用户名: 密码: 验证码:
上海市地面沉降风险评价体系及风险管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究依托上海地区各类地面沉降的长期监测资料,根据上海地区地面沉降发生的机理,综合考虑地面沉降灾害对社会、经济可持续发展带来的严重影响,归纳出决定上海地区地面沉降风险程度的主要控制因子。据此开展地面沉降风险评价研究工作,确定风险评价要素,建立风险评价指标体系,构建风险评价模型,进行上海市地面沉降风险评价的实证研究;分析上海市采取地下水人工回灌措施对地面沉降风险的防治效果,并进一步探讨了地面沉降防治过程中地下水人工回灌对地质环境和地下水环境质量的影响,最终提出控制上海市地面沉降风险的分区管理对策。主要研究结论如下:
     1、通过对上海市地形地貌、基岩地质概况、第四纪地质、人文地质条件、工程地质条件等地质背景分析,结合近年来上海市地面沉降发展历史,分析上海市地面沉降发生的原因包括:受区内继承性特征新构造运动的影响,上海地区形成了二个凹陷和三个隆起,在凹陷带内第四系疏松堆积较厚,构成了地面沉降的物质基础;上海市地下水开采比较集中,地面沉降现象严重,并发育了数个沉降漏斗;通过数据分析表明,地下水的开发利用引起了地下水流场的变化,对地面沉降量的相对大小与分布特征产生影响。此外,工程建设活动也对地面沉降产生影响:以轨道交通为代表的线性工程建设对区域地面沉降空间格局影响较大;受深基坑降排水影响,浅部第Ⅰ承压含水层地下水位呈下降态势,中心城形成明显的地下水位漏斗,对地面沉降影响明显;城市建筑荷载对地面沉降具有长期影响。地面沉降造成上海市建筑物破坏、井口相对抬升、桥洞净空减少、市政设施破坏、港口码头或堤岸失效、江海水倒灌、洪涝、农田盐渍化等城市风险。
     2、根据上海地区地面沉降的特征与发生的机理分析,上海地区地面沉降地质灾害的风险要素由危险性和易损性这两个要素系列组成,以此要素建立上海市地面沉降风险评价指标体系。结合上海的实际情况,将上海地面沉降危险性增加的因素归纳为地面沉降易发程度、历史灾害强度、预测沉降速率、地势高程等指标;将上海地面沉降易损性增加的因素归纳为城市人口密度和单位面积的GDP以及建设用地所占比重,另外还包括市政设施:防汛墙长度、供水管密度、高架道路密度和轨道交通密度;影响易损性减小的因素为减灾防护的投入,包括单位面积减灾防护投入以及单位面积回灌投入。
     3、确定了上海地面沉降风险评价的主要内容为:危险性评价、易损性评价及风险评价三级模式,据此分别建立了上海地面沉降危险性评价模型、易损性评价模型和风险评价模型,其中,采用改进的模糊层次分析法建立适合上海地面沉降危险性评价模型;采用模糊综合评判法判别分区建立适合上海地面沉降易损性评价模型;采用统计分析法、基于Mapgis基础建立适合上海地面沉降风险性评价模型。
     4、利用危险性评价模型进行上海地面沉降危险性评价,得到结论:上海主要处于地面沉降危险性中等区,危险性高区主要分布于中心城区及与江浙两省交界的嘉定、金山局部地区,而地面沉降危险性低区主要分布在地质环境发育较好、地面沉降预测速率较低地区,以奉贤及青浦局部地区为代表。此外,三岛地区均属于地面沉降危险性中等区。
     5、利用易损性模型进行上海地面沉降易损性评价,得到结论:中心城区地面沉降易损性最为严重;原浦东新区也是地面沉降比较严重的地区,形成了高桥、张江、塘桥等区域性沉降漏斗,归为较高易损性区;宝山区和闵行区归为中等易损性区;松江区、原南汇区、嘉定区三个区归为较低易损性区;奉贤区、崇明县、金山区、青浦区四个区,归为低易损性区。
     6、利用风险性模型进行上海地面沉降风险性评价,得到结论:以中心城区为中心形成地面沉降的三级体系,即中心城区基本处于地面沉降风险高区,近郊区处于地面沉降较高至中等区,郊区处于地面沉降风险较低区。
     7、在地面沉降防治过程中,随着地下水人工回灌开发利用控制力度进一步加大,上海市第四承压含水层地下水位普遍呈现上升态势,且中心城、宝山区上升幅度大于10m以上;地下水人工回灌会导致回灌水源与地下水混合后的水质电导率下降,氧化还原电位升高,溶解氧含量有所升高,pH值有所降低,氯离子、重碳酸根离子的浓度有所下降,硫酸根、硝酸根离子的浓度有所升高,钠离子、钾离子、钙离子和镁离子的浓度均有所下降;此外,回灌初期地下水中总铁、总锰含量降低,且达到饮用水标准,但当回灌25-35天后发生含铁、含锰矿物组分重新溶出的现象,导致重金属浓度又超标;TOC、COD的浓度均逐渐升高,但并未超过回灌水源浓度值,未造成污染。因此,地下水人工回灌对于缓解地面沉降具有明显效果,对地下水水质有一定影响,但影响不大。
     8、针对上海市地面沉降的风险评价结果,本研究进一步提出建设上海市地面沉降管理区的风险管理对策。根据上海市地面沉降风险程度在空间上的分布特征,对应提出上海市地面沉降三级风险体系的管理区划,包括地面沉降重点防治管理区(Ⅰ区)、地面沉降次重点防治管理区(Ⅱ区)以及地面沉降一般防治管理区(Ⅲ区),详细划分各管理区所包含的范围,并从工程措施、规划控制、监测、预报、预警、规避、接受、防灾减灾教育等方面有针对性的提出各风险管理区的风险管理重点。
Relied on a lot of long-term monitoring data of land subsidence, and according to themechanism of land subsidence in Shanghai area, this study has considered the serious impactof land subsidence disasters on social and economic sustainable development, andsummarized the main condition which can decide the risk level of land subsidence inShanghai. This study has carried out the research work of risk assessment on land subsidencein Shanghai, including the determination of the risk assessment elements, the establishment ofrisk assessment system and building risk assessment model. In addition, this study also hasanalysized the control effects of land subsidence risk by artificial recharge of groundwater. Atlast, this study has raised the partition management countermeasures on the risk of groundsubsidence in Shanghai. The main conclusions are as follows:
     1. Based on the geological background analysis of topography, bedrock geology,Quaternary geology, humanities geological conditions, and engineering geological conditionsin Shanghai, and combied with the history of land subsidence in recent years, this study hasanalyzed the causes of land subsidence in Shanghai, including: the Shanghai region formedtwo depressions and three ridges, in the Quaternary loose piled is thick in depressions band,which constitute the material basis of ground subsidence; the groundwater compareconcentrated in Shanghai, and it leads to serious land subsidence and sedimentation funneldevelopment as well as a number of ground fissure zones; the development and utilization ofgroundwater caused the changes of groundwater flow field, which caused a great impact onthe relative size and distribution of land subsidence. In addition, construction activities havean impact on land subsidence. Land subsidence has caused the damage of buildings, relativeuplift of wellhead, reduce of clearance dong, destroy of municipal facilities, failure of port orbank, intrusion of river water, flooding, salinization of farmland.
     2. According to the characteristics and mechanism of land subsidence in Shanghai, therisk factors of land subsidence in Shanghai include two elements, hazard and vulnerability.Combined with the actual situation in Shanghai, the increased hazard factors of landsubsidence can be summarized as prone extent of ground subsidence, historical disasterintensity, forecast sedimentation rate and terrain elevation; the increased vulnerability factors of land subsidence can be summarized as urban population density, GDP per unit area, theproportion of land for construction, as well as municipal facilities, including the length offlood wall, the density of water pipe, the density of elevated and rail traffic. The impactfactors of reduced vulnerability are the inputs of disaster protection, including the inputs ofdisaster protection and recharge per unit area.
     3. The main contents of risk assessment on land subsidence in Shanghai are as follows:the establishment of the model on hazard, vulnerability and risk assessment.The hazardassessment model was established by improved fuzzy AHP. The vulnerability assessmentmodel was established by discriminant fuzzy comprehensive evaluation method. The riskassessment model was established by statistical analysis method, and based on Mapgis.
     4. The conclusions of hazard assessment on land subsidence in Shanghai are as follows:Shanghai is mainly in the middle hazard areas of ground subsidence. The high-risk areas aremainly distributed in the central city and Jiading, Jinshan areas which are at the junction ofJiangsu and Zhejiang provinces. The low risk areas are mainly distributed in thewell-developed geological environment and the low prediction rate of land subsidence, suchas Qingpu, Fengxian areas. In addition, Sandao region are in the middle hazard areas of landsubsidence.
