种F1,序列消除是主要的。上述两套酶切组合引物扩增带中,节节麦基因组在杂种F1消失带数占其总消失带数的比例分别为70.00%和52.95%;该比例在黑麦中分别为96.90%和81.64%。染色体加倍后,亲本序列变异以很少的频率发生在双二倍体各世代中。MSAP分析表明节节麦和黑麦杂交和加倍能够导致节节麦和黑麦基因组序列甲基化状态改变,主要发生在杂种F1,以甲基化为主;加倍后主要发生在双二倍体的早期世代,在C2代以后,没有检测到甲基化的改变。本研究结果推测节节麦-黑麦双二倍体在细胞学稳定过程中序列遗传改变比表观遗传改变有更密切的相关性。
Intergeneric hybrids and amphidiloid between Aegilops tauschii (2n=2x=14, DD) as female parent and Secale cereale (2n=2x=14, RR) were produced through embryo culture and colchicine treatment. The apparent differences of the seed set and embryo recovery in the reciprocal cross between Ae. tauschii and S. cereale in were observed. The seed set rate and embryo recovery frequency using rye as the female parent was 8.5% and 3.8%, no hybrid plant was obtained by culturing 3 hybrid embryos 14 days after pollination。While in the reciprocal cross, the seed set and embryo recovery was 70.1% and 48.0%, respectively. Of the 36 hybrid embryos rescued from 16 days after pollination,26 (72.2%)embryos germinated, the survival rate was higher than 36.0%(9/25)of the hybrid embryos rescued from 14 days after pollination.
     The F1 hybrids were characterized by both cytological and SSR molecular marker analysis, and the results proved that the hybrids contained complete set of choromosomes from both parents. The average chromosome configuration of pollen mother cells (PMCs) of the F1 haploid hybrids at metap.hase I was 10.84Ⅰ+1.57Ⅲ+0.01Ⅲ. By genomic in situ hybridization (GISH), three types of bivalents were observed in the haploid F1 hybrids, including D-D pairing, R-R pairing, and D-R pairing with frequencies of 8.6%, 8.2% and 83.3%, respectively. Two types of trivalents, D-R-D and R-D-R pairing, were also observed and their frequencies were 33.3% and 66.7%. These indicated that some bivalents or trivalents were involved in chromosomes belonging different homoeologous groups. The presence of D-R-D and R-D-R associations in the F1 hybrids (DR) were possibly related to evolutionary translocations of the rye chromosomes. The occurrence of chromosome pairing between different homoeology groups in the Ae. tauschii×S. cereale hybrid may be associated with the existence of both duplicate genes and families of repetitive DNA sequence located in nonhomologous chromosomes.
     The somaclones from hybrid embryo were produced by the embryo-callus-regenerated plants. The average chromosome configuration of PMC of the some plants from subculture 420 days was 7.59Ⅰ+3.10Ⅱ+0.05Ⅲ+0.01Ⅳ, the frequencies of the chromosomes pairing was much higher than that of the hybrid embryo-rescued F1 plants. No variation in chromosomes number or structures in these regenerated plants was revealed by GISH. The results showed that somaclone variation was possibly a new way of increasing chromosome pairing and genetic transfer beween the related species.
     The survival rates, doubling rates and seed set of the colchicine-treated hybrid plants at tiller stage before winter were higher than those at return green stage after winter. The best results with 100% survival rate and 100% doubling rate was obtained from the F1 hybrid colchicine-treated 16 hours at 15℃at tiller stage before winter. The fertility and cytology studies of the Ae.tauschii-S. cereale amphidiploids from C1 to C4 generations showed that the percentage of its progenies with chromosome number of 2n=28 increased from 57.1% to 92.5%, the mean numbers of bivilants in the PMCs from11.70 to 12.25, and the mean seeds set from 24.5% to 51.3%, with the maximum seed set of one C4 plant reaching 70.5%. These results indicated that the amphidiploid had a tendence of stability. The amphidiploid was further confirmed by chromosome C-banding and GISH analisis. This amphidploids with good seed set chould be a new tetraploid species with both R and D genome and useful genetic resources for wheat and Triticale improvement as well as evolution study.
