用户名: 密码: 验证码:
利用DNA条形码技术鉴定药用双子叶植物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双子叶植物进化等级高、适应性强、种类繁多、分布广泛,具有重要的药用及生物学价值。然而传统的鉴定方法不能满足日益复杂的分类需求,食用、药用与有毒植物的鉴定存在一定困难。植物DNA条形码(DNA barcoding)技术使用短的标准分子片段作为分子标签,能够对物种进行快速、准确、有效鉴定,该技术的出现为解决这一难题提供了可能。
     DNA条形码研究是目前分类学研究的热点,也是进展最迅速的学科前沿之一,该领域研究的热点和关键问题是通用条形码序列的筛选、评价和验证,但其在植物界尚未达成共识。2009年,rbcL+matK复合序列被推荐为植物通用条形码,但其物种水平鉴定成功率仅72%。2010年本课题组推荐nrDNA ITS2序列作为药用植物DNA条形码。但是这些研究中都缺乏在单一科属内大量密切相关物种的验证,DNA条形码序列搜索和验证工作还在继续。
     本文分别选取了双子叶植物纲离瓣花亚纲和合瓣花亚纲的两个大科:豆科和菊科为代表进行研究,将目前业内热点候选序列matK, rbcL, psbA-trnH以及nrDNA ITS2(ITS)序列针对豆科、菊科植物分别进行比较研究,探讨在同一科属下更多近缘种存在的情况下候选序列的真实鉴定能力。
     结果显示,自行设计引物的ITS2序列在广泛的实验植物范围内通用性强,种间差异较大,种间变异和的种内变异存在显著性差异,具有明显的Barcoding Gap,同时物种鉴定成功率高。在豆科植物中,ITS2能够正确鉴定24个药典种及其66个混伪品,对于196个属的1126个物种的1507份豆科植物样品,ITS2在属的鉴定水平高达100%,在物种水平也达到80%以上的高鉴定效率。ITS2序列应用于黄芪属的研究也进一步验证了该序列的高效性,ITS2能够正确鉴定黄芪属41个密切相关的药用植物物种。此外,ITS2的二级结构也具有一定的系统学及分类学意义,具有重要的应用价值。在494个属的2,315个菊科植物物种的3,490份序列中,ITS2与其它几个候选的DNA条形码序列相比,综合评价指标最优,并能够将97.4%的序列正确鉴定到属,76.4%的序列正确鉴定到种(BLAST 1方法)。
     matK的鉴定能力也很强,对于409个属的1,079个豆科植物物种的1,355份序列在种和属的水平分别达到了约80%及96%,然而其通用性较差限制了该序列的广泛使用; psbA-trnH基因间隔区也表现出了较高的鉴定能力,它可以将豆科药用植物及其常见伪品共97个物种进行成功鉴别,但是该序列存在PLOY结构影响了其测序质量,而且公共数据库中该序列数据较少,未能进行大规模验证。
     因此综合考虑,我们认为ITS2基因间隔区在豆科菊科植物中具有广泛“通用性”及在单一科属内的“高效性”,故推荐ITS2序列作为双子叶植物纲DNA条形码通用序列,并可考虑与其他两个序列matK, psbA-trnH组合进一步完善植物DNA条形码研究。本研究为药用植物鉴定、濒危物种保护、资源评价等提供了新的思路,并展示了DNA条形码技术实际应用的广泛前景。
With high levels of evolution, adaptation and diversities, the dicotyledon plants are widely distributed and are of great importantance of medicinal and biological values. The identification of different species is difficult especially based solely on morphological characteristics; additionally, the limitations in traditional taxonomy prevent these techniques from meeting the complicated demands of species recognition. DNA barcoding is a novel technology that uses a standard DNA sequence to facilitate simple and accurate species identification.
     DNA barcoding is a rapidly developing frontier technology, it has become a hotspot and has gained worldwide attentions in the scientific academica. The studies about how to select, evaluate and verify the appropriated DNA barcode candidate has been reported increasingly.Up until now, a consensus has not been reached regarding which DNA sequences can be used as the best plant barcodes. In 2009, the DNA regions rbcL, matK have been recommended by Plant working group of CBOL (the Consortium for the Barcode of Life) as DNA barcodes for plants, yet the successful identification rate of this barcoding combination is only 73% at specific level, the work is "far from perfect". In 2010, Chen et al. compared the practicality of using the suggested barcode sequences against a large number of medicinal plants and recommended ITS2 as a DNA barcode. But the study to evaluate these regions for species identification in the large plant taxon which includes a large number of closely related species is rarely reported. Thus, works of this area keep on performing.
     We tested the feasibility of using four proposed DNA regions(matK, rbcL, psbA-trnH and nrDNA ITS2, ITS) for discriminating plant species within Fabaceae (Choripetalae) and Asteraceae (Sympetalae), the two large families of dicotyledon which include a large number of closely related species.