     5. The conclusions of vulnerability assessment on land subsidence in Shanghai are asfollows: the vulnerability of land subsidence in downtown is most serious. The landsubsidence is more serious in Pudong areas, leading to the regional subsidence funnel inGaoqiao, Zhangjiang, Tangqiao, which are classified as high vulnerability zone. Baoshan andMinhang are classified as moderate vulnerability zone. Songjiang, Nanhui, and JiadingDistricts are classified as the lower vulnerability zone. Fengxian, Chongming, Jinshan, andQingpu Districts are classified as the lowest vulnerability zone.
     6. The conclusions of risk assessment on land subsidence in Shanghai are as follows: thethree level of land subsidence system formed with the central city as the center. Thedowntown is in the highest risk areas of land subsidence, peri-urban areas are in the higherrisk areas of land subsidence to the middle risk areas, and the rural is in the low risk areas ofland subsidence.
     7. With the control of artificial groundwater recharge increased, the level of fourth confined aquifer groundwater was generally upward, and the center of the city, as well asBaoshan District, rise more than10m. Artificial groundwater recharge causes theconductivity of recharge water mixed with the groundwater decreased, redox potential rised,dissolved oxygen content increased, pH value decreased, the concentrations of chloride ionand bicarbonate ions decreased, the concentrations of sulfate and nitrate ions increased, theconcentrations of sodium, potassium calcium and magnesium ions decreased. In addition,with groundwater recharging, the total iron and manganese contents was decreased, which canmeet the drinking water standards. But with the recharge going for25-35days, the iron andmanganese mineral components was re-dissoluted, leading to the concentrations of heavymetals cannot meet the drinking water standards. The concentrations of TOC and COD weregradually increased, but did not exceed the back concentration of recharge source, which didnot cause any pollution. In addition, the water quality after artificial groundwater rechargemay contain hazardous chemical substances and pathogenic microorganisms, which arehazard on human health and ecosystems. Therefore, the groundwater quality after artificialrecharge has some effects to groundwater environment.
     8. With the risk assessment results of land subsidence in Shanghai, this study furtherproposed the risk management countermeasures of land subsidence in Shanghai. According tothe spatial distribution characteristics of land subsidence in Shanghai, this study raised thecountermeasures about three corresponding system of risk management divisions, includingthe focus area of prevention and management of land subsidence (Ⅰ area), the sub-focusarea of prevention and management of land subsidence (Ⅱ area), as well as the general areaof prevention and management of land subsidence (Ⅲ area). The detailed range of eachmanagement area was divided, and the risk management priorities in each managementdistrict was proposed targeted from the engineering measures, planning control, monitoring,forecasting and early warning, avoidance, acceptance and education of disaster prevention andmitigation.
引文
[1] Alrifaiy I A. Land Subsidence In The Al-dahr Residential Area In Kuwait-ACase-History Study[J]. Quarterly Journal Of Engineering Geology,1990,23(4):337-346.
    [2]张阿根,刘毅,龚士良.国际地面沉降研究综述[J].上海地质,2000(4):1-7.
    [3]孙永福.我国城市地面沉降的现状与控制措施[J].工程勘察,1985(3):70-73.
    [4]段永侯.我国地面沉降研究现状与21世纪可持续发展[J].中国地质灾害与防治学报,1998(2):3-7.
    [5] Jiang H. Problems And Discussions In The Study Of Land Subsidence In TheSuzhou-Wuxi-Changzhou Area[J]. Quaternary Sciences,2005,25(1):29-33.
    [6]于军,王晓梅,武健强,等.苏锡常地区地面沉降特征及其防治建议[J].高校地质学报,2006(2):179-184.
    [7]谢建磊,王寒梅,何中发,等.上海市长江口及邻近海域地质调查现状及展望[J].上海地质,2008(4):17-23.
    [8]邢忠信,李和学,张熟,等.沧州市地面沉降研究及防治对策[J].地质调查与研究,2004(3):157-163.
    [9]何庆成,刘文波,李志明.华北平原地面沉降调查与监测[J].高校地质学报,2006(2):195-209.
    [10]金江军,潘懋.我国地面沉降灾害现状与防灾减灾对策[J].灾害学,2007(01):117-120.