     The AFLP analysies were conducted using two primer comibinations of EcoRⅠ-MseⅠ(E/M) and PstⅠ-MseⅠ(P/M), which primarily amplify repetitiv and low copy sequences, repectively. The results showed that the main type of genetic changes was sequence elimination with about 70.00% and 52.95% of Ae.tauschii parental bands losts, and 96.90% and 81.64% of the rye parental bands losts occurred in the F1 plants for E/M and P/M primers, respectively. The MSAP analyses showed that the cytosine methylation alterations, with its main types of methylation modification were only observed in the F1 hybrids and amphidiploids C1 progenies, but not in amphidiploids C2, C3 and C4 progenies. These results indicated that the increasement of fertility of amphidiploid from C1 to C4 progenies was possibly related to the DNA sequence elimilation of F1 hybrids and amphidiploids.
引文
刁现民,孙敬三.植物体细胞无性系变异的细胞学和分子生物学研究进展[J].植物学通报,1999,16(4):372-377.
    关和新,陆普媛.植物人工异源多倍体的遗传和后遗传变化[J].中国生物工程杂志,2003,23(9):343-349.
    洪德元.植物细胞分类学[M].北京:科学出版社,1990.
    胡楷.外因遗传学及其重要意义[J].遗传,2002,24(6):734-738.
    刘爱华,王建泼.序列消除与异源多倍体植物基因组的进化[J].武汉植物学研究,2004,22(2):158-162.
    刘爱华,王建波,朱英国.芸薹属多倍体植物基因组进化的RAPD分析[J].植物分类学报,2003,41(6):520-530.
    刘朝晖,陈佩度.小麦染色体配对遗传控制系统的作用研究[J].南京农业大学学报,1999,22(1):1-5.
    刘惠吉,曹寿椿,王华等.南农矮脚黄四倍体不结球白菜新品种的选育[J].南京农业大学学,1990,13(2):33-40.
    刘文革,王鸣阎志红.蔬菜作物多倍体育种研究进展[J].长江蔬菜,2003,1:29-33.
    李立会,董玉琛.在组织培养中属间杂种的体细胞变异研究[J].中国农业科学,1995,28(6):9-19.
    李树贤,吴志娟,杨志刚等.同源四倍体茄子品种新茄一号的选育[J].中国农业科学,2002,35(6): 686-689.
    马国斌,王鸣,郑学勤.甜瓜组织培养再生植株中的四倍体变异[J].园艺学报,1999,26(2):128-130.
    孙静贤,丁开宇,王兵益.植物多倍体研究的回顾与展望[J].武汉植物学研究,2005,23(5):482-490.
    孙元枢.中国小黑麦遗传育种研究与应用[M].2002,浙江科学技术出版社.
    辛志勇,徐惠君,陈孝等.应用生物技术向小麦导入黄矮病抗性的研究[J].1991,中国科学,B 辑,1:36-42.
    周朴华,何立珍,刘选明.组织培养中用秋水仙素诱发黄花菜同源四倍体的研究[J].中国农业科学,1995,28(1):49-55.
    Adams K L, Cronn R, Percifield R, et al. Genes duplicated bypolyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing [J]. Proc. Natl. Acad. Sci. USA, 2003,100:4649-4654.
    Alkhimova A G, Heslop-Harrison J S, Shchapova A L, et al. Rye chromosome variability in wheat-rye addition and substitution lines [J]. Chromosome Res,1999,7:205-211.
    Appels R, Moran L B, Gustafson J P. Rye heterochromatin I:Studies on clusters of the major repeating sequence and the identification of a new dispersed repetitive sequence element [J]. Can. J. Genet. Cytol,1986,28:645-657.
    Armstrong K C, Keller W A. Chromosome pairing in haploids of Brassica campestris [J]. Theor. Appl. Genet,1981,59:44-52.
    Attia T, Ekingen H, Robbelen G. Origin of 3D suppressor of homoeologous pairing in hexaploid wheat[J]. Z Pflanzenzuecht,1979,83:121-126.
    Axelsson T, Bowman C M, Sharpe A G, et al. Amphidiploid Brassica juncea contains conserved progenitor genomes [J]. Genome,2000,43 (4):679-688.