     Our results demonstrate that ITS2 was useful in regards to its universality, sequence variation, "barcoding gap" and identification capability of the Fabaceae and Asteraceae family. In Fabaceae, twenty-four species found in the Chinese Pharmacopoeia, along with another sixty-six species including their adulterants, were successfully identified based on ITS2 sequences. In addition, ITS2 worked well, with over 80.0% of species and 100% of genera being correctly differentiated for the 1,507 sequences derived from 1,126 species belonging to 196 genera. The study of "identification of Astragalus Plants in China using ITS2" further verified the power of ITS2.41 of 47 Astragalus close related species have been identified by ITS2. Besides, ITS2 secondary structure is of significance for the systematic and taxonomic study. Therefore, ITS2 may be a useful barcode for Astragalus species, with great application value. In Asteraceae, ITS2 performed best of other markers. We also explored the species discriminating power of ITS2 on a large-scale within Asteraceae using 3,490 sequences representing 2,315 species belonging to 494 different genera and found that it correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively (BLAST 1 method).
     matK is a useful barcode for Fabaceae species. Of 1,355 plant samples collected from 1,079 species belonging to 409 diverse genera, matK precisely identified approximately 80% and 96% of them at the species and genus levels, respectively. However, at present, the use of matK as a universal barcode remains problematic due to the absence of universal primers. The psbA-trnH plastid region is as a powerful marker to the authentication of Fabaceae medicinal plants. We correctly differentiate 22 species belonging to 19 genera listed in the Chinese Pharmacopoeia only using the psbA-trnH plastid region. Moreover, the psbA-trnH regions could also distinguish between 97 medicinal plant species of Fabaceae commonly used including their adulterants, and seven adulterants of outgroup species. Yet, there were some poor quality psbA-trnH sequences mainly due to the presence of long mononucleotide repeats. In addition, the psbA-trnH sequences in public database is not much, large-scale verification can not be done.
     Altogether, ITS2 region has already been recommended as a core marker for taxonomic classification and barcoding in dicotyledon based on its universal and high species identification rate within Fabaceae and Asteraceae. Furthermore, we propose that matK and psbA-trnH be used in combination with ITS2 as standard barcodes. This approach will significantly broaden the application of DNA barcoding to resolve classification problems at the genera and species levels of dicotyledon and provide public with a powerful tool for practical use.
引文
[1]陈士林,宋经元,姚辉,等.药用植物DNA条形码鉴定策略及关键技术分析.中国天然药物,2009,7(5):322-327.
    [2]Hebert PD,Cywinska A,Ball SL,et al.Biological identifications through DNA barcodes.Proc Biol Sci.2003,270(1512):313-321.
    [3 ]Hebert PD, Ratnasingham S, deWaard JR.Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species.Proc Biol Sci.2003,270(S1):S96-S99.
    [4]CBOL Plant Working GroupA DNA barcode for land plants. Proc Natl Acad Sci USA.2009, 106:12794-12797.
    [5]Chen SL, Yao H, Han JP, et al. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLos ONE.2010,5:e8613.
    [6]中国科学院中国植物志编辑委员会.中国植物志,北京:科学出版社,1995.
    [7]Edwards D, Horn A, Taylor D, et al. DNA barcoding of a large genus, Aspalathus L. (Fabaceae). Taxon.2008,57:1317-1327.
    [8]Hollingsworth ML, Clark AA, Forrest LL, et al.Selecting barcoding loci for plants:evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour.2009,9:439-457.
    [9]Newmaster SG, Ragupathy S. Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol Ecol Resour.2009,9:172-180.
    [10]郑汉臣,蔡少青.药用植物学与生药学.北京:人民卫生出版社,2003.
    [11]邵鹏柱,曹晖.中药分子鉴定.上海:复旦大学出版社,2004.
    [12]陈之端,冯昱.植物系统学进展.北京:科学出版社,1998.
    [13]Frezal, L., R. Leblois. "Four years of DNA barcoding:Current advances and prospects." Infect Genet Evol.2008,8(5):727-736.
    [14]Marshall, E. TAXONOMY:Will DNA Barcodes Breathe Life Into Classification? Science. 2005,307(5712):1037.
    [15]Valentini, A., F. Pompanon, et al. "DNA barcoding for ecologists." Trends Ecol Evol.2009, 24(2):110-117.
    [16]Kress WJ, Wurdack KJ, Zimmer EA, et al.Use of DNA barcodes to identify flowering plants.Proc Natl Acad Sci USA.2005,102(23):8369-8374.
    [17]Newmaster SG, Fazekas AJ, Ragupathy S.DNA barcoding in land plants:evaluation of rbcL in a multigene tiered approach.Can J Bot,2006,84(3):335-341.
    [18]Chase MW, Cowan RS, Hollingsworth PM, et al.A proposal for a standardised protocol to barcode all land plants.Taxon,2007,56(2):295-299.
    [19]Kress WJ, Erickson DL.A two-locus global DNA barcode for land plants:The coding rbcL gene complements the non-coding trnH-psbA spacer region.PLoS ONE,2007,2(6):e508.