    [11] Yin Y, Zhang Z, Zhang K. Land subsidence and countermeasures for itsprevention in China[J]. The Chinese Journal of Geological Hazard and Control,2005,16(2):1-8.
    [12] Carminati E, Enzi S, Camuffo D. A study on the effects of seismicity onsubsidence in foreland basins: An application to the Venice area[J]. Global AndPlanetary Change,2007,55(4):237-250.
    [13] Ortiz-Zamora D, Ortega-Guerrero A. Evolution of long-term land subsidencenear Mexico City: Review, field investigations, and predictive simulations[J].Water Resources Research,2010,46(1):13-15.
    [14] Chen G, Li T, He Y, et al. Formation Mechanism of Groundwater for the LandSubsidence[J]. Research Journal Of Chemistry And Environment,2012,16(2):56-62.
    [15] Carreon Freyre D. Land subsidence processes and associated ground fracturingin central Mexico[M]//2010:149-157.
    [16] Cui Z, Jia Y. Study on the mechanisms of the soil consolidation and landsubsidence caused by the high-rise building group in the soft soil area[J].Disaster Advances,2012,5(4):604-608.
    [17]严学新,龚士良,曾正强,等.上海城区建筑密度与地面沉降关系分析[J].水文地质工程地质,2002(6):21-25.
    [18] QIN W, ZHUANG X, HUANG H. Mechanism analysis of land surfacesubsidence in the modern Yellow River Delta[J]. Marine Sciences,2008,32(8):38-43.
    [19] MENG L, FENG Q, ZHANG H, et al. Mechanism Analysis and HazardAssessment on Land subsidence in Datun Central District of Xuzhou City[J].The Chinese Journal of Geological Hazard and Control,2008,19(3):60-63.
    [20] Rodriguez R, Lira J, Rodriguez I. Subsidence risk due to groundwater extractionin urban areas using fractal analysis of satellite images[J]. GeofisicaInternacional,2012,51(2):157-167.
    [21] HU B, JIANG Y, ZHOU J, et al. Assessment and Zonation of Land SubsidenceDisaster Risk of Tianjin Binhai Area[J]. Scientia Geographica Sinica,2008,28(5):693-697.
    [22] Wang G, Kang J, Yan G, et al. System Analysis and Numerical Simulation ofLand Subsidence in Shanghai[M]//2013:2578-2582.
    [23]杨艳,贾三满,王海刚.北京平原区地面沉降现状及发展趋势分析[J].上海地质,2010(04):23-28.
    [24]陆徐荣,朱明君,赵立鸿,等.苏州城市规划区应急地下水水源地建设建议及地面沉降效应分析[J].工程勘察,2013(06):56-60.
    [25]杨延昭.苏锡常地区地面沉降对京沪高速铁路的影响[D].西南交通大学,2012.
    [26] Cigna F, Cabral-Cano E, Osmanoglu B, et al. Detecting Subsidence-InducedFaulting In Mexican Urban Areas By Means Of Persistent ScattererInterferomentry And Subsidence Horizontal Grandient Mapping[J].2011IEEEInternational Geoscience And Remote Sensing Symposilium (IGARSS),2011:2125-2128.
    [27] JI Y, CHAI X, LIU Q, et al. Current situation and existing problems ofnumerical simulation of groundwater flow in a large-scale area[J]. Coal Geology&Exploration,2009,37(5):32-36.
    [28]魏子新,王寒梅,吴建中,等.上海地面沉降及其对城市安全影响[J].上海地质,2009(1):34-39.
    [29] Chong-xun M, Jie F, Gui-kai S, et al. Study on Flood Control Risk Managementfor Reservoir Earth Dam[J].20091st International Conference on InformationScience and Engineering (ICISE2009),2009:4518-4521.
    [30] Shook G. An assessment of disaster risk and its management in Thailand[J].DISASTERS,1997,21(1):77-88.
    [31]汪敏,刘东燕.滑坡灾害风险分析研究[J].工程勘察,2001(2):1-6.
    [32]张梁.地质灾害风险评价理论与方法[J].中国地质矿产经济,1996(4):40-45.
    [33]魏子新,王寒梅,吴建中,等.上海地面沉降及其对城市安全影响[J].上海地质,2009(1):34-39.
    [34]崔振东,唐益群.国内外地面沉降现状与研究[J].西北地震学报,2007(3):275-278.