    Baumel A, Ainouche M, Kalendar R, et al. Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C. E. Hubbard (Poaceae) [J]. Mol. Biol. Evol. 2002,19:1218-1227.
    Baumel A, Ainouche M, Levasseur J E. Molecular investigations in populations of Spartina anglica C. E. Hubbard (Poaceae) invading coastal Brittany (France) [J]. Mol. Ecol,2001,10: 1689-1701.
    Bedbrook J R, Jones J, Dell M O, et al. Molecular characterization of telomeric heterochromatin in Secale species [J]. Cell,1980,9:545-560.
    Bender J. Cytosine methylation of repeated sequences in eukaryotes:the role of DNA pairing [J]. Trends Biochem. Sci,1998,23:252-256.
    Bernard S, Bernard M. Creating new forms of 4x,6x and 8x primary Triticale associating both complete R and D genomes [J]. Theor. Appl. Genet,1987,74:55-59.
    Blakeslee A F, Averg B. Methods of inducing doubling of chromosomes in plants [J]. J. Heredity, 1937,28:392-411.
    Bothmer R, Claesseon von L. Production and meiotic pairing of intergenric hybrids of Triticum× Dasypyrum species [J]. Euphytica,1990,51:109-117.
    Bouko E V, Bakaev N S, Maximov N G, et al. Does DNA content change in the course of Triticale breeding [J]. Cereal Res. Com,1984,12:99-100.
    Bretagnolle F, Trompson J D. Gametes with the somatic chromosome number:mechanisms of their formation and role in the evolution of autopolyploid plants [J]. New phytol,1995,129:1-22.
    Brown P T H, Gobel E, Lorz H. RFLP analysis of Zea mays callus cultures and their regenerated plants [J]. Theor. Appl. Genet,1991,81:227-232.
    Brown P T H, Kyozuka J, Sukekiyo Y, et al. Molecular changes in protoplast-derived rice plants[J]. Mol Gen Genet,1990,223:324-328.
    Burow M D, Simpson C E, Starr J L, et al. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): Broadening the gene pool of a monophyletic polyploid species[J]. Genetics,2001,159:823-837.
    Burr B, Burr FA. Activation of silent transposable elements. In:Nelson O E (ed) Plant transposable elements. Plenum Press, New York,1988, pp: 317-324.
    Cai X W. Production and cytogenetics of Triticum tauschii-Secale cereale hybrid and amphidipliod. In: 8th Int Wheat Genetics Symp, Beijing.1992, pp:361-363.
    Chen P D, Tsujimoto H, Gill B. Transfer of ph gene promoting homoeologous pairing from T. speltoides to common wheat[J]. Theor. Appl. Genet,1994,88:97-101.
    Chen Z J, Pikaard C S. Epigenetic silencing of RNA polymerase Ⅰ transcription:a role for DNA methylation and histone modification in nucleolar dominance[J]. Genes Dev,1997b,11: 2124-2136.
    Chen Z J, Pikaard C S. Transcriptional analysis of nucleolar dominance in polyploid plants:Biased expression silencing of progenitor rRNA genes is developmentally regulated in Brassica [J]. Proc. Natl. Acad. Sci. USA,1997a,94:3442-3447.
    Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids[J]. Annu. Rev. Plant Biol,2007,58:377-406.
    ChuY. Pachytene analysis and observations of chromosome associations in haploid rice[J]. Cytologia, 1967,32:87-95.
    Comai L, Yyagi A P, Winter K. Phenotypical instability andrapid gene silencing in newly formed Arabidopsis allotetraploids [J]. Plant Cell,2000,12:1551-1567.
    Crane C F, Beversdorf W D, Bingham E T. Chromosome pairing and associations at meiosis in haploid soybean (Glycine max) [J]. Can. J. Genet. Cytol,1982,24:293-300.
    Devaux P, Kilian A, Kleinhofs A. Anther culture and Hordeum bulbosum-derived barley doubled haploids:mutations and methylation[J]. Mol. Gen. Genet,1993,241:674-679.
    Dewey D R. Thegenomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae [M]. In:Gustafson J P. (Eds.), Gene manipulation in plant improvement. Plenum Press, New York.1984, pp:209-279.