    [20]Pennisi E.Taxonomy.Wanted:a barcode for plants.Science,2007,318(5848):190-191.
    [21]Lahaye R, Van der Bank M, Bogarin D, et al. DNA barcoding the floras of biodiversity hotspots.Proc Natl Acad Sci USA,2008,105(8):2923-2928.
    [22]Hollingsworth ML, Andra CA, Forrest LL, et al.Selecting barcoding loci for plants:evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants.Mol Ecol Resour,2009,9(2):439-457.
    [23]Yao H, Song JY, Ma XY, et al. Identification of Dendrobium species by a candidate DNA barcode sequence:The chloroplast psbA-trnH intergenic region. Planta Med,2009,75(6): 667-669.
    [24]Song JY,Yao H,Li Y, et al.Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique.J Ethnopharmacol,2009,124(3):434-439
    [25]Pang XH, Song JY, Zhu YJ, et al. Using DNAbarcoding to identify species within Euphorbiaceae. Planta Medica,2010. doi:10.1055/s-0030-1249806.
    [26]Luo K,Chen SL,Chen KL,et al.Application of DNA barcoding to the medicinal plants of the Araceae family.Planta Med,2009,75(4):416.
    [27]Hajibabaei, M., D. H. Janzen, et al.. "DNA barcodes distinguish species of tropical Lepidoptera.” Proc Natl Acad Sci USA.2006,103(4):968-971.
    [28]Meusnier, I., G Singer, et al. "A universal DNA mini-barcode for biodiversity analysis." Bmc Genomics 2008,9(1):214.
    [29]Ebert, D. and R. Peakall. Chloroplast simple sequence repeats (cpSSRs):technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Resour.2009,9(3):673-690.
    [30]陈士林,姚辉,宋经元,等.基于DNA barcodingi(条形码)技术的中药材鉴定.世界科学技术-中医药现代化,2007,9(3):7-12.
    [31]宁淑萍,颜海飞,郝刚,等.植物DNA条形码研究进展.生物多样性,2008,16(5):417-425.
    [32]Chase MW, Fay MF. Barcoding of plants and fungi. Science 2009,325:682-683.
    [33]任保青,陈之端.植物DNA条形码技术.植物学报.2010,45(1):1-12.
    [34]Thomas C. Plant Barcode Soon to Become Reality. Science 2009,325:526.
    [1]Chinese Pharmacopoeia Commission. The Pharmacopoeia of the People's Republic of China, vol.1. Chemical Industry Press, Beijing.2005.
    [2]中国科学院中国植物志编辑委员会.中国植物志.北京:科学出版社,1995.
    [3]Okamoto T. The protective effect of glycyrrhizin on anti-Fas antibody-induced hepatitis in mice. Eur J of Pharmacol.2000,387:229-232.
    [4]Watanabe H, Miyaji C, Makino M, et al. Therapeutic effects of glycyrrhizin in mice infected with LP-BM5 murine retrovirus and mechanisms involved in the prevention of disease progression. Biotherapy.1996,9:209-220.
    [5]Miyaoka R, Monga M. Use of traditional Chinese medicine in the management of urinary stone disease. International Brazil Journal Urology.2009,35:396-405.
    [6]Ma XQ, Shi Q, Duan JA,et al. Chemical analysis of Radix Astragali (Huangqi) in China:a comparison with its adulterants and seasonal variations. J Agr Food Chem.2002,50: 4861-4866.
    [7]Devaiah KM, Venkatasubramanian P. Development of SCAR marker for authentication of Pueraria tuberosa (Roxb. ex. Willd.) DC. Curr Sci India.2008,94:1306-1309.
    [8]Hou X, Liu JE, Zhao YZ. Molecular phylogeny of Caragana (Fabaceae) in China. J Syst Evol. 2008,46:600-607.
    [9]Newmaster SG, Ragupathy S. Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol Ecol Resour.2009.9:172-180.
    [10]Maddison DR, Schulz KS, Maddison WP. The Tree of Life Web Project. Zootaxa.2007, 1668:19-40.
    [11]Chase MW, Cowan RS, Hollingsworth, PM, et al. A proposal for a standardised protocol to barcode all land plants. Taxon.2007,56:295-299.
    [12]Kress WJ, Erickson DL. A Two-Locus Global DNA Barcode for Land Plants:The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE.2007,2: e508.
    [13]Kress WJ, Erickson DL, Jones FA, et al. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci USA.2009.106:18621-18626.
    [14]Lahaye R, Van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA.2008,105:2923-2928.
    [15]Song JY, Yao H, Li Y, et al. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. J Ethnopharmacol.2009,124:434-439.
    [16]CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci USA.2009, 106:12794-12797.
    [17]Chase MW, Fay MF. Barcoding of plants and fungi. Science.2009,325:682-683.
    [18]Chen SL, Yao H, Han JP, et al. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLos ONE.2010,5:e8613.
    [19]Chiou SJ, Yen JH, Fang CL,et al. Authentication of medicinal herbs using PCR-Amplified ITS2 with specific primers. Planta Med.2007,73:1421-1426.