    [35] Wang J, Gao W, Xu S, et al. Evaluation of the combined risk of sea level rise,land subsidence, and storm surges on the coastal areas of Shanghai, China[J].Climatic Change,2012,115(3-4):537-558.
    [36] Hu B, Zhou J, Wang J, et al. Risk assessment of land subsidence at Tianjincoastal area in China[J]. Environmental Earth Sciences,2009,59(2):269-276.
    [37] Jiang Y, Jia S, Wang H. Risk assessment and management of land subsidence inBeijing Plain[J]. The Chinese Journal of Geological Hazard and Control,2012,23(1):55-60.
    [38] Honegger D G, Hart J D, Phillips R, et al. Recent Prci Guidelines For PipelinesExposed To Landslide And Ground Subsidence Hazards[J]. Proceedings Of TheAsme International Pipline Conference2010,2010:71-80.
    [39] Jakob M, Holm K, Weatherly H, et al. Debris flood risk assessment forMosquito Creek, British Columbia, Canada[J]. Natural Hazards,2013,65(3):1653-1681.
    [40] Cui P, Xiang L, Zou Q. Risk assessment of highways affected by debris flows inWenchuan earthquake area[J]. Journal Of Mountain Science,2013,10(2):173-189.
    [41] Lin J, Chen C, Peng C. Potential hazard analysis and risk assessment of debrisflow by fuzzy modeling[J]. Natural Hazards,2012,64(1):273-282.
    [42] Xu X, Xu W, Jia K, et al. Assessment on the Impact of the Spatial Distributionof Construction Land on the Environment in Terms of Land Subsidence inShanghai City[J]. China Land Science,2010,24(10):69-73.
    [43] Zhang W, Wang R. Risk evaluation of the economic losses induced by landsubsidence in Shanghai from2001to2020[J]. Advances in Water Science,2005,16(6):870-874.
    [44] ZUO H, LIU T Z, LIN X H. Economic Benefit Risk Assessment Of ControllingLand Subsidence In Shanghai[J]. Environmental Geology,1993,21(4):208-211.
    [45]张建军.地面沉降预测及经济影响评价研究[D].天津大学,2006.
    [46]张维然,王仁涛.2001-2020年上海市地面沉降灾害经济损失评估[J].水科学进展,2005(06):870-874.
    [47]段正梁,张维然.地面沉降灾害经济损失评估理论体系研究——以上海市地面沉降灾害经济损失评估为例[J].自然灾害学报,2002(03):95-102.
    [48]姜媛,贾三满,王海刚.北京地面沉降风险评价与管理[J].中国地质灾害与防治学报,2012(01):55-60.
    [49]于军,武健强.苏锡常地区地面沉降风险评价管理模型研究初探[J].江苏地质,2008(02):113-117.
    [50]胡蓓蓓,姜衍祥,周俊,等.天津市滨海地区地面沉降灾害风险评估与区划[J].地理科学,2008(05):693-697.
    [51]董克刚,周俊,于强,等.天津市地面沉降的特征及其危害[J].地质灾害与环境保护,2007(01):67-70.
    [52]刘会平,王艳丽.广州市地面沉降危险性评价[J].海洋地质动态,2006(1):1-4.
    [53] Van Westen C J. Geo-Information tools for Landslide Risk Assessment: Anoverview of recent developments[M]. Landslides, Evaluation&Stabilization.Proceedings9th International Symposium on Landslides,2004.
    [54] Jia S, Guoping Y, Degang J. Risk Assessment Modeling for Urban WaterDistribution Systems under the Effect of Land Subsidence[J]. ICPTT2012.Better Pipeline Infrastructure for a Better Life. Proceedings of the InternationalConference on Pipelines and Trenchless Technology2012,2013:1484-1493.
    [55] Huang B, Shu L, Yang Y S. Groundwater Overexploitation Causing LandSubsidence: Hazard Risk Assessment Using Field Observation and SpatialModelling[J]. Water Resources Management,2012,26(14):4225-4239.
    [56]张梁,张建军.地质灾害风险区划理论与方法[J].地质灾害与环境保护,2000(4):323-328.
    [57]柳源.中国地质灾害(以崩、滑、流为主)危险性分析与区划[J].中国地质灾害与防治学报,2003(1):98-102.
    [58]金晓媚,刘金韬.地质灾害灾情评估系统[J].水文地质工程地质,1998(4):32-34.
    [59]于军,武健强,王晓梅,等.地面沉降风险评价初探[J].高校地质学报,2008(3):450-454.