    Dyck P L, Kerber R R. Inheritance in hexaploid wheat of adult plant leaf rust resistance derived from Aegilops squarrosa[J]. Can. J. Genet. Cytol,1970,12:175-180.
    Fedak G. Cytogenetics of a hybrid and amphiploid between Hordeum pubiflorum and Secale africanum [J]. Can. J. Genet. Cytol,1985,27:1-5.
    Fedak G. Cytogenetics of tissue culture regenerated hybrids of Triticum tauschii×Secale cereale [J]. Can. J. Genet. Cytol,1984, (26):382-386.
    Fedoroff N. Transposons and genome evolution in plants [J]. Proc. Natl. Acad. Sci. USA,2000, 97 (13):7002-7007.
    Feldman M, Levy A A. Acceleration of genome evolution by allopolyploidy:wheat as a model. In: Proceedings of the 10th International Wheat Genetics Symposium, Paestum, Italy,1-6 September. Vol.1. Edited by N. E. Pogna, M. Romano, E. A. Pogna, and G. Galterio, Institute Sperimentaperla Cerealicoltura, Rome, Italy,2003, pp:11-16.
    Feldman M, Liu B, Segal G, et al. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes [J]. Genetics,1997,147: 1381-1387.
    Fernandez-Calvin B, Benavente E, Orellana J. Meiotic pairing in wheat-rye derivatives detected by genomic in situ hybridization and C-banding—A comparative analysis[J]. Chromosoma,1995, 103:554-558.
    Feuillet C, Keller B. Comparative genomics in the grass family:Molecular characterization of grass genome structure and evolution [J]. Annals of Botany,2002,89:3-10.
    Ford L. Chromosome association in Zea mays monoploid[J]. The Nucleus,1970,13:99-105.
    Franke R. Uber das auftreten von unreduzierten Gamenten beiangiospermen [J]. Arch Zuch tungsf orsch (Berlin),1975,5:201-208.
    Gaut B S, Doebley J F. DNA sequence evidence for the segmentalallotetraploid origin of maize [J]. Proc. Natl. Acad. Sci. USA,1997,94:6809-6814.
    Gerstel D U, Burns J A. Phenotypic and chromosomal abnormalities associated with the introduction of heterochromatin from Nictiana otophora into N. tabacum[J]. Genetics,1967,56:483-502.
    Gill B S, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum) [J]. Genome,1991, 34:830-839.
    Gill B S, Raupp W W. Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat [J]. Crop Sci,1987,27:445-450.
    Gill B S, Waines J G. Paternal rugulation of seed development in wheat hybrids [J]. Theor. Appl. Genet, 1978,25:251-265.
    Gillies C B. The nature and extent of synaptonemal complex formation in haploid barley [J]. Chromosoma,1974,48:441-453.
    Grant D, Cregan P, Shoemaker R C. Genome organization in dicots:Genome duplication in Arabidopsis and synteny between soybean and Arabidopsis [J]. Proc. Natl. Acad. Sci. USA,2000,97: 4168-4173.
    Grant V. Cytogenetics of the hybrid Giliamillefoliata xachilleacfolia. I. V ariations in meiosis and polyploidy rate as affected by nutritional and genetic conditions [J]. Chromosoma,1952,5: 372-390.
    Guo M, Davis D, Birchler J A. Dosage effects on gene expression in a maize ploidy series [J]. Genetics, 1996,142:1349-1355.
    Gupta P K, Fedak G. Genetic control of meiotic chromosome pairing in polyploids in the genus Hordeum[J]. Can. J. Genet. Cytol,1985,27:515-530.
    Gupta P K, Fedak G. Preferential intragenomic chromosome pairing in two new diploid intergeneric hybrids between Hordeum and Secale[J]. Genome,1987,29:594-597.
    Gustafson J P. The evolutionary development of Triticale: the wheat-rye hybrid [J]. Evol. Bio,1976, 9:107-135.
    Guyot R, Keller B. Ancestral genome duplication in rice [J]. Genome,2004,47:610-614.