    [20]Coleman AW. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet.2003,19:370-375.
    [21]Coleman AW. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res.2007,35:3322-3329.
    [22]Schultz J, Maisel S, Gerlach D, et al. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 2005,11:361-364.
    [23]Eddy SR. Profile hidden Markov models. Bioinformatics.1998,14:755-763.
    [24]Eddy SR. HMMER:Profile hidden Markov models for biological sequence analysis. Washington University School of Medicine, St Louis, MO.2000 (http://hmmer. wustl. edu/).
    [25]Keller A, Schleicher T, Schultz J, et al.5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene.2009.430:50-57.
    [26]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.1994,22:4673-4680.
    [27]Tamura K, Dudley J, Nei M,et al. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology Evolution.2007,24:1596-1599.
    [28]Meyer CP, Paulay G. DNA barcoding:Error rates based on comprehensive sampling. PLoS Biol.2005,3:2229-2238.
    [29]Meier R, Zhang G, Ali F. The Use of Mean Instead of Smallest Interspecific Distances Exaggerates the Size of the" Barcoding Gap" and Leads to Misidentification. Syst Biol.2008, 57:809-813.
    [30]Naser SM, Dawyndt P, Hoste B,et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Micr.2007,57:2777.
    [31]Slabbinck B, Dawyndt P, Martens M,et al. TaxonGap:a visualization tool for intra-and inter-species variation among individual biomarkers. Bioinformatics.2008,24:866-867.
    [32]Ross HA, Murugan S, Li WLS. Testing the reliability of genetic methods of species identification via simulation. Syst Biol.2008,57:216-230.
    [33]Dong TTX, Ma XQ, Clarke C,et al. Phylogeny of Astragalus in China:Molecular evidence from the DNA sequences of 5S rRNA spacer, ITS, and 18S rRNA. J Agr Food Chem.2003, 51:6709-6714.
    [34]Hsiao PG. Studies on the original plant and pharmacognosy of traditional Chinese medicine: Huangqi. Acta Pharmacol Sin.1964,11:117-123.
    [35]Hou X, Liu JE, Zhao YZ,et al. Inter-specific relationships of Caragana microphylla, C. davazamcii and C. korshinskii (Leguminosae) based on ITS and trnL-F data sets. Acta Phytotaxon Sin.2006,44:126-134.
    [36]Ma CC, Gao YB, Guo HY, et al. Inter-specific transition among Caragana microphylla, C. davazamcii and C. korshinskii along geographic gradient. Ⅱ. Characteristics of photosynthesis and water metabolism. Acta Bot Sin.2003,45:1228-1237.
    [37]Wojciechowski MF, Sanderson MJ, Baldwin BG, et al. Monophyly aneuploid Astragalus (Fabaceae):evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am J Bot.1993,80:711-722.
    [38]Zhang ML. Ancestral area analysis of the genus Caragana (Leguminosae). Acta Bot Sin. 2004,46:253-258.
    [39]Edwards D, Horn A, Taylor D,et al. DNA barcoding of a large genus, Aspalathus L. (Fabaceae). Taxon.2008,57:1317-1327.
    [40]Hollingsworth ML, Clark AA, Forrest LL, et al.Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour.2009,9:439-457.
    [41]Clement BA, Goff CM, Forbes TDA. Toxic amines and alkaloids from Acacia rigidula. Phytochemistry.1998,49:1377-1380.
    [42]Williams MC, Molyneux RJ. Occurrence, concentration, and toxicity of pyrrolizidine alkaloids in Crotalaria seeds. Weed Science.1987,35:476-481.
    [43]Coleman, A.W. Is there a molecular key to the level of "biological species" in eukaryotes? A DNA guide. Mol Biol Evol.2009,50:197-203.
    [1]The State Pharmacopoeia Commission of the PRC. Pharmacopoeia of the People's Republic of China. Beijing:Chemical Industry Press 2005.
    [2]Block KI, Mead MN. Immune system effects of echinacea, ginseng, and astragalus:a review. Integr Cancer Ther 2003; 2:247.
    [3]Ryu YB, Curtis-Long MJ, Kim JH,et al. Pterocarpans and flavanones from Sophora flavescens displaying potent neuraminidase inhibition. Bioorg Med Chem Lett 2008; 18:6046-6049.
    [4]Liu RX, Wang Q, Guo HZ, et al. Simultaneous determination of 10 major flavonoids in Dalbergia odorifera by high performance liquid chromatography. J Pharmaceut Biomed 2005; 39:469-476.
    [5]Wang D, Li F, Jiang Z. Osteoblastic proliferation stimulating activity of Psoralea corylifolia extracts and two of its flavonoids. Planta Med 2001; 67:748-749.
    [6]Su Y, Li C, Gao Y, et al. Acryloylated glucose 3-nitropropanoates from Indigofera kirilowii. J Nat Prod 2005; 68:1785-1786.
    [7]Chen SL, Yao H, Han JP, et al. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE,2010; 5:e8613.