    [60] GONG S, WU J. Risk Assessment and Prevention Countermeasure ofGeological Hazard for Shanghai Tunnel-Bridge Engineering Across YangtzeRiver[J]. Journal of Yangtze River Scientific Research Institute,2008,25(6):62-66.
    [61] Beibei C, Huili G, Xiaojuan L, et al. Risk assessment on the land subsidence inBeijing[J]. Proceedings of the SPIE-The International Society for OpticalEngineering,2009,7471:74710L-74711L.
    [62]于军,束龙仓,温忠辉,等.锡西—澄南典型地面沉降区地面沉降风险评价[J].地质学刊,2012(1):74-79.
    [63]薛禹群,吴吉春,张云,等.长江三角洲(南部)区域地面沉降模拟研究[J].中国科学(D辑:地球科学),2008(04):477-492.
    [64] Kim K, Lee S, Oh H, et al. Assessment of ground subsidence hazard near anabandoned underground coal mine using GIS[J]. Environmental Geology,2006,50(8):1183-1191.
    [65] Meng L, Feng Q Y, Zhang H R, et al. Development of GIS-based landsubsidence management information system[J].2008Proceedings OfInformation Technology And Environmental System Sciences: ITESS2008,VOL2,2008:615-620.
    [66] Thumerer T, Jones A P, Brown D. A GIS based coastal management system forclimate change associated flood risk assessment on the east coast of England[J].International Journal Of Geographical Information Science,2000,14(3):265-281.
    [67] Qing-Wang H, Chugh Y P. Spatial predictive modeling of mine subsidence riskwith GIS[J]. GIS/LIS Proceedings,1993,1(1):282-291.
    [68] Chen Y, Shu L, Burbey T J. Composite Subsidence Vulnerability AssessmentBased on an Index Model and Index Decomposition Method[J]. Human AndEcological Risk Assessment,2013,19(3):674-698.
    [69]赵庆香,黄岁梁,杜晓燕.天津市地面沉降风险分析研究[J].中国公共安全(学术版),2007(3):48-53.
    [70]龚士良.长江三角洲地质环境与地面沉降防治:第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会,中国内蒙古赤峰,2005.
    [71] Cui Z, Tang Y, Yan X, et al. Evaluation of the geology-environmental capacityof buildings based on the ANFIS model of the floor area ratio[J]. Bulletin OfEngineering Geology And The Environment,2010,69(1):111-118.
    [72] WU Y, LIU D, LU X, et al. Vulnerability assessment model for hazard bearingbody and landslide risk index[J]. Rock and Soil Mechanics,2011,32(8):2487-2492,2499.
    [73] Miles S B. Participatory model assessment of earthquake-induced landslidehazard models[J]. Natural Hazards,2011,56(3):749-766.
    [74] Lin J, Yang M, Lin B, et al. Risk assessment of debris flows in Songhe Stream,Taiwan[J]. Engineering Geology,2011,123(1-2SI):100-112.
    [75]龚士良.台湾地面沉降现状与防治对策[J].中国地质灾害与防治学报,2003(3):27-34.
    [76]李采,何庆成.当前国内外地面沉降研究主要方向和成果:突发地质灾害防治与减灾对策研究高级学术研讨会,中国广东深圳,2006.
    [77]殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报,2005(2):1-8.
    [78]张阿根,杨天亮.国际地面沉降研究最新进展综述[J].上海地质,2010(4):57-63.
    [79] Mirecki J E, Bennett M W, Lopez-Balaez M C. Arsenic Control During AquiferStorage Recovery Cycle Tests in the Floridan Aquifer[J]. GROUND WATER,2013,51(4):539-549.
    [80] Clilverd H M, White D M, Tidwell A C, et al. The Sensitivity of NorthernGroundwater Recharge to Climate Change: A Case Study in NorthwestAlaska[J]. Journal Of The American Water Resources Association,2011,47(6):1228-1240.
    [81]石旭飞,张文静,王寒梅,等.人工回灌过程中的水-岩相互作用模拟[J].吉林大学学报(地球科学版),2013(1):220-227.
    [82]苏小四,谷小溪,孟婧莹,等.人工回灌条件下多组分溶质的反应迁移模拟[J].吉林大学学报(地球科学版),2012(2):485-491.
    [83]石旭飞,王寒梅,焦珣,等.人工回灌条件下的水岩作用室内实验研究[J].上海国土资源,2012(2):21-24.