    Hagerup O. The spontaneous formation of haploid, polyploidand aneuploid embryos in some orchids [J]. Kongel Danshe Videnskab Selskab Biol Meddelelser,1947,20:19-22.
    Hanson R E, Zhao X P, Islam Faridi M N, et al. Evolution of interspersed repetitive elements in Gossypium (Malvaceae) [J]. Am. J. Bot,1999,85 (10):1364-1368.
    Houchins K, O'Dell M, Flavell R B, et al. Cytosine methylation and nucleolar dominance in cereal hybrids [J]. Mol. Gen. Genet,1997,255:294-301.
    Huang S, Sirikhachornkit A, Su X J, et al. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat [J]. Proc. Natl. Acad. Sci. USA,2002,99:8133-8138.
    Hutchinson J, Miller T E, Reader S M. C-banding at meiosis as a means of assessing chromosome affinities in the Triticeae [J]. Can. J. Genet. Cytol,1983,25:319-323.
    James M G, Stadler J. Molecular characterization of mutator systems in maize embryogenic callus cultures indicates Mu element activity in vitro [J]. Theor. Appl. Genet,1989,77:383-393.
    Kaeppler S M, Heidi F, Rhee Y. Epigenetic aspects of somaclonal variation in plants [J]. Plant Molecular Biology,2000,43:179-188.
    Kaeppler S M, Phillips R L. DNA methylation and tissue culture-induced variation in plants [J]. In Vitro Cell Dev. Biol,1993a,29:125-130.
    Kaeppler S M, Phillips R L. Tissue culture-induced DNA methylation variation in maize [J]. Proc. Natl. Acad. Sci. USA,1993b,90:8773-8776.
    Karpechenko G D. Polyploid hybrids of Raphanus sativus Ⅹ Brassica oleracea L [J]. Bull. Appl. Bot, 1927,17:305-408.
    Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid[J]. Genetics,2002,160:1651-1659.
    Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat [J]. Nature Genetics,2003,33 (1):102-106.
    Kawakubo J, Taira T. Intergeneric hybrids between Aegilops sqarrosa and Secale cereale and their meiotic chromosome behaviour [J]. Plant Breeding,1992,109:108-115.
    Kerber E R, Dyck L P. Inheritance in hexaploid wheat of leaf rust resistance and other characters derivedfrom Aegilops squarrosa [J]. Can. J. Genet. Cytol,1969,11:639-647.
    Kihara H. Discovery of DD analyzer, one of the ancestors of T. vulgare[J]. Agric. Hortic (Tokyo), 1944,19:889-890.
    Kimber G. Genome analysis in the genus Triticum. In:Sakamotos (ed), Kyoto, Japan. Proc.6th. Int. Wheat Genet. Sympt,1983, pp:23-28.
    Kostoff D A. Contribution to the sterility and irregularities in the meiotic processes caused by virus diseases [J]. Genetics,1933,15:103-114.
    Krolow K D.4x Triticale, production and use in Triticale breeding [J]. Proc.4th. Int. Wheat Genet. Symp,1973,237-243.
    Krolow K D. Untersuchungen uber die Kreuzbarkeit zwischen Weizen und Roggen [J]. Z. Pflanzucht, 1970,64:44-72.
    Kruse A. An in vivo/vitro embryo culture technique [J]. Hereditas,1974,77:219-224.
    Lapitan N L V, Sears R G, Gill B S. Translocations and other karyotypic structural changes in wheat x ry hybrids regenerated from tissue culture[J]. Theor. Appl. Genet,1984,68:546-554.
    Larkin P J, Ryan S A, Brettell R I S, et al. Heritable somaclonal variation in wheat [J]. Theor. Appl. Genet,1984,67:443-455.
    Larkin P J, Scowcroft W R. Somaclonal variation:a novel source of variability from cell cultures for plant improve-ment[J]. Theor. Appl. Genet,1981,60:197-214.
    Lee H S, Chen Z J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids [J]. Proc. Natl. Acad. Sci. USA,2001,98:6753-6758.
    Levy A A, Feldman M. The impact of polyploidy on grass genome evolution [J]. Plant Physiol,2002, 130:1587-1593.
    Li S P. Tissue culture of hybrid embryo of distant hybridization in Triticum tauschii [J]. Plant Physiology Communications,1999,35:13-15.