    [8]Kress WJ, Wurdack KJ, Zimmer EA, et al. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 2005; 102:8369-8374.
    [9]Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants:the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2007; 2:e508.
    [10]Chase MW, Cowan RS, Hollingsworth PM, et al. A proposal for a standardised protocol to barcode all land plants. Taxon 2007; 56:295-299.
    [11]Shaw J, Lickey EB, Schilling EE, et al. Comparision of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms:The tortoise and the hare Ⅲ. Am J Bot 2007; 94:275-288.
    [12]Song JY, Yao H, Li Y, et al. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. J Ethnopharmacol 2009; 124:434-439.
    [13]Yao H, Song JY, Ma XY, et al. Identification of Dendrobium Species by a Candidate DNA Barcode Sequence:The Chloroplast psbA-trnH Intergenic Region. Planta Med 2009; 75:667-669.
    [14]Newmaster SG, Fazekas AJ, Steeves RAD, et al. Testing candidate plant barcode regions in the Myristicaceae. Mol Ecol Resour 2008; 8:480-490.
    [15]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24:1596-1599.
    [16]Meyer CP, Paulay G. DNA barcoding:Error rates based on comprehensive sampling. PLoS Biol 2005; 3:2229-2238.
    [17]Meier R, Zhang G, Ali F. The Use of Mean Instead of Smallest Interspecific Distances Exaggerates the Size of the" Barcoding Gap" and Leads to Misidentification. Syst Biol 2008; 57:809.
    [18]Naser SM, Dawyndt P, Hoste B, et al.Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Micr 2007; 57:2777.
    [19]Slabbinck B, Dawyndt P, Martens M, et al. TaxonGap:a visualization tool for intra-and inter-species variation among individual biomarkers. Bioinformatics 2008; 24:866-867.
    [20]Lahaye R, van der Bank M, Bogarin D, et al. DNA barcoding the floras of biodiversity hotspots. P Natl Acad Sci USA,2008; 105:2923-2928.
    [21]Fazekas AJ, Burgess KS, Kesanakurti PR, et al. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 2008; 3:e2802.
    [22]Hollingsworth ML, Clark AA, Forrest LL, et al.Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour 2009; 9:439-457.
    [23]Thomas C. Plant Barcode Soon to Become Reality. Science 2009; 325:526.
    [24]Edwards D, Horn A, Taylor D, et al. DNA barcoding of a large genus, Aspalathus L. (Fabaceae). Taxon 2008; 57:1317-1327.
    [25]Newmaster SG, Ragupathy S. Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol Ecol Resour 2009; 9:172-180.
    [26]Dong TTX, Ma XQ, Clarke C, et al. Phylogeny of Astragalus in China:Molecular evidence from the DNA sequences of 5S rRNA spacer, ITS, and 18S rRNA. J Agr Food Chem 2003; 51:6709-6714.
    [1]Lewis, G, Schrire B, Mackinder B,et al. Legumes of the world. Royal Botanic Gardens, Kew, Richmond, Surrey, England.2005.
    [2]The State Pharmacopoeia Commission of the PRC. Pharmacopoeia of the People's Republic of China. Beijing:Chemical Industry Press 2005.
    [3]Hebert PD, Cywinska A, Ball SL,et al. Biological identifications through DNA barcodes. Proc Biol Sci,2003; 270:313-321.
    [4]Hebert PD, Penton EH, Burns JM, et al. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA,2004; 101:14812-14817.
    [5]Hebert, PD, Ratnasingham S, deWaard, JR. Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species. Proc Bio Sci,2003b; 270 (Suppl.1): S96-S99.
    [6]Marshall, E. Taxonomy—will DNA barcodes breathe life into classification? Science 2005; 307:1037.
    [7]Hajibabaei M, Janzen DH, Burns JM, et al. DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA,2006; 103:968-971.
    [8]Kress WJ, Wurdack KJ, Zimmer EA,et al. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA,2005; 102:8369-8374.
    [9]Pennisi E. Taxonomy. Wanted:a barcode for plants. Science,2007; 318:190-191.
    [10]Chase MW, Cowan RS, Hollingsworth PM,et al. A proposal for a standardised protocol to barcode all land plants. Taxon,2007; 56:295-299.
    [11]Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants:The coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE,2007; 6:e508.
    [12]Lahaye R, van der Bank M, Bogarin D, et al. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci,2008; 105:2923-2928.
    [13]Newmaster SG, Fazekas AJ, Steeves RAD,et al. Testing candidate plant barcode regions in the Myristicaceae. Mol Ecol Resour,2008; 8:480-490.
    [14]Selvaraj D, Sarma RK, Sathishkumar R. Phylogenetic analysis of chloroplast matK gene from Zingiberaceae for plant DNA barcoding. Bioinformation,2008; 3:24-27.
    [15]Newmaster SG, Ragupathy S. Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol Ecol Resour,2009; 9 (Suppl.1):172-180
    [16]Starr JR, Naczi RFC, Chouinard BN. Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae). Mol Ecol Resour,2009; 9 (Suppl.1):151-163.