    [84]吴建中,王寒梅,杨天亮.浅层地下水人工回灌应用于上海市工程性地面沉降防治的试验研究[J].现代地质,2009(6):1194-1200.
    [85] Li Y, Weng T, Liu Y. Mechanism and Prevention of Urban LandSubsidence[M]//2011:1749-1754.
    [86] Wu Y. Mechanism analysis of hazards caused by the interaction betweengroundwater and geo-environment[J]. Environmental Geology,2003,44(7):811-819.
    [87] Li W, Cui Y, Su C, et al. An Integrated Numerical Groundwater and LandSubsidence Model of Tianjin[J]. Journal of Jilin University. Earth ScienceEdition,2012,42(3):805-813.
    [88] Xu Y, Ma L, Du Y, et al. Analysis of urbanisation-induced land subsidence inShanghai[J]. Natural Hazards,2012,63(2):1255-1267.
    [89] Zhang Y, Xue Y, Ye S, et al. Analysis of deformation of sand strata and landsubsidence based on modes of groundwater level changes in Shanghai City[J].The Chinese Journal of Geological Hazard and Control,2006,17(3):103-109.
    [90] Chen C X, Pei S P, Jiao J J. Land subsidence caused by groundwaterexploitation in Suzhou City, China[J]. Hydrogeology Journal,2003,11(2):275-287.
    [91] Yajun Z, Linchang M. Study of Land Subsidence Due to Ground WaterExtraction Considering Recharge[J].2011International Conference on ElectricInformation and Control Engineering,2011:6.
    [92] Calderhead A I, Martel R, Garfias J, et al. Sustainable Management forMinimizing Land Subsidence of an Over-Pumped Volcanic Aquifer System:Tools for Policy Design[J]. Water Resources Management,2012,26(7):1847-1864.
    [93] Shi J, Guo J, Sun Y, et al. Spatial Analysis of the Relation between DeepGroundwater Exploitation and Land Subsidence in Beijing-Tianjin-Hebei-Dezhou Plain Area[J]. Geological Review,2006,52(6):804-809.
    [94] Galloway D L, Burbey T J. Review: Regional land subsidence accompanyinggroundwater extraction[J]. Hydrogeology Journal,2011,19(8):1459-1486.
    [95] Solomon D K, Cole E, Leising J F. Excess air during aquifer storage andrecovery in an arid basin (Las Vegas Valley, USA)[J]. Hydrogeology Journal,2011,19(1):187-194.
    [96] Hiscock K M. The Influence Of Pre-Devensian Glacial Deposits On TheHydrogeochemistry Of The Chalk Aquifer System Of North Norfolk, UK[J].Journal Of Hydrology,1993,144(1-4):335-369.
    [97]孟立志.人工补给对地下水质影响的实验研究[D].吉林大学,2007.
    [98]谷小溪.人工回灌条件下地下水中多组分溶质的反应迁移模拟[D].吉林大学,2012.
    [99]董艳慧.地下水保护理论及修复技术的研究[D].长安大学,2010.
    [100]龚士良.上海地面沉降影响因素综合分析与地面沉降系统调控对策研究[D].华东师范大学,2008.
    [101]李勤奋,王寒梅.上海地面沉降研究[J].高校地质学报,2006(02):169-178.
    [102]张阿根,魏子新.上海地面沉降研究的过去、现在与未来[J].水文地质工程地质,2002(05):72-75.
    [103]张阿根,魏子新.中国地面沉降沉降[M].上海:上海科学技术出版社,2005.
    [104]郭坤一.长江三角洲地区地下水资源与地质灾害调查评价[R].南京:南京地质矿产研究所,2004.
    [105]魏子新,翟刚毅,严学新,等.上海城市地质[M].北京:地质出版社,2010.
    [106]魏子新,翟刚毅,严学新,等.上海城市地质图集[M].北京:地质出版社,2010.
    [107]魏子新.上海市地下水环境容量评价及其在地面沉降控制中的应用[R].上海:上海市地质调查研究院,2010.
    [108]张先林,王寒梅,焦珣,等.新时期地面沉降防治战略研究[R].上海:上海市地质调查研究院,2013.
    [109]上海市统计局.上海统计年鉴2009[M].中国统计出版设,2009.
    [110]王寒梅,吴建中,刘金宝,等.上海市地面沉降监测与风险管理研究报告[R].上海:上海市地质调查研究院,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700