    Liu B, Brubaker C L, Mergeai G, et al. Polyploid formation in cotton is not accompanied by rapid genome changes [J]. Genome,2001,44:321-330.
    Liu B, Hu B, Dong Y Z, et al. Speciation-induced heritable cytosine methylation changes in ployploid wheat [J]. Progress in Natural Science,2000,10:601-606.
    Liu B, Vega J M, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops Ⅱ. Changes in low-copy coding DNA sequences [J]. Genome,1998b,41:535-542.
    Liu B, Vega J M, Segal G, et al. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops I. Changes in low-copy noncoding DNA sequences [J]. Genome,1998a,41: 271-277.
    Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids [J]. Mol. Phylogenet Evol,2003,29:365-379.
    Liu B, Wendel J F. Non-mendelian phenomena in allopolyploidgenome evolution [J]. Current Genomics,2002,3 (6):1-17.
    Liu B, Wendel J F. Retrotransposon activation followed by rapid repression in introgressed rice plants [J]. Genome,2000,43:874-880.
    Liu D C, Lan X J, Yang Z J, et al. Aunique Aegilops tauschii genotype needless to immature embryo culture in cross with wheat [J]. Acta Botanica Sinica,2002,44:708-713.
    Lu B R, Bothmer R. von. Cytogenetic studies of the intergeneric hybrids between Secale cereale and Elymus caninus, E. brevipes, and E. tsukushiensis (.Triticeae:Poaceae)[J]. Theor. Appl. Genet, 1991,81:524-532.
    Lutz A M. A preliminary note on the chromosomes of Oenothera lamarckiana and one of its mutants [J]. Science,1907,26:151-152.
    Ma X F, Fang P, Gustafson J P. Polyploidization-induced genome variation in triticale [J]. Genome, 2004,47:839-848.
    Ma X F, Gustafson J P. Timing and rate of genome variation in Triticale following allpoly ploidization [J]. Genome,2006,49:950-985.
    Ma X F, Rodriguez Milla M A J, Gustafson P. AFLP-based genome studies of Triticale following polyploidization, In:Proceedings of the 5th International Triticale Symposium, Vol. Ⅰ, edited by Aniol E, Arseniuk, K,2002, pp:89-94.
    Madlung A, Masuelli R W, Watson B, et al. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids [J]. Plant Physiol,2002,129: 733-746.
    Martienssen R A, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi [J]. Science,2001,293:1070-1074.
    Masterson J. Stomatal size in fossil plants:Eidence for polyploidy in the majority of angiosperms [J]. Science,1994,264:421-424.
    McClintock B. The significance of responses of the genome to challenge [J]. Science,1984,226: 792-801.
    Melnyk J, Unrau J. Pairing between chromosomes of Aegilops squarrosa L. var.'typica' and Secale cereale L. car.'Prolific'[J]. Can. J. Genet. Cytol,1959,1:21-25.
    Miller T E. The homoeologous relationships between the chromosomee of rye and wheat current status[J]. Can. J. Genet. Cytol,1984,26:578-589.
    Mittelsten S O, Jakovleva L, Afsar K, et al. A change of ploidy can modify epigenetic silencing [J]. Proc. Natl. Acad. Sci. USA,1996,93:7114-7119.
    Mok D W S, Peloquin S J. Breeding value of 2n pollen (diplandroids) in tetraploid×diploid crossed in potatoes [J]. Theor. Appl. Genet,1975a,46.
    Murashige T, Skoog F. Arevised medium for rapid growth and bioassays with tobacco tissue cultures [J]. Physiol. Plant,1962,15:473-497.
    Naranjo T, Fernandez-Rueda P. Homoeology of rye chromosome arms to wheat [J]. Theor. Appl. Genet,1991,82:577-586.
    Neijizing M G. Number and localization of sets of homologous segments in the genome of rye on the basis of Giemsa banded metaphase-Ⅰ chromosome associations in a haploid [J]. Genetics,1985, 66:41-52.
    Neijzing M G. Chiasma formation in duplicated segments of the haploid rye genome [J]. Chromosoma, 1982,85:287-298.