    [17]Ragupathy S, Newmaster SG, Murugesan M, et al. DNA barcoding discriminates a new cryptic grass species revealed in an ethnobotany study by the hill tribes of the Western Ghats in southern India. Mol Ecol Resour,2009; 9 (Suppl.1):164-171.
    [18]CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci USA,2009; 106:12794-12797.
    [19]Hu JM, Lavin M, Wojciechowski MF,et al. Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplast trnK/matK sequences and its implications for evolutionary patterns in Papilionoideae. Am J Bot,2000; 87:418-430.
    [20]Wojciechowski MF, Lavin M, Sanderson MJ. A Phylogeny of Legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the Family. Am J Bot,2004; 91:1846-1862.
    [21]Lavin M, Herendeen PS, Wojcieehowski MF. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 2005; 54:575-594.
    [22]Meyer CP, Paulay G. DNA barcoding:Error rates based on comprehensive sampling. PLos Biol 2005; 3:2229-2238.
    [23]Chen SL, Yao H, Han JP,et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE,2010; 5:e8613.
    [24]Meier R, Zhang G, Ali F. The use of mean instead of smallest interspecific distances exaggerates the size of the" Barcoding Gap" and leads to misidentification. Syst Biol 2008; 57:809.
    [25]Slabbinck B, Dawyndt P, Martens M,et al. TaxonGap:a visualization tool for intra-and inter-species variation among individual biomarkers. Bioinformatics 2008; 24:866-867.
    [26]Ross H A, Murugan S, Li WLS. Testing the reliability of genetic methods of species identification via simulation. Syst Biol 2008; 57:216-230.
    [27]Fazekas AJ, Burgess KS, Kesanakurti PR, et al. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLos ONE,2008,3, e2802.
    [28]Thomas C. Plant barcode soon to become reality. Science 2009,325:526.
    [29]Thompson JD, Higgins DG, Gibson TJ.CLUSTAL W. improving the sensitivity of progressiv e multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids res 1994,22:4673.
    [30]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24:1596-1599.
    [1]中国科学院中国植物志编辑委员会.中国植物志第42卷:第一分册.1993,北京:科学出版社.
    [2]赵明,段金廒,黄文哲,等.中国黄芪属(Astragalus Linn.)药用植物资源现状及分析.中 国野生植物资源,2000,19(6):5-9.
    [3]国家药典委员会编.中华人民共和国药典.2005,北京:化学工业出版社.
    [4]Wei, X.; Zhang, J.; Li, J.; Chen, S. Astragalus mongholicus and Polygonum multiflorum's protective function against cyclophosphamide inhibitory effect on thymus. Am. J. Chinese Med.2004,32,669-680.
    [5]赵宝玉,童德文,葛鹏斌,等.我国西部草原疯草危害调查.中国草地,2003,25(4):65-68.
    [6]徐南平.浅述中药质量对临床疗效的影响.湖北中医学院学报.2001,3(4):29.
    [7]燕玲,宛涛,张众,等.膜荚黄芪与蒙古黄芪植物学特征分析.内蒙古农业大学学报,2001,4(7):1-77.
    [8]马建军.内蒙古黄芪属(Astragalus)植物的分类学研究.内蒙古师范大学硕士学位论文,2004,1-82.
    [9]张明理,席以珍,康云,等.国产黄芪属簇毛黄芪亚属花粉形态及其系统学意义.云南植物研究,2003,25:46-54.
    [10]黎斌.中国西北地区11种黄耆属植物的细胞学研究.西北植物学报,2002,22(3):467-475.
    [11]张庆芝,吴晓俊,刘涤,等.黄芪及其民间习用品DNA指纹图谱和有效成分含量的比较,中国药学杂志,2005,40(6):457-459.
    [12]Aaron Liston, Variation in the Chloroplast Genes rpoC1 and rpoC2 of the Genus Astragalus (Fabaceae):Evidence from Restriction Site Mapping of a PCR-Amplified Fragment, Am J Bot,1992,79(8):953-961.
    [13]丁士友,顾红雅,瞿礼嘉,等.PCR产物的RFLP分析在黄芪亚族(豆科)系统学研究中的应用初探.植物学报,1995,37(2):97-102.
    [14]Cheng KT, Su BC, Chen CT, et al.RAPD analysis of Astragalus medicines marketed in Tai Wan. Am J Chin Med.2000,28:273-278.
    [15]Wojciechowski M F, Sanderson M J, Baldwin, B G, et al. Monophyly of aneuploid astragalus (Fabaceae):Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am J Bot,1993,80:711.
    [16]Ma XQ, Duan JA, Zhu DY, et al. Species identification of Radix Astragali (Huangqi) by DNA sequence of its 5SRNA spacer domain. Phytochemistry,2000,54:363-368.