    Neves N, Silva M, Heslop-Harrison J S, et al. Nucleolar dominance in triticales:control by unlinked genes [J]. Chromosome Res,1997,5:125-131.
    Newton W C F, Pelleo C. Primu lakew ensis and its derivatives [J]. J. Genet,1929,20:405-467.
    Nijkamp H J J, Van Der Plas L H W, Van Aartrijk J. Progress in plant cellular and molecular biology [M]. Dordrecht:Kluwer Academic Publishers,1990,163-168.
    Olhoft P.M. DNA methylation pattern changes induced by maize tissue culture. M.S. thesis, University of Minnesota, St. Paul. MN.1996.
    Omara J G. Cytogenetic studies on Triticalel. A method for determinating the effect of individual Secale chromsomes on Triticum [J]. Genetics,1940,25:401-408.
    Orellana J, Vazquez J F, Carrillo J M. Genome analysis in wheat-rye-Aegilops caudata trigeneric hybrids [J]. Genome,1989,32:169-170.
    Ozdan H, Tuna M, Arumuganathan K. Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group [J]. J. Hered,2003,94:260-264.
    Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (.Aegilops-Triticum) group [J]. Plant Cell,2001,13:1735-1747.
    Peschke V M, PHillips R L, Gengenbach B G. Dis-covery of transposable element activity among progeny of tissue culture-derived maize plants [J]. Science,1987,238:804-807.
    Peschke V M, PHillips R L, Gengenbach B G. Genetic and molecular analysis of tissue culture-derived Ac elements [J]. Theor. Appl. Genet,1991a,82:121-129.
    Peschke V M, PHillips R L. Activation of the maize transposable element suppressor-mutator (Spm) in tissue culture[J]. Theor. Appl. Genet,1991b,81:90-97.
    PHillips R L, Kaeppler SM, Olhoft P. Genetic instability of plant tissue culture:breakdown of normal controls [J]. Proc. Natl. Acad. Sci. USA,1994,91:5222-5226.
    Prilyuk L V. Intergeneric hybrids between Triticum monococcum L. and Secale cereale L [J]. Genetika, 1984,20:1344-1348.
    Ramsey J, Schemske D W. Pathways, mechanisms, and rates of polyploid formation in flowering plants [J]. Annu. Rev. Ecol. Syst,1998,29:467-501.
    Rao L N, Rao MVP. Evidence of duplicate genes coding for 6-phosphogluconate dehydrogenase in rye [J]. Genet. Res,1980,35:309-312.
    Riley R, Chapman V. Genetic control of the cytologically diploid behavior of hexaploid wheat [J]. Narure,1958,182:713-715.
    Roder M S, Korzun V, Wendehake K, et al. A microsatellite map of wheat [J]. Genetics,1998,149: 2007-2023.
    Rozynek B, Guenther T, Hesemann C U. Gel electrophoretic investigations of prolamins in eu-and alloplasmatic octoploid primary tricticale forms [J]. Theor. Appl. Genet,1998,96:46-51.
    Saal B, Wricke G. Development of simple sequence repeat markers in rye (Secale cereale L.) [J]. Genome,1999,42:964-972.
    SanMiguel P, Gaut B S, Tikhonov A, et al. The paleontology of intergene retrotransposons of maize: Dating the strata. Nat.gen,1998,20:43-45.
    Santos J L, Jimenez M M, Diez M. Meiosis in haploid rye:extensive synapsis and low chiasma frequency [J]. Heredity,1994,73:580-588.
    Sears E R, Okamoto M. Intergenomic chromosome relationship in hexaploid wheat [J]. In: Proc.10th. Int. Conger. Genet,1958,2:258-259.
    Sears E R. A wheat mutant conditioning anintermediate level of homoeologous chromosome pairing [J]. Can. J. Genet. Cytol,1982,24:715-719.
    Sears E R. An induce mutant with homoeologous pairing in wheat [J]. Can. J. Genet. Cytol,1977, 19:585-593.
    Sears E R. Chromosome engineering in wheat [J]. Stadler. Symp,1972,4:23-38.
    Sears E R. The aneuploids of common wheat [J]. Mo. Agric. Exp. Stn. Res. Bull,1954,572: 1-59.
    Sears E R. The transfer of leaf-rust resistance from Ae. umbellulata to wheat [J]. Brookh Symp Biol, 1956,9:1-12.
    Shaked H, Kashkush K, Ozkan H, et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat [J]. The Plant Cell,2001,13:1749-1759.
    Sharma H C, Gill B S. Current ststus of wide hybridization in wheat [J]. Euphytica,1983,32:17-31.
    Sharma S, Balyan H S, Kulwai P L, et al. Study of interspecific SSR polymorphism among 14 species from Triticum-Aegilops group [J]. Wheat Inf Serv,2002,95:23-28.
    Shoemaker R C, Polzin K, Labate J. Genome duplication in soybean (Glycine subgenus soja) [J]. Genetics,1996,144:329-338.
    Soltis D E, Soltis P S. Molecular data and the dynamic nature of polyploidy [J]. Crit. Rev. Plant Sci, 1993,12:243-273.
    Soltis P S, Soltis D E. The role of genetic and genomic attributesin the success of polyploids [J]. Proc. Natl. Acad. Sci. USA,2000,97:7051-7057.
    Song K, Lu P, Tang K, et al. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploidy evolution [J]. Proc. Natl. Acad. Sci. USA,1995,92:7719-7723.
    Stebbins G L. Chromosomal Evolution in Higher Plants [M]. London:Edward Arnold,1971.
    Sybenga J. Rye chromosome nomenclature and homoeology relationships:workshop report [J]. Z. Pflanzenzuchtg,1983,80:297-304.
    Vaucheret H, Fagard M. Transcriptionalg ene silencing in plants:targets, inducer and regulators [J]. Trends Genet,2001,17:29-35.
    Vision T J, Brown D G, Tanksley S D. The origins of genomic duplicationsin Arabidopsis [J]. Science, 2000,290:2114-2117.
    Voylokov V, Tikhenko N D. Triticale as a model for study of genome interaction and genome evolution in allopolyploid plants, In:Proceedings of the 5th International Triticale Symposium,2002, Vol Ⅰ, pp:63-70.
    Wagenaar E B. Meiotic restitution and the origin of polyploidy Ⅰ. Influence of geno type on polyploid seed set in a Triticum crassum×T. turgidum hybrid [J]. Can. J. Genet. Cytol,1968,10:836-843.
    Wall A M, Riley R, Chapman V. Wheat mutant on chromosome of Triticum aestivum affecting homoelogous meiotic chromosome pairing [J]. Genet. Res,1971,18:311-319.
    Wang R R C. An assessment of genome analysis based on chromosome pairing in hybrids of perennial Triticeae[J]. Genome,1989,32:179-189.
    Wang R R C. Diploid perennial intergeneric hybrids in the tribe Triticeae:IV. Hybrids among Thinopyrum bessarabicum, Pseudoroegneria spicata, and Secale montanum [J]. Genome,1988, 30:356-360..
    Wendel J F. Genome evolution in polyploidy [J]. Plant Mol. Biol,2000,42:225-249.
    Wilson A S. On wheat and rye hybrids. Proc. Bot. Soc. Edinburgh,1876,12:286-288.
    Winkler H. uber die experimentelle Erzeugung von Pflanzen mitabweichend Chromosomenzahlen [J]. Z. Bot,1916,8:417-531.
    Wolfe K H. Yesterday's polyploidization and the mystery of diploidization [J]. Nat. Rev. Genet,2001, 2:333-341.
    Zeller F J, Hsam S L K. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In: Sakamotos (ed), Proc.6th. Int. Wheat. Genet. Symp,1983, pp161-173.
    Zhao X P, Si Y, Hanson R E, et al. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton [J]. Genome Res,1998,8 (5):479-492.
    Zhuang L F, Qi Z J, Ying J, et al. Development and identification of a set of Triticum aestivum-Thinopyrum bessarabicum disomic alien addition lines [J]. Acta Genetica Sinica,2003, 30:919-925.
    Zillinsky F J, Borlaug N E. Progress in developing Triticale as an economic crop [J]. CIMMYT Reseach Bulletin,1971,17:18-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700