    [17]Tina T. X. Dong, Xiao Q. Ma, Clarles Clarke, et al. Phylogeny of Astragalus in China: molecular evidence from the DNA sequences of 5S rRNA spacer, ITS, and 18S rRNA. J Agr Food Chem,2003,51(23):6709-6714.
    [18]康云,张明理,基于ITS序列对中国簇毛黄耆亚属(黄耆属)系统学问题的初步研究,植物学报:英文版Acta Botanica Sinica,2003,45(2):140-145.
    [19]Maddison, D.R., Schulz, K.S., Maddison, W.P. The Tree of Life Web Project. Zootaxa. 2007,1668:19-40.
    [20]Hebert P D, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes. Proc R Soc Biol Sci SerB,2003,270(1512):313-321.
    [21]Hebert P D, Ratnasingham S, deWaard J R. Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Biol Sci SerB,2003, 270(Supp 1):S96-S99.
    [22]Kress W J, Erickson D L. A two-locus global DNA barcode for land plants:The coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE,2007,2(6): e508.
    [23]Lahaye R, van der Bank M, Bogarin D, et al. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA,2008,105(8):2923-2928.
    [24]Song J Y, Yao H, Li Y, et al. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. J Ethnopharmacol,2009,124(3):434-439.
    [25]Yao H, Song J Y, Ma X Y, et al. Identification of Dendrobium species by a candidate DNA barcode sequence:The chloroplast psbA-trnH intergenic region. Planta Med,2009,75(6): 667-669.
    [26]CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci USA 2009,106(31):12794-12797.
    [27]Chen S L, Yao H, Han J P, et al. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE,2010,5(1):e8613.
    [28]Coleman, A.W. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet.2003,19(7):370-375.
    [29]Chiou, S.J., Yen, J.H., Fang, C.L. et al. Authentication of medicinal herbs using PCR-Amplified ITS2 with specific primers. Planta Med.2007,73:1421-1426.
    [30]Coleman, A.W. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res.2007,35(10):3322-3329.
    [31]Wolf, M., Achtziger, M., Schultz, J., et al. Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA.2005, 11:1616-1623.
    [32]Meyer C P, Paulay G. DNA barcoding:error rates based on comprehensive sampling. PLoS Biol,2005,3(12):e422.
    [33]Meier, R., Zhang, G, Ali, F. The use of mean instead of smallest interspecific distances exaggerates the size of the" Barcoding Gap" and leads to misidentification. Syst. Biol. 2008,57(5):809-813.
    [34]Ross H A, Murugan S, Li W L. Testing the reliability of genetic methods of species identification via simulation. Syst Biol,2008,57(2):216-230.
    [35]朱英杰,陈士林,姚辉,等.重楼属药用植物DNA条形码鉴定研究.药学学报,2010,45(3):376-382.
    [36]罗焜,陈士林,陈科力,等.基于芸香科的植物通用DNA条形码研究.中国科学C辑:生命科学2010,40(4):342-351.
    [37]Pramod Kumar Prasad, Veena Tandon, Devendra Kumar Biswal, et al. Phylogenetic reconstruction using secondary structures and sequence motifs of ITS2 rDNA of Paragonimus westermani (Kerbert,1878) Braun,1899 (Digenea:Paragonimidae) and related species. BMC Genomics.2009,10 (Suppl 3):S25.
    [38]Chase M W, Salamin N, Wilkinson M, et al. Land plants and DNA barcodes:short-term and long-term goals. Philos Trans R Soc Lond B Biol Sci,2005,360:1889-1895.
    [39]Gonzalez M A, Baraloto C, Engel J, et al. Identification of Amazonian trees with DNA barcodes. PLoS ONE,2009,4(10):e7483.
    [40]Coleman, A.W. Is there a molecular key to the level of "biological species"in eukaryotes? A DNA guide. Mol.Biol.Evol.2009,50:197-203.
    [41]Hsiao, P.G Studies on the original plant and pharmacognosy of traditional Chinese medicine:Huangqi Acta. Pharmacol Sin.1964,11:117-123.
    [42]Wenninger J. Revision on Astragalus L. sect. Chlorostachys Bunge, sect. Phyllolobium Bunge and sect. Skythropos Simpson (Leguminosae). Mitt. Bot. Staatssamml. Munchen 1991,30:1-96.
    [43]陈士林,宋经元,姚辉,等.药用植物DNA条形码鉴定策略及关键技术分析.中国天然药物,2009,7(5):322-327.
    [1]Mueller MS, Karhagomba IB, Hirt HM, Wemakor E:The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics:agricultural, chemical and clinical aspects. J Ethnopharmacol 2000,73:487-493.
    [2]Wu W, Qu Y, Gao HY, Yang JY, Xu JG, Wu LJ:Novel Ceramides from Aerial Parts of Saussurea involucrata Kar. et. Kir. Arch Pharm Res 2009,32:1221-1225.
    [3]Haddad PS, Azar GA, Groom S, Boivin M:Natural health products modulation of immune function and prevention of chronic diseases. Complement Alternat Med 2005,2:513-520
    [4]Bayer RJ, Starr JR:Tribal interrelationships and phylogeny of the Asteraceae. Ann Mo Bot Gard 1998,85:242-256.
    [5]Hebert PD, Cywinska A, Ball SL, de Waard JR:Biological identifications through DNA barcodes. Proc Biol Sci 2003,270:313-321.
    [6]Evans KM, Wortley AH, Mann DG:An assessment of potential diatom "barcode" genes (cox1, rbcL,18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 2007,158:349-364.
    [7]Hogg ID, Hebert PD:Biological identification of springtails (Hexapoda:Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Can J Zool 2004,82:749-754.
    [8]Song JY, Yao H, Li Y, Li XW, Lin YL, Liu C, Han JP, Xie CX, Chen SL:Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. J Ethnopharmacol 2009,124:434-439.
    [9]Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH:Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 2005,102:8369-8374.
    [10]Kress WJ, Erickson DL:A Two-Locus Global DNA Barcode for Land Plants:The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE 2007,2: e508.
    [11]Lahaye R, van der BM, Bogarin D, Warner J, Pupulin F, Gigot G:DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 2008,105:2923-2928.
    [12]Chen SL, Yao H, Han JP, Liu C, Song JY, Shi LC, Zhu YJ, Ma XY, Gao T, Pang XH, Luo K, Li Y, Li XW, Jia XC, Lin YL, Leon C. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE 2010,5:e8613.
    [13]Chase MW, Cowan RS, Hollingsworth PM, van den BergC, Madrinan S, Petersen G, Seberg O, Jorgsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ,Conrad F, Salazar GA, Richardson JE, HollingsworthML, Barraclough TG, Kelly L, Wilkinson M: A proposal for a standardized protocol to barcode all land plants. Taxon 2007,56: 295-299.
    [14]Gonzalez MA, Baraloto C, Engel J, Mori SA, Petronelli P, Riera B, Roger A, Thebaud C, Chave J:Identification of Amazonian Trees with DNA Barcodes. PLoS ONE 2009,4: e7483.
    [15]Yao H, Song JY, Ma XY, Liu C, Li Y, Xu HX, Han JP, Duan LS, Chen SL:Identification of Dendrobium Species by a Candidate DNA Barcode Sequence:The Chloroplast psbA-trnH Intergenic Region. Planta Med 2009,75:667-669.
    [16]Kress WJ, Erickson DL, Jones FA, Swensond NG, Perez R, Sanjur O, Bermingham E: Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci USA 2009,106:18621-18626.
    [17]CBOL Plant Working Group:A DNA barcode for land plants. Proc Natl Acad Sci USA 2009,106:12794-12797.
    [18]Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SCH:Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 2008,3:e2802.
    [19]Thomas C:Plant barcode soon to become reality. Science 2009,325:526.
    [20]Meier R, Zhang GY, Ali F:The use of meaninstead of smallest inter-specific distances exaggerates the size of the "barcoding gap" and leads to misidentification. Syst Biol 2008, 57:809-813.
    [21]Meyer CP, Paulay G:DNA barcoding:error rates based on comprehensive sampling. PLoS Biol 2005,3:2229-2238.
    [22]Christopher PM, Gustav P:DNA Barcoding:Error Rates Based on Comprehensive Sampling. PLoS Biol 2005,3:e422.
    [23]Coleman AW:ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 2003,19:370-375.
    [24]Coleman AW:Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 2007,35:3322-3329.
    [25]Chiou SJ, Yen JH, Fang CL, Chen HL, Lin TY:Authentication of medicinal herbs using PCR-amplified ITS2 with specific primers. Planta Med 2007,73:1421-1426.
    [26]Coleman AW:Is there a molecular key to the level of "biological species" in eukaryotes? A DNA guide. Mol Biol Evol 2009,50:197-203
    [27]Linder CR, Goertzen LR, Heuvel BV, Francisco-Ortegac J, Jansen RK:a The Complete External Transcribed Spacer of 18S-26S rDNA:Amplification and Phylogenetic Utility at Low Taxonomic Levels in Asteraceae and Closely Allied Families Helianthus; phylogenetic method; ribosomal DNA repeat. Mol Phylogenet Evol 2000,14: 285-303.
    [28]Englund M, Pornpongrungrueng P, Gustafsson MHG, Anderberg AA:Phylogenetic relationships and generic delimitation in Inuleae (Asteraceae) based on ITS and cpDNA sequence data. Cladistics 2009,25:319-352.
    [29]Pelser PB, Nordenstam B, Kadereit JW, Watson LE:An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 2007,5694:
    1062-1077.
    [30]Sass C, Little DP, Stevenson DW, Specht CD:DNA barcoding in the Cycadales:testing the potential of proposed barcoding markers for species identification of Cycads. PLoS ONE 2007,2:el154.
    [31]Keller A, Schleicher T, Schultz, J, Muller T, Dandekar T, Wolf M:5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 2009,430:50-57.
    [32]Ross HA, Murugan S, Li WLS:Testing the reliability of genetic methods of species identification via simulation. Syst Biol 2008,57:216-